default search action
Aki Vehtari
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j42]Ryoko Noda, Michael Mechenich, Juha Saarinen, Aki Vehtari, Indre Zliobaite:
Predicting habitat suitability for Asian elephants in non-analog ecosystems with Bayesian models. Ecol. Informatics 82: 102658 (2024) - [j41]Aki Vehtari, Daniel Simpson, Andrew Gelman, Yuling Yao, Jonah Gabry:
Pareto Smoothed Importance Sampling. J. Mach. Learn. Res. 25: 72:1-72:58 (2024) - [j40]Manushi Welandawe, Michael Riis Andersen, Aki Vehtari, Jonathan H. Huggins:
A Framework for Improving the Reliability of Black-box Variational Inference. J. Mach. Learn. Res. 25: 219:1-219:71 (2024) - [j39]Noa Kallioinen, Topi Paananen, Paul-Christian Bürkner, Aki Vehtari:
Detecting and diagnosing prior and likelihood sensitivity with power-scaling. Stat. Comput. 34(1): 57 (2024) - [j38]Alex Cooper, Aki Vehtari, Catherine Forbes, Daniel Simpson, Lauren Kennedy:
Bayesian cross-validation by parallel Markov chain Monte Carlo. Stat. Comput. 34(4): 119 (2024) - [j37]Yann McLatchie, Aki Vehtari:
Efficient estimation and correction of selection-induced bias with order statistics. Stat. Comput. 34(4): 132 (2024) - [i23]Kunal Ghosh, Milica Todorovic, Aki Vehtari, Patrick Rinke:
Active Learning of Molecular Data for Task-Specific Objectives. CoRR abs/2408.11191 (2024) - [i22]Marvin Schmitt, Chengkun Li, Aki Vehtari, Luigi Acerbi, Paul-Christian Bürkner, Stefan T. Radev:
Amortized Bayesian Workflow (Extended Abstract). CoRR abs/2409.04332 (2024) - 2023
- [j36]Federico Pavone, Juho Piironen, Paul-Christian Bürkner, Aki Vehtari:
Using reference models in variable selection. Comput. Stat. 38(1): 349-371 (2023) - [j35]Gabriel Riutort-Mayol, Paul-Christian Bürkner, Michael Riis Andersen, Arno Solin, Aki Vehtari:
Practical Hilbert space approximate Bayesian Gaussian processes for probabilistic programming. Stat. Comput. 33(1): 17 (2023) - 2022
- [j34]Philip Greengard, Andrew Gelman, Aki Vehtari:
A fast regression via SVD and marginalization. Comput. Stat. 37(2): 701-720 (2022) - [j33]Yuling Yao, Aki Vehtari, Andrew Gelman:
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of Multimodal Posteriors. J. Mach. Learn. Res. 23: 79:1-79:45 (2022) - [j32]Lu Zhang, Bob Carpenter, Andrew Gelman, Aki Vehtari:
Pathfinder: Parallel quasi-Newton variational inference. J. Mach. Learn. Res. 23: 306:1-306:49 (2022) - [j31]Tuulia Malén, Tomi Karjalainen, Janne Isojärvi, Aki Vehtari, Paul-Christian Bürkner, Vesa Putkinen, Valtteri Kaasinen, Jarmo Hietala, Pirjo Nuutila, Juha O. Rinne, Lauri Nummenmaa:
Atlas of type 2 dopamine receptors in the human brain: Age and sex dependent variability in a large PET cohort. NeuroImage 255: 119149 (2022) - [j30]Teemu Säilynoja, Paul-Christian Bürkner, Aki Vehtari:
Graphical test for discrete uniformity and its applications in goodness-of-fit evaluation and multiple sample comparison. Stat. Comput. 32(2): 32 (2022) - [c36]Alejandro Catalina, Paul-Christian Bürkner, Aki Vehtari:
Projection Predictive Inference for Generalized Linear and Additive Multilevel Models. AISTATS 2022: 4446-4461 - [c35]Isaac Sebenius, Topi Paananen, Aki Vehtari:
Feature Collapsing for Gaussian Process Variable Ranking. AISTATS 2022: 11341-11355 - [i21]Manushi Welandawe, Michael Riis Andersen, Aki Vehtari, Jonathan H. Huggins:
Robust, Automated, and Accurate Black-box Variational Inference. CoRR abs/2203.15945 (2022) - 2021
- [j29]Juho Timonen, Henrik Mannerström, Aki Vehtari, Harri Lähdesmäki:
lgpr: an interpretable non-parametric method for inferring covariate effects from longitudinal data. Bioinform. 37(13): 1860-1867 (2021) - [j28]Paul-Christian Bürkner, Jonah Gabry, Aki Vehtari:
Efficient leave-one-out cross-validation for Bayesian non-factorized normal and Student-t models. Comput. Stat. 36(2): 1243-1261 (2021) - [j27]Topi Paananen, Juho Piironen, Paul-Christian Bürkner, Aki Vehtari:
Implicitly adaptive importance sampling. Stat. Comput. 31(2): 16 (2021) - [c34]Eero Siivola, Akash Kumar Dhaka, Michael Riis Andersen, Javier González, Pablo Garcia Moreno, Aki Vehtari:
Preferential Batch Bayesian Optimization. MLSP 2021: 1-6 - [c33]Akash Kumar Dhaka, Alejandro Catalina, Manushi Welandawe, Michael Riis Andersen, Jonathan H. Huggins, Aki Vehtari:
Challenges and Opportunities in High Dimensional Variational Inference. NeurIPS 2021: 7787-7798 - [c32]Topi Paananen, Michael Riis Andersen, Aki Vehtari:
Uncertainty-aware sensitivity analysis using Rényi divergences. UAI 2021: 1185-1194 - [i20]Yuling Yao, Gregor Pirs, Aki Vehtari, Andrew Gelman:
Bayesian hierarchical stacking. CoRR abs/2101.08954 (2021) - [i19]Akash Kumar Dhaka, Alejandro Catalina, Manushi Welandawe, Michael Riis Andersen, Jonathan H. Huggins, Aki Vehtari:
Challenges and Opportunities in High-dimensional Variational Inference. CoRR abs/2103.01085 (2021) - [i18]Lu Zhang, Bob Carpenter, Andrew Gelman, Aki Vehtari:
Pathfinder: Parallel quasi-Newton variational inference. CoRR abs/2108.03782 (2021) - 2020
- [j26]Aki Vehtari, Andrew Gelman, Tuomas Sivula, Pasi Jylänki, Dustin Tran, Swupnil Sahai, Paul Blomstedt, John P. Cunningham, David Schiminovich, Christian P. Robert:
Expectation Propagation as a Way of Life: A Framework for Bayesian Inference on Partitioned Data. J. Mach. Learn. Res. 21: 17:1-17:53 (2020) - [j25]Homayun Afrabandpey, Tomi Peltola, Juho Piironen, Aki Vehtari, Samuel Kaski:
A decision-theoretic approach for model interpretability in Bayesian framework. Mach. Learn. 109(9-10): 1855-1876 (2020) - [j24]Tatu Kantonen, Tomi Karjalainen, Janne Isojärvi, Pirjo Nuutila, Jouni Tuisku, Juha O. Rinne, Jarmo Hietala, Valtteri Kaasinen, Kari Kalliokoski, Harry Scheinin, Jussi Hirvonen, Aki Vehtari, Lauri Nummenmaa:
Interindividual variability and lateralization of μ-opioid receptors in the human brain. NeuroImage 217: 116922 (2020) - [c31]Måns Magnusson, Aki Vehtari, Johan Jonasson, Michael Riis Andersen:
Leave-One-Out Cross-Validation for Bayesian Model Comparison in Large Data. AISTATS 2020: 341-351 - [c30]Akash Kumar Dhaka, Michael Riis Andersen, Pablo Garcia Moreno, Aki Vehtari:
Scalable Gaussian Process for Extreme Classification. MLSP 2020: 1-6 - [c29]Akash Kumar Dhaka, Alejandro Catalina, Michael Riis Andersen, Måns Magnusson, Jonathan H. Huggins, Aki Vehtari:
Robust, Accurate Stochastic Optimization for Variational Inference. NeurIPS 2020 - [c28]Charles C. Margossian, Aki Vehtari, Daniel Simpson, Raj Agrawal:
Hamiltonian Monte Carlo using an adjoint-differentiated Laplace approximation: Bayesian inference for latent Gaussian models and beyond. NeurIPS 2020 - [c27]Marko Järvenpää, Aki Vehtari, Pekka Marttinen:
Batch simulations and uncertainty quantification in Gaussian process surrogate approximate Bayesian computation. UAI 2020: 779-788 - [i17]Eero Siivola, Akash Kumar Dhaka, Michael Riis Andersen, Javier González, Pablo Garcia Moreno, Aki Vehtari:
Preferential Batch Bayesian Optimization. CoRR abs/2003.11435 (2020) - [i16]Akash Kumar Dhaka, Alejandro Catalina, Michael Riis Andersen, Måns Magnusson, Jonathan H. Huggins, Aki Vehtari:
Robust, Accurate Stochastic Optimization for Variational Inference. CoRR abs/2009.00666 (2020) - [i15]Philip Greengard, Andrew Gelman, Aki Vehtari:
A Fast Linear Regression via SVD and Marginalization. CoRR abs/2011.04829 (2020) - [i14]Eero Siivola, Javier González, Andrei Paleyes, Aki Vehtari:
Good practices for Bayesian Optimization of high dimensional structured spaces. CoRR abs/2012.15471 (2020)
2010 – 2019
- 2019
- [c26]Topi Paananen, Juho Piironen, Michael Riis Andersen, Aki Vehtari:
Variable selection for Gaussian processes via sensitivity analysis of the posterior predictive distribution. AISTATS 2019: 1743-1752 - [c25]Måns Magnusson, Michael Riis Andersen, Johan Jonasson, Aki Vehtari:
Bayesian leave-one-out cross-validation for large data. ICML 2019: 4244-4253 - [c24]Iiris Sundin, Peter Schulam, Eero Siivola, Aki Vehtari, Suchi Saria, Samuel Kaski:
Active Learning for Decision-Making from Imbalanced Observational Data. ICML 2019: 6046-6055 - [i13]Iiris Sundin, Peter Schulam, Eero Siivola, Aki Vehtari, Suchi Saria, Samuel Kaski:
Active Learning for Decision-Making from Imbalanced Observational Data. CoRR abs/1904.05268 (2019) - [i12]Måns Magnusson, Michael Riis Andersen, Johan Jonasson, Aki Vehtari:
Bayesian leave-one-out cross-validation for large data. CoRR abs/1904.10679 (2019) - [i11]Marko Järvenpää, Michael U. Gutmann, Aki Vehtari, Pekka Marttinen:
Parallel Gaussian process surrogate method to accelerate likelihood-free inference. CoRR abs/1905.01252 (2019) - [i10]Marko Järvenpää, Aki Vehtari, Pekka Marttinen:
Batch simulations and uncertainty quantification in Gaussian process surrogate-based approximate Bayesian computation. CoRR abs/1910.06121 (2019) - [i9]Homayun Afrabandpey, Tomi Peltola, Juho Piironen, Aki Vehtari, Samuel Kaski:
Making Bayesian Predictive Models Interpretable: A Decision Theoretic Approach. CoRR abs/1910.09358 (2019) - [i8]Juho Timonen, Henrik Mannerström, Aki Vehtari, Harri Lähdesmäki:
An interpretable probabilistic machine learning method for heterogeneous longitudinal studies. CoRR abs/1912.03549 (2019) - 2018
- [j23]Jarno Lintusaari, Henri Vuollekoski, Antti Kangasrääsiö, Kusti Skytén, Marko Järvenpää, Pekka Marttinen, Michael U. Gutmann, Aki Vehtari, Jukka Corander, Samuel Kaski:
ELFI: Engine for Likelihood-Free Inference. J. Mach. Learn. Res. 19: 16:1-16:7 (2018) - [c23]Juho Piironen, Aki Vehtari:
Iterative Supervised Principal Components. AISTATS 2018: 106-114 - [c22]Yuling Yao, Aki Vehtari, Daniel Simpson, Andrew Gelman:
Yes, but Did It Work?: Evaluating Variational Inference. ICML 2018: 5577-5586 - [c21]Pedram Daee, Tomi Peltola, Aki Vehtari, Samuel Kaski:
User Modelling for Avoiding Overfitting in Interactive Knowledge Elicitation for Prediction. IUI 2018: 305-310 - [c20]Eero Siivola, Aki Vehtari, Jarno Vanhatalo, Javier González, Michael Riis Andersen:
Correcting boundary over-Exploration Deficiencies in Bayesian Optimization with Virtual derivative Sign observations. MLSP 2018: 1-6 - [i7]Juho Piironen, Markus Paasiniemi, Aki Vehtari:
Projective Inference in High-dimensional Problems: Prediction and Feature Selection. CoRR abs/1810.02406 (2018) - 2017
- [j22]Michael Riis Andersen, Aki Vehtari, Ole Winther, Lars Kai Hansen:
Bayesian Inference for Spatio-temporal Spike-and-Slab Priors. J. Mach. Learn. Res. 18: 139:1-139:58 (2017) - [j21]Juha Salmi, Olli-Pekka Koistinen, Enrico Glerean, Pasi Jylänki, Aki Vehtari, Iiro P. Jääskeläinen, Sasu Mäkelä, Lauri Nummenmaa, Katarina Nummi-Kuisma, Ilari Nummi, Mikko Sams:
Distributed neural signatures of natural audiovisual speech and music in the human auditory cortex. NeuroImage 157: 108-117 (2017) - [j20]Juho Piironen, Aki Vehtari:
Comparison of Bayesian predictive methods for model selection. Stat. Comput. 27(3): 711-735 (2017) - [j19]Aki Vehtari, Andrew Gelman, Jonah Gabry:
Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27(5): 1413-1432 (2017) - [j18]Aki Vehtari, Andrew Gelman, Jonah Gabry:
Erratum to: Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27(5): 1433 (2017) - [c19]Juho Piironen, Aki Vehtari:
On the Hyperprior Choice for the Global Shrinkage Parameter in the Horseshoe Prior. AISTATS 2017: 905-913 - [i6]Jarno Lintusaari, Henri Vuollekoski, Antti Kangasrääsiö, Kusti Skytén, Marko Järvenpää, Michael U. Gutmann, Aki Vehtari, Jukka Corander, Samuel Kaski:
ELFI: Engine for Likelihood Free Inference. CoRR abs/1708.00707 (2017) - [i5]Pedram Daee, Tomi Peltola, Aki Vehtari, Samuel Kaski:
User Modelling for Avoiding Overfitting in Interactive Knowledge Elicitation for Prediction. CoRR abs/1710.04881 (2017) - 2016
- [j17]Aki Vehtari, Tommi Mononen, Ville Tolvanen, Tuomas Sivula, Ole Winther:
Bayesian Leave-One-Out Cross-Validation Approximations for Gaussian Latent Variable Models. J. Mach. Learn. Res. 17: 103:1-103:38 (2016) - [c18]Alan D. Saul, James Hensman, Aki Vehtari, Neil D. Lawrence:
Chained Gaussian Processes. AISTATS 2016: 1431-1440 - [c17]Juho Piironen, Aki Vehtari:
Projection predictive model selection for Gaussian processes. MLSP 2016: 1-6 - [c16]Santosh Tirunagari, Simon C. Bull, Aki Vehtari, Christopher Farmer, Simon de Lusignan, Norman Poh:
Automatic detection of acute kidney injury episodes from primary care data. SSCI 2016: 1-6 - [i4]Alan D. Saul, James Hensman, Aki Vehtari, Neil D. Lawrence:
Chained Gaussian Processes. CoRR abs/1604.05263 (2016) - 2014
- [j16]Pasi Jylänki, Aapo Nummenmaa, Aki Vehtari:
Expectation propagation for neural networks with sparsity-promoting priors. J. Mach. Learn. Res. 15(1): 1849-1901 (2014) - [j15]Andrew Gelman, Jessica Hwang, Aki Vehtari:
Understanding predictive information criteria for Bayesian models. Stat. Comput. 24(6): 997-1016 (2014) - [c15]Tomi Peltola, Pasi Jylänki, Aki Vehtari:
Expectation Propagation for Likelihoods Depending on an Inner Product of Two Multivariate Random Variables. AISTATS 2014: 769-777 - [c14]Ville Tolvanen, Pasi Jylänki, Aki Vehtari:
Expectation propagation for nonstationary heteroscedastic Gaussian process regression. MLSP 2014: 1-6 - [c13]Tomi Peltola, Aki S. Havulinna, Veikko Salomaa, Aki Vehtari:
Hierarchical Bayesian Survival Analysis and Projective Covariate Selection in Cardiovascular Event Risk Prediction. BMA@UAI 2014: 79-88 - 2013
- [j14]Jaakko Riihimäki, Pasi Jylänki, Aki Vehtari:
Nested expectation propagation for Gaussian process classification. J. Mach. Learn. Res. 14(1): 75-109 (2013) - [j13]Jarno Vanhatalo, Jaakko Riihimäki, Jouni Hartikainen, Pasi Jylänki, Ville Tolvanen, Aki Vehtari:
GPstuff: Bayesian modeling with Gaussian processes. J. Mach. Learn. Res. 14(1): 1175-1179 (2013) - 2012
- [j12]Simo Särkkä, Arno Solin, Aapo Nummenmaa, Aki Vehtari, Toni Auranen, Simo Vanni, Fa-Hsuan Lin:
Dynamic retrospective filtering of physiological noise in BOLD fMRI: DRIFTER. NeuroImage 60(2): 1517-1527 (2012) - [i3]Jarno Vanhatalo, Aki Vehtari:
Speeding up the binary Gaussian process classification. CoRR abs/1203.3524 (2012) - [i2]Jarno Vanhatalo, Aki Vehtari:
Modelling local and global phenomena with sparse Gaussian processes. CoRR abs/1206.3290 (2012) - [i1]Jarno Vanhatalo, Jaakko Riihimäki, Jouni Hartikainen, Pasi Jylänki, Ville Tolvanen, Aki Vehtari:
Bayesian Modeling with Gaussian Processes using the MATLAB Toolbox GPstuff (v3.3). CoRR abs/1206.5754 (2012) - 2011
- [j11]Pasi Jylänki, Jarno Vanhatalo, Aki Vehtari:
Robust Gaussian Process Regression with a Student-t Likelihood. J. Mach. Learn. Res. 12: 3227-3257 (2011) - 2010
- [c12]Elina Parviainen, Aki Vehtari:
Explaining Classification by Finding Response-Related Subgroups in Data. SNPD 2010: 69-75 - [c11]Jarno Vanhatalo, Aki Vehtari:
Speeding up the binary Gaussian process classification. UAI 2010: 623-631 - [c10]Jaakko Riihimäki, Aki Vehtari:
Gaussian processes with monotonicity information. AISTATS 2010: 645-652
2000 – 2009
- 2009
- [c9]Elina Parviainen, Aki Vehtari:
Features and Metric from a Classifier Improve Visualizations with Dimension Reduction. ICANN (2) 2009: 225-234 - [c8]Jarno Vanhatalo, Pasi Jylänki, Aki Vehtari:
Gaussian process regression with Student-t likelihood. NIPS 2009: 1910-1918 - 2008
- [c7]Jarno Vanhatalo, Aki Vehtari:
Modelling local and global phenomena with sparse Gaussian processes. UAI 2008: 571-578 - 2007
- [j10]Aki Vehtari, Ville-Petteri Mäkinen, Pasi Soininen, Petri Ingman, Sanna M. Mäkelä, Markku J. Savolainen, Minna L. Hannuksela, Kimmo Kaski, Mika Ala-Korpela:
A novel Bayesian approach to quantify clinical variables and to determine their spectroscopic counterparts in 1H NMR metabonomic data. BMC Bioinform. 8(S-2) (2007) - [j9]Simo Särkkä, Aki Vehtari, Jouko Lampinen:
CATS benchmark time series prediction by Kalman smoother with cross-validated noise density. Neurocomputing 70(13-15): 2331-2341 (2007) - [j8]Simo Särkkä, Aki Vehtari, Jouko Lampinen:
Rao-Blackwellized particle filter for multiple target tracking. Inf. Fusion 8(1): 2-15 (2007) - [j7]Aapo Nummenmaa, Toni Auranen, Matti S. Hämäläinen, Iiro P. Jääskeläinen, Jouko Lampinen, Mikko Sams, Aki Vehtari:
Hierarchical Bayesian estimates of distributed MEG sources: Theoretical aspects and comparison of variational and MCMC methods. NeuroImage 35(2): 669-685 (2007) - [j6]Aapo Nummenmaa, Toni Auranen, Matti S. Hämäläinen, Iiro P. Jääskeläinen, Mikko Sams, Aki Vehtari, Jouko Lampinen:
Automatic relevance determination based hierarchical Bayesian MEG inversion in practice. NeuroImage 37(3): 876-889 (2007) - [c6]Marko Sysi-Aho, Aki Vehtari, Vidya R. Velagapudi, Jukka Westerbacka, Laxman Yetukuri, Robert Bergholm, Marja-Riitta Taskinen, Hannele Yki-Järvinen, Matej Oresic:
Exploring the lipoprotein composition using Bayesian regression on serum lipidomic profiles. ISMB/ECCB (Supplement of Bioinformatics) 2007: 519-528 - [c5]Jarno Vanhatalo, Aki Vehtari:
Sparse Log Gaussian Processes via MCMC for Spatial Epidemiology. Gaussian Processes in Practice 2007: 73-89 - 2005
- [j5]Ilkka Kalliomäki, Aki Vehtari, Jouko Lampinen:
Shape analysis of concrete aggregates for statistical quality modeling. Mach. Vis. Appl. 16(3): 197-201 (2005) - [j4]Toni Auranen, Aapo Nummenmaa, Matti S. Hämäläinen, Iiro P. Jääskeläinen, Jouko Lampinen, Aki Vehtari, Mikko Sams:
Bayesian analysis of the neuromagnetic inverse problem with ℓp-norm priors. NeuroImage 26(3): 870-884 (2005) - 2002
- [j3]Aki Vehtari, Jouko Lampinen:
Bayesian Model Assessment and Comparison Using Cross-Validation Predictive Densities. Neural Comput. 14(10): 2439-2468 (2002) - 2001
- [j2]Jouko Lampinen, Aki Vehtari:
Bayesian approach for neural networks--review and case studies. Neural Networks 14(3): 257-274 (2001) - 2000
- [j1]Aki Vehtari, Jouko Lampinen:
Bayesian MLP neural networks for image analysis. Pattern Recognit. Lett. 21(13-14): 1183-1191 (2000) - [c4]Jouko Lampinen, Aki Vehtari:
Bayesian techniques for neural networks - Review and case studies. EUSIPCO 2000: 1-8 - [c3]Aki Vehtari, Simo Särkkä, Jouko Lampinen:
On MCMC Sampling in Bayesian MLP Neural Networks. IJCNN (1) 2000: 317-322
1990 – 1999
- 1999
- [c2]Aki Vehtari, Jouko Lampinen:
Bayesian neural networks with correlating residuals. IJCNN 1999: 1662-1665 - [c1]Jouko Lampinen, Aki Vehtari, Kimmo Leinonen:
Application of Bayesian neural network in electrical impedance tomography. IJCNN 1999: 3942-3947
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-10 22:14 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint