default search action
Rodolphe Jenatton
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c28]Ke Wang, Guillermo Ortiz-Jiménez, Rodolphe Jenatton, Mark Collier, Efi Kokiopoulou, Pascal Frossard:
Pi-DUAL: Using privileged information to distinguish clean from noisy labels. ICML 2024 - 2023
- [c27]Mark Collier, Rodolphe Jenatton, Basil Mustafa, Neil Houlsby, Jesse Berent, Effrosyni Kokiopoulou:
Massively Scaling Heteroscedastic Classifiers. ICLR 2023 - [c26]Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer, Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, Rodolphe Jenatton, Lucas Beyer, Michael Tschannen, Anurag Arnab, Xiao Wang, Carlos Riquelme Ruiz, Matthias Minderer, Joan Puigcerver, Utku Evci, Manoj Kumar, Sjoerd van Steenkiste, Gamaleldin Fathy Elsayed, Aravindh Mahendran, Fisher Yu, Avital Oliver, Fantine Huot, Jasmijn Bastings, Mark Collier, Alexey A. Gritsenko, Vighnesh Birodkar, Cristina Nader Vasconcelos, Yi Tay, Thomas Mensink, Alexander Kolesnikov, Filip Pavetic, Dustin Tran, Thomas Kipf, Mario Lucic, Xiaohua Zhai, Daniel Keysers, Jeremiah J. Harmsen, Neil Houlsby:
Scaling Vision Transformers to 22 Billion Parameters. ICML 2023: 7480-7512 - [c25]Guillermo Ortiz-Jiménez, Mark Collier, Anant Nawalgaria, Alexander Nicholas D'Amour, Jesse Berent, Rodolphe Jenatton, Efi Kokiopoulou:
When does Privileged information Explain Away Label Noise? ICML 2023: 26646-26669 - [c24]Jannik Kossen, Mark Collier, Basil Mustafa, Xiao Wang, Xiaohua Zhai, Lucas Beyer, Andreas Steiner, Jesse Berent, Rodolphe Jenatton, Effrosyni Kokiopoulou:
Three Towers: Flexible Contrastive Learning with Pretrained Image Models. NeurIPS 2023 - [i35]Mark Collier, Rodolphe Jenatton, Basil Mustafa, Neil Houlsby, Jesse Berent, Effrosyni Kokiopoulou:
Massively Scaling Heteroscedastic Classifiers. CoRR abs/2301.12860 (2023) - [i34]Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer, Andreas Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, Rodolphe Jenatton, Lucas Beyer, Michael Tschannen, Anurag Arnab, Xiao Wang, Carlos Riquelme, Matthias Minderer, Joan Puigcerver, Utku Evci, Manoj Kumar, Sjoerd van Steenkiste, Gamaleldin F. Elsayed, Aravindh Mahendran, Fisher Yu, Avital Oliver, Fantine Huot, Jasmijn Bastings, Mark Patrick Collier, Alexey A. Gritsenko, Vighnesh Birodkar, Cristina Nader Vasconcelos, Yi Tay, Thomas Mensink, Alexander Kolesnikov, Filip Pavetic, Dustin Tran, Thomas Kipf, Mario Lucic, Xiaohua Zhai, Daniel Keysers, Jeremiah Harmsen, Neil Houlsby:
Scaling Vision Transformers to 22 Billion Parameters. CoRR abs/2302.05442 (2023) - [i33]Guillermo Ortiz-Jiménez, Mark Collier, Anant Nawalgaria, Alexander D'Amour, Jesse Berent, Rodolphe Jenatton, Effrosyni Kokiopoulou:
When does Privileged Information Explain Away Label Noise? CoRR abs/2303.01806 (2023) - [i32]Jannik Kossen, Mark Collier, Basil Mustafa, Xiao Wang, Xiaohua Zhai, Lucas Beyer, Andreas Steiner, Jesse Berent, Rodolphe Jenatton, Efi Kokiopoulou:
Three Towers: Flexible Contrastive Learning with Pretrained Image Models. CoRR abs/2305.16999 (2023) - [i31]Ke Wang, Guillermo Ortiz-Jiménez, Rodolphe Jenatton, Mark Collier, Efi Kokiopoulou, Pascal Frossard:
Pi-DUAL: Using Privileged Information to Distinguish Clean from Noisy Labels. CoRR abs/2310.06600 (2023) - 2022
- [j11]Luigi Carratino, Moustapha Cissé, Rodolphe Jenatton, Jean-Philippe Vert:
On Mixup Regularization. J. Mach. Learn. Res. 23: 325:1-325:31 (2022) - [j10]James Urquhart Allingham, Florian Wenzel, Zelda E. Mariet, Basil Mustafa, Joan Puigcerver, Neil Houlsby, Ghassen Jerfel, Vincent Fortuin, Balaji Lakshminarayanan, Jasper Snoek, Dustin Tran, Carlos Riquelme Ruiz, Rodolphe Jenatton:
Sparse MoEs meet Efficient Ensembles. Trans. Mach. Learn. Res. 2022 (2022) - [j9]Vincent Fortuin, Mark Collier, Florian Wenzel, James Urquhart Allingham, Jeremiah Zhe Liu, Dustin Tran, Balaji Lakshminarayanan, Jesse Berent, Rodolphe Jenatton, Effrosyni Kokiopoulou:
Deep Classifiers with Label Noise Modeling and Distance Awareness. Trans. Mach. Learn. Res. 2022 (2022) - [c23]Setareh Ariafar, Justin Gilmer, Zachary Nado, Jasper Snoek, Rodolphe Jenatton, George E. Dahl:
Predicting the utility of search spaces for black-box optimization: a simple, budget-aware approach. AISTATS 2022: 11056-11071 - [c22]Mark Collier, Rodolphe Jenatton, Effrosyni Kokiopoulou, Jesse Berent:
Transfer and Marginalize: Explaining Away Label Noise with Privileged Information. ICML 2022: 4219-4237 - [c21]Basil Mustafa, Carlos Riquelme, Joan Puigcerver, Rodolphe Jenatton, Neil Houlsby:
Multimodal Contrastive Learning with LIMoE: the Language-Image Mixture of Experts. NeurIPS 2022 - [c20]Joan Puigcerver, Rodolphe Jenatton, Carlos Riquelme, Pranjal Awasthi, Srinadh Bhojanapalli:
On the Adversarial Robustness of Mixture of Experts. NeurIPS 2022 - [i30]Mark Collier, Rodolphe Jenatton, Efi Kokiopoulou, Jesse Berent:
Transfer and Marginalize: Explaining Away Label Noise with Privileged Information. CoRR abs/2202.09244 (2022) - [i29]Basil Mustafa, Carlos Riquelme, Joan Puigcerver, Rodolphe Jenatton, Neil Houlsby:
Multimodal Contrastive Learning with LIMoE: the Language-Image Mixture of Experts. CoRR abs/2206.02770 (2022) - [i28]Dustin Tran, Jeremiah Z. Liu, Michael W. Dusenberry, Du Phan, Mark Collier, Jie Ren, Kehang Han, Zi Wang, Zelda Mariet, Huiyi Hu, Neil Band, Tim G. J. Rudner, Karan Singhal, Zachary Nado, Joost van Amersfoort, Andreas Kirsch, Rodolphe Jenatton, Nithum Thain, Honglin Yuan, Kelly Buchanan, Kevin Murphy, D. Sculley, Yarin Gal, Zoubin Ghahramani, Jasper Snoek, Balaji Lakshminarayanan:
Plex: Towards Reliability using Pretrained Large Model Extensions. CoRR abs/2207.07411 (2022) - [i27]Joan Puigcerver, Rodolphe Jenatton, Carlos Riquelme, Pranjal Awasthi, Srinadh Bhojanapalli:
On the Adversarial Robustness of Mixture of Experts. CoRR abs/2210.10253 (2022) - 2021
- [c19]Mark Collier, Basil Mustafa, Efi Kokiopoulou, Rodolphe Jenatton, Jesse Berent:
Correlated Input-Dependent Label Noise in Large-Scale Image Classification. CVPR 2021: 1551-1560 - [c18]Marton Havasi, Rodolphe Jenatton, Stanislav Fort, Jeremiah Zhe Liu, Jasper Snoek, Balaji Lakshminarayanan, Andrew Mingbo Dai, Dustin Tran:
Training independent subnetworks for robust prediction. ICLR 2021 - [c17]Valerio Perrone, Huibin Shen, Aida Zolic, Iaroslav Shcherbatyi, Amr Ahmed, Tanya Bansal, Michele Donini, Fela Winkelmolen, Rodolphe Jenatton, Jean Baptiste Faddoul, Barbara Pogorzelska, Miroslav Miladinovic, Krishnaram Kenthapadi, Matthias W. Seeger, Cédric Archambeau:
Amazon SageMaker Automatic Model Tuning: Scalable Gradient-Free Optimization. KDD 2021: 3463-3471 - [c16]Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André Susano Pinto, Daniel Keysers, Neil Houlsby:
Scaling Vision with Sparse Mixture of Experts. NeurIPS 2021: 8583-8595 - [i26]Mark Collier, Basil Mustafa, Efi Kokiopoulou, Rodolphe Jenatton, Jesse Berent:
Correlated Input-Dependent Label Noise in Large-Scale Image Classification. CoRR abs/2105.10305 (2021) - [i25]Zachary Nado, Neil Band, Mark Collier, Josip Djolonga, Michael W. Dusenberry, Sebastian Farquhar, Angelos Filos, Marton Havasi, Rodolphe Jenatton, Ghassen Jerfel, Jeremiah Z. Liu, Zelda Mariet, Jeremy Nixon, Shreyas Padhy, Jie Ren, Tim G. J. Rudner, Yeming Wen, Florian Wenzel, Kevin Murphy, D. Sculley, Balaji Lakshminarayanan, Jasper Snoek, Yarin Gal, Dustin Tran:
Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep Learning. CoRR abs/2106.04015 (2021) - [i24]Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André Susano Pinto, Daniel Keysers, Neil Houlsby:
Scaling Vision with Sparse Mixture of Experts. CoRR abs/2106.05974 (2021) - [i23]Vincent Fortuin, Mark Collier, Florian Wenzel, James Urquhart Allingham, Jeremiah Z. Liu, Dustin Tran, Balaji Lakshminarayanan, Jesse Berent, Rodolphe Jenatton, Effrosyni Kokiopoulou:
Deep Classifiers with Label Noise Modeling and Distance Awareness. CoRR abs/2110.02609 (2021) - [i22]James Urquhart Allingham, Florian Wenzel, Zelda E. Mariet, Basil Mustafa, Joan Puigcerver, Neil Houlsby, Ghassen Jerfel, Vincent Fortuin, Balaji Lakshminarayanan, Jasper Snoek, Dustin Tran, Carlos Riquelme Ruiz, Rodolphe Jenatton:
Sparse MoEs meet Efficient Ensembles. CoRR abs/2110.03360 (2021) - [i21]Setareh Ariafar, Justin Gilmer, Zachary Nado, Jasper Snoek, Rodolphe Jenatton, George E. Dahl:
Predicting the utility of search spaces for black-box optimization: a simple, budget-aware approach. CoRR abs/2112.08250 (2021) - 2020
- [c15]Jakub Swiatkowski, Kevin Roth, Bastiaan S. Veeling, Linh Tran, Joshua V. Dillon, Jasper Snoek, Stephan Mandt, Tim Salimans, Rodolphe Jenatton, Sebastian Nowozin:
The k-tied Normal Distribution: A Compact Parameterization of Gaussian Mean Field Posteriors in Bayesian Neural Networks. ICML 2020: 9289-9299 - [c14]Florian Wenzel, Kevin Roth, Bastiaan S. Veeling, Jakub Swiatkowski, Linh Tran, Stephan Mandt, Jasper Snoek, Tim Salimans, Rodolphe Jenatton, Sebastian Nowozin:
How Good is the Bayes Posterior in Deep Neural Networks Really? ICML 2020: 10248-10259 - [c13]Florian Wenzel, Jasper Snoek, Dustin Tran, Rodolphe Jenatton:
Hyperparameter Ensembles for Robustness and Uncertainty Quantification. NeurIPS 2020 - [i20]Linh Tran, Bastiaan S. Veeling, Kevin Roth, Jakub Swiatkowski, Joshua V. Dillon, Jasper Snoek, Stephan Mandt, Tim Salimans, Sebastian Nowozin, Rodolphe Jenatton:
Hydra: Preserving Ensemble Diversity for Model Distillation. CoRR abs/2001.04694 (2020) - [i19]Florian Wenzel, Kevin Roth, Bastiaan S. Veeling, Jakub Swiatkowski, Linh Tran, Stephan Mandt, Jasper Snoek, Tim Salimans, Rodolphe Jenatton, Sebastian Nowozin:
How Good is the Bayes Posterior in Deep Neural Networks Really? CoRR abs/2002.02405 (2020) - [i18]Jakub Swiatkowski, Kevin Roth, Bastiaan S. Veeling, Linh Tran, Joshua V. Dillon, Stephan Mandt, Jasper Snoek, Tim Salimans, Rodolphe Jenatton, Sebastian Nowozin:
The k-tied Normal Distribution: A Compact Parameterization of Gaussian Mean Field Posteriors in Bayesian Neural Networks. CoRR abs/2002.02655 (2020) - [i17]Luigi Carratino, Moustapha Cissé, Rodolphe Jenatton, Jean-Philippe Vert:
On Mixup Regularization. CoRR abs/2006.06049 (2020) - [i16]Florian Wenzel, Jasper Snoek, Dustin Tran, Rodolphe Jenatton:
Hyperparameter Ensembles for Robustness and Uncertainty Quantification. CoRR abs/2006.13570 (2020) - [i15]Marton Havasi, Rodolphe Jenatton, Stanislav Fort, Jeremiah Zhe Liu, Jasper Snoek, Balaji Lakshminarayanan, Andrew M. Dai, Dustin Tran:
Training independent subnetworks for robust prediction. CoRR abs/2010.06610 (2020) - [i14]Piali Das, Valerio Perrone, Nikita Ivkin, Tanya Bansal, Zohar S. Karnin, Huibin Shen, Iaroslav Shcherbatyi, Yotam Elor, Wilton Wu, Aida Zolic, Thibaut Liénart, Alex Tang, Amr Ahmed, Jean Baptiste Faddoul, Rodolphe Jenatton, Fela Winkelmolen, Philip Gautier, Leo Dirac, Andre Perunicic, Miroslav Miladinovic, Giovanni Zappella, Cédric Archambeau, Matthias W. Seeger, Bhaskar Dutt, Laurence Rouesnel:
Amazon SageMaker Autopilot: a white box AutoML solution at scale. CoRR abs/2012.08483 (2020) - [i13]Valerio Perrone, Huibin Shen, Aida Zolic, Iaroslav Shcherbatyi, Amr Ahmed, Tanya Bansal, Michele Donini, Fela Winkelmolen, Rodolphe Jenatton, Jean Baptiste Faddoul, Barbara Pogorzelska, Miroslav Miladinovic, Krishnaram Kenthapadi, Matthias W. Seeger, Cédric Archambeau:
Amazon SageMaker Automatic Model Tuning: Scalable Black-box Optimization. CoRR abs/2012.08489 (2020)
2010 – 2019
- 2019
- [i12]Valerio Perrone, Huibin Shen, Matthias W. Seeger, Cédric Archambeau, Rodolphe Jenatton:
Learning search spaces for Bayesian optimization: Another view of hyperparameter transfer learning. CoRR abs/1909.12552 (2019) - [i11]Valerio Perrone, Iaroslav Shcherbatyi, Rodolphe Jenatton, Cédric Archambeau, Matthias W. Seeger:
Constrained Bayesian Optimization with Max-Value Entropy Search. CoRR abs/1910.07003 (2019) - 2018
- [c12]Valerio Perrone, Rodolphe Jenatton, Matthias W. Seeger, Cédric Archambeau:
Scalable Hyperparameter Transfer Learning. NeurIPS 2018: 6846-6856 - 2017
- [c11]Rodolphe Jenatton, Cédric Archambeau, Javier González, Matthias W. Seeger:
Bayesian Optimization with Tree-structured Dependencies. ICML 2017: 1655-1664 - 2016
- [c10]Rodolphe Jenatton, Jim C. Huang, Cédric Archambeau:
Adaptive Algorithms for Online Convex Optimization with Long-term Constraints. ICML 2016: 402-411 - [c9]Jim C. Huang, Rodolphe Jenatton, Cédric Archambeau:
Online Dual Decomposition for Performance and Delivery-Based Distributed Ad Allocation. KDD 2016: 117-126 - [i10]Rodolphe Jenatton, Jim C. Huang, Cédric Archambeau:
Online optimization and regret guarantees for non-additive long-term constraints. CoRR abs/1602.05394 (2016) - 2015
- [j8]Fajwel Fogel, Rodolphe Jenatton, Francis R. Bach, Alexandre d'Aspremont:
Convex Relaxations for Permutation Problems. SIAM J. Matrix Anal. Appl. 36(4): 1465-1488 (2015) - [j7]Rémi Gribonval, Rodolphe Jenatton, Francis R. Bach, Martin Kleinsteuber, Matthias Seibert:
Sample Complexity of Dictionary Learning and Other Matrix Factorizations. IEEE Trans. Inf. Theory 61(6): 3469-3486 (2015) - [j6]Rémi Gribonval, Rodolphe Jenatton, Francis R. Bach:
Sparse and Spurious: Dictionary Learning With Noise and Outliers. IEEE Trans. Inf. Theory 61(11): 6298-6319 (2015) - [c8]Antonino Freno, Martin Saveski, Rodolphe Jenatton, Cédric Archambeau:
One-Pass Ranking Models for Low-Latency Product Recommendations. KDD 2015: 1789-1798 - [i9]Rodolphe Jenatton, Jim C. Huang, Cédric Archambeau:
Adaptive Algorithms for Online Convex Optimization with Long-term Constraints. CoRR abs/1512.07422 (2015) - 2014
- [c7]Matthias Seibert, Martin Kleinsteuber, Rémi Gribonval, Rodolphe Jenatton, Francis R. Bach:
On the sample complexity of sparse dictionary learning. SSP 2014: 244-247 - [i8]Rémi Gribonval, Rodolphe Jenatton, Francis R. Bach:
Sparse and spurious: dictionary learning with noise and outliers. CoRR abs/1407.5155 (2014) - 2013
- [c6]Fajwel Fogel, Rodolphe Jenatton, Francis R. Bach, Alexandre d'Aspremont:
Convex Relaxations for Permutation Problems. NIPS 2013: 1016-1024 - [i7]Rémi Gribonval, Rodolphe Jenatton, Francis R. Bach, Martin Kleinsteuber, Matthias Seibert:
Sample Complexity of Dictionary Learning and other Matrix Factorizations. CoRR abs/1312.3790 (2013) - 2012
- [j5]Francis R. Bach, Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski:
Optimization with Sparsity-Inducing Penalties. Found. Trends Mach. Learn. 4(1): 1-106 (2012) - [j4]Rodolphe Jenatton, Alexandre Gramfort, Vincent Michel, Guillaume Obozinski, Evelyn Eger, Francis R. Bach, Bertrand Thirion:
Multiscale Mining of fMRI Data with Hierarchical Structured Sparsity. SIAM J. Imaging Sci. 5(3): 835-856 (2012) - [c5]Rodolphe Jenatton, Nicolas Le Roux, Antoine Bordes, Guillaume Obozinski:
A latent factor model for highly multi-relational data. NIPS 2012: 3176-3184 - [i6]Rodolphe Jenatton, Rémi Gribonval, Francis R. Bach:
Local stability and robustness of sparse dictionary learning in the presence of noise. CoRR abs/1210.0685 (2012) - 2011
- [b1]Rodolphe Jenatton:
Structured Sparsity-Inducing Norms : Statistical and Algorithmic Properties with Applications to Neuroimaging. (Normes Parcimonieuses Structurées : Propriétés Statistiques et Algorithmiques avec Applications à l'Imagerie Cérébrale). École normale supérieure de Cachan, France, 2011 - [j3]Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski, Francis R. Bach:
Proximal Methods for Hierarchical Sparse Coding. J. Mach. Learn. Res. 12: 2297-2334 (2011) - [j2]Julien Mairal, Rodolphe Jenatton, Guillaume Obozinski, Francis R. Bach:
Convex and Network Flow Optimization for Structured Sparsity. J. Mach. Learn. Res. 12: 2681-2720 (2011) - [j1]Rodolphe Jenatton, Jean-Yves Audibert, Francis R. Bach:
Structured Variable Selection with Sparsity-Inducing Norms. J. Mach. Learn. Res. 12: 2777-2824 (2011) - [c4]Rodolphe Jenatton, Alexandre Gramfort, Vincent Michel, Guillaume Obozinski, Francis R. Bach, Bertrand Thirion:
Multi-scale Mining of fMRI Data with Hierarchical Structured Sparsity. PRNI 2011: 69-72 - [i5]Julien Mairal, Rodolphe Jenatton, Guillaume Obozinski, Francis R. Bach:
Convex and Network Flow Optimization for Structured Sparsity. CoRR abs/1104.1872 (2011) - [i4]Francis R. Bach, Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski:
Optimization with Sparsity-Inducing Penalties. CoRR abs/1108.0775 (2011) - [i3]Francis R. Bach, Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski:
Structured sparsity through convex optimization. CoRR abs/1109.2397 (2011) - [i2]Julien Mairal, Rodolphe Jenatton, Guillaume Obozinski, Francis R. Bach:
Learning Hierarchical and Topographic Dictionaries with Structured Sparsity. CoRR abs/1110.4481 (2011) - 2010
- [c3]Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski, Francis R. Bach:
Proximal Methods for Sparse Hierarchical Dictionary Learning. ICML 2010: 487-494 - [c2]Julien Mairal, Rodolphe Jenatton, Guillaume Obozinski, Francis R. Bach:
Network Flow Algorithms for Structured Sparsity. NIPS 2010: 1558-1566 - [c1]Rodolphe Jenatton, Guillaume Obozinski, Francis R. Bach:
Structured Sparse Principal Component Analysis. AISTATS 2010: 366-373 - [i1]Julien Mairal, Rodolphe Jenatton, Guillaume Obozinski, Francis R. Bach:
Network Flow Algorithms for Structured Sparsity. CoRR abs/1008.5209 (2010)
Coauthor Index
aka: Mark Patrick Collier
aka: Efi Kokiopoulou
aka: Carlos Riquelme Ruiz
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-09 12:58 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint