default search action
Tom Heskes
Person information
- affiliation: Radboud University Nijmegen, NL
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
Journal Articles
- 2024
- [j69]Laurens Sluijterman, Eric Cator, Tom Heskes:
Optimal training of Mean Variance Estimation neural networks. Neurocomputing 597: 127929 (2024) - [j68]Roel Bouman, Zaharah Bukhsh, Tom Heskes:
Unsupervised Anomaly Detection Algorithms on Real-world Data: How Many Do We Need? J. Mach. Learn. Res. 25: 105:1-105:34 (2024) - [j67]Laurens Sluijterman, Eric Cator, Tom Heskes:
How to evaluate uncertainty estimates in machine learning for regression? Neural Networks 173: 106203 (2024) - 2023
- [j66]Lisandro Arturo Jimenez-Roa, Tom Heskes, Tiedo Tinga, Mariëlle Stoelinga:
Automatic Inference of Fault Tree Models Via Multi-Objective Evolutionary Algorithms. IEEE Trans. Dependable Secur. Comput. 20(4): 3317-3327 (2023) - 2022
- [j65]Yuliya Shapovalova, Tom Heskes, Tjeerd Dijkstra:
Non-parametric synergy modeling of chemical compounds with Gaussian processes. BMC Bioinform. 23(1): 14 (2022) - 2021
- [j64]Errol Zalmijn, Tom Heskes, Tom Claassen:
Spectral Ranking of Causal Influence in Complex Systems. Entropy 23(3): 369 (2021) - [j63]Yordan P. Raykov, Luc J. W. Evers, Reham Badawy, Bastiaan R. Bloem, Tom M. Heskes, Marjan J. Meinders, Kasper Claes, Max A. Little:
Probabilistic Modelling of Gait for Robust Passive Monitoring in Daily Life. IEEE J. Biomed. Health Informatics 25(6): 2293-2304 (2021) - 2019
- [j62]Ioan Gabriel Bucur, Tom Claassen, Tom Heskes:
Large-scale local causal inference of gene regulatory relationships. Int. J. Approx. Reason. 115: 50-68 (2019) - [j61]Payam Piray, Amir Dezfouli, Tom Heskes, Michael J. Frank, Nathaniel D. Daw:
Hierarchical Bayesian inference for concurrent model fitting and comparison for group studies. PLoS Comput. Biol. 15(6) (2019) - [j60]Ruifei Cui, Perry Groot, Tom Heskes:
Learning causal structure from mixed data with missing values using Gaussian copula models. Stat. Comput. 29(2): 311-333 (2019) - [j59]Ruifei Cui, Ioan Gabriel Bucur, Perry Groot, Tom Heskes:
A novel Bayesian approach for latent variable modeling from mixed data with missing values. Stat. Comput. 29(5): 977-993 (2019) - [j58]Ridho Rahmadi, Perry Groot, Tom Heskes:
Stable Specification Search in Structural Equation Models with Latent Variables. ACM Trans. Intell. Syst. Technol. 10(5): 48:1-48:23 (2019) - 2018
- [j57]Bram Thijssen, Tjeerd Dijkstra, Tom Heskes, Lodewyk F. A. Wessels:
Bayesian data integration for quantifying the contribution of diverse measurements to parameter estimates. Bioinform. 34(5): 803-811 (2018) - [j56]Ridho Rahmadi, Perry Groot, Tom Heskes:
The stablespec package for causal discovery on cross-sectional and longitudinal data in R. Neurocomputing 275: 2440-2443 (2018) - [j55]Markus Peters, Maytal Saar-Tsechansky, Wolfgang Ketter, Sinead A. Williamson, Perry Groot, Tom Heskes:
A scalable preference model for autonomous decision-making. Mach. Learn. 107(6): 1039-1068 (2018) - 2017
- [j54]Ridho Rahmadi, Perry Groot, Marianne Heins, Hans Knoop, Tom Heskes:
Causality on cross-sectional data: Stable specification search in constrained structural equation modeling. Appl. Soft Comput. 52: 687-698 (2017) - [j53]Francesco Del Carratore, Andris Jankevics, Rob Eisinga, Tom Heskes, Fangxin Hong, Rainer Breitling:
RankProd 2.0: a refactored bioconductor package for detecting differentially expressed features in molecular profiling datasets. Bioinform. 33(17): 2774-2775 (2017) - [j52]Rob Eisinga, Tom Heskes, Ben Pelzer, Manfred te Grotenhuis:
Exact p-values for pairwise comparison of Friedman rank sums, with application to comparing classifiers. BMC Bioinform. 18(1): 68:1-68:18 (2017) - [j51]Elena Sokolova, Daniel von Rhein, Jilly Naaijen, Perry Groot, Tom Claassen, Jan K. Buitelaar, Tom Heskes:
Handling hybrid and missing data in constraint-based causal discovery to study the etiology of ADHD. Int. J. Data Sci. Anal. 3(2): 105-119 (2017) - [j50]Thomas Grubinger, Adriana Birlutiu, Holger Schöner, Thomas Natschläger, Tom Heskes:
Multi-Domain Transfer Component Analysis for Domain Generalization. Neural Process. Lett. 46(3): 845-855 (2017) - 2016
- [j49]Bram Thijssen, T. M. H. Dijkstra, Tom Heskes, Lodewyk F. A. Wessels:
BCM: toolkit for Bayesian analysis of Computational Models using samplers. BMC Syst. Biol. 10: 100 (2016) - 2015
- [j48]Christiaan A. de Leeuw, Joris M. Mooij, Tom Heskes, Danielle Posthuma:
MAGMA: Generalized Gene-Set Analysis of GWAS Data. PLoS Comput. Biol. 11(4) (2015) - [j47]Max Hinne, Ronald J. Janssen, Tom Heskes, Marcel A. J. van Gerven:
Bayesian Estimation of Conditional Independence Graphs Improves Functional Connectivity Estimates. PLoS Comput. Biol. 11(11) (2015) - [j46]Adriana Birlutiu, Florence d'Alché-Buc, Tom Heskes:
A Bayesian Framework for Combining Protein and Network Topology Information for Predicting Protein-Protein Interactions. IEEE ACM Trans. Comput. Biol. Bioinform. 12(3): 538-550 (2015) - 2014
- [j45]Syed Abbas, Tjeerd Dijkstra, Tom Heskes:
A comparative study of cell classifiers for image-based high-throughput screening. BMC Bioinform. 15: 342 (2014) - [j44]Tom Heskes, Rob Eisinga, Rainer Breitling:
A fast algorithm for determining bounds and accurate approximate p-values of the rank product statistic for replicate experiments. BMC Bioinform. 15: 367 (2014) - [j43]Ronald J. Janssen, Max Hinne, Tom Heskes, Marcel A. J. van Gerven:
Quantifying uncertainty in brain network measures using Bayesian connectomics. Frontiers Comput. Neurosci. 8: 126 (2014) - [j42]Sanne Schoenmakers, Umut Güçlü, Marcel van Gerven, Tom Heskes:
Gaussian mixture models and semantic gating improve reconstructions from human brain activity. Frontiers Comput. Neurosci. 8: 173 (2014) - [j41]Jesse Alama, Tom Heskes, Daniel Kühlwein, Evgeni Tsivtsivadze, Josef Urban:
Premise Selection for Mathematics by Corpus Analysis and Kernel Methods. J. Autom. Reason. 52(2): 191-213 (2014) - [j40]Max Hinne, Luca Ambrogioni, Ronald J. Janssen, Tom Heskes, Marcel A. J. van Gerven:
Structurally-informed Bayesian functional connectivity analysis. NeuroImage 86: 294-305 (2014) - 2013
- [j39]Adriana Birlutiu, Perry Groot, Tom Heskes:
Efficiently learning the preferences of people. Mach. Learn. 90(1): 1-28 (2013) - [j38]Diego Vidaurre, Marcel A. J. van Gerven, Concha Bielza, Pedro Larrañaga, Tom Heskes:
Bayesian Sparse Partial Least Squares. Neural Comput. 25(12): 3318-3339 (2013) - [j37]Max Hinne, Tom Heskes, Christian F. Beckmann, Marcel A. J. van Gerven:
Bayesian inference of structural brain networks. NeuroImage 66: 543-552 (2013) - [j36]Sanne Schoenmakers, Markus Barth, Tom Heskes, Marcel van Gerven:
Linear reconstruction of perceived images from human brain activity. NeuroImage 83: 951-961 (2013) - 2012
- [j35]L. Niels Cornelisse, Evgeni Tsivtsivadze, Marieke Meijer, Tjeerd Dijkstra, Tom Heskes, Matthijs Verhage:
Molecular Machines in the Synapse: Overlapping Protein Sets Control Distinct Steps in Neurosecretion. PLoS Comput. Biol. 8(4) (2012) - 2011
- [j34]Botond Cseke, Tom Heskes:
Properties of Bethe Free Energies and Message Passing in Gaussian Models. J. Artif. Intell. Res. 41: 1-24 (2011) - [j33]Botond Cseke, Tom Heskes:
Approximate Marginals in Latent Gaussian Models. J. Mach. Learn. Res. 12: 417-454 (2011) - [j32]Marcel van Gerven, Peter Kok, Floris P. de Lange, Tom Heskes:
Dynamic decoding of ongoing perception. NeuroImage 57(3): 950-957 (2011) - [j31]Perry Groot, Tom Heskes, Tjeerd Dijkstra, James M. Kates:
Predicting Preference Judgments of Individual Normal and Hearing-Impaired Listeners With Gaussian Processes. IEEE Trans. Speech Audio Process. 19(4): 811-821 (2011) - [j30]Marco Baglietto, Lubica Benusková, Ivo Bukovsky, Tianping Chen, Tom Heskes, Kazushi Ikeda, Fakhri Karray, Rhee Man Kil, Robert Legenstein, Jinhu Lu, Yunqian Ma, Malik Magdon-Ismail, Michael G. Paulin, Robi Polikar, Danil V. Prokhorov, Marco A. Wiering, Vicente Zarzoso:
Editorial: One Year as EiC, and Editorial-Board Changes at TNN. IEEE Trans. Neural Networks 22(1): 1-7 (2011) - 2010
- [j29]Adriana Birlutiu, Perry Groot, Tom Heskes:
Multi-task preference learning with an application to hearing aid personalization. Neurocomputing 73(7-9): 1177-1185 (2010) - [j28]Marcel van Gerven, Floris P. de Lange, Tom Heskes:
Neural Decoding with Hierarchical Generative Models. Neural Comput. 22(12): 3127-3142 (2010) - [j27]Marcel A. J. van Gerven, Botond Cseke, Floris P. de Lange, Tom Heskes:
Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior. NeuroImage 50(1): 150-161 (2010) - 2009
- [j26]Rasa Jurgelenaite, Tjeerd Dijkstra, Clemens H. M. Kocken, Tom Heskes:
Gene regulation in the intraerythrocytic cycle of Plasmodium falciparum. Bioinform. 25(12): 1484-1491 (2009) - [j25]Marcel van Gerven, Christian Hesse, Ole Jensen, Tom Heskes:
Interpreting single trial data using groupwise regularisation. NeuroImage 46(3): 665-676 (2009) - [j24]Marcel van Gerven, Ali Bahramisharif, Tom Heskes, Ole Jensen:
Selecting features for BCI control based on a covert spatial attention paradigm. Neural Networks 22(9): 1271-1277 (2009) - 2007
- [j23]Marcel van Gerven, Rasa Jurgelenaite, Babs G. Taal, Tom Heskes, Peter J. F. Lucas:
Predicting carcinoid heart disease with the noisy-threshold classifier. Artif. Intell. Medicine 40(1): 45-55 (2007) - [j22]Bart Bakker, Tom Heskes:
Learning and approximate inference in dynamic hierarchical models. Comput. Stat. Data Anal. 52(2): 821-839 (2007) - 2006
- [j21]Tom Heskes:
Convexity Arguments for Efficient Minimization of the Bethe and Kikuchi Free Energies. J. Artif. Intell. Res. 26: 153-190 (2006) - [j20]Onno Zoeter, Tom Heskes:
Deterministic approximate inference techniques for conditionally Gaussian state space models. Stat. Comput. 16(3): 279-292 (2006) - 2005
- [j19]Alexander Ypma, Tom Heskes:
Novel approximations for inference in nonlinear dynamical systems using expectation propagation. Neurocomputing 69(1-3): 85-99 (2005) - [j18]Onno Zoeter, Tom Heskes:
Change Point Problems in Linear Dynamical Systems. J. Mach. Learn. Res. 6: 1999-2026 (2005) - 2004
- [j17]Tom Heskes:
On the Uniqueness of Loopy Belief Propagation Fixed Points. Neural Comput. 16(11): 2379-2413 (2004) - 2003
- [j16]Bart Bakker, Tom Heskes:
Task Clustering and Gating for Bayesian Multitask Learning. J. Mach. Learn. Res. 4: 83-99 (2003) - [j15]Tom Heskes, Jan-Joost Spanjers, Bart Bakker, Wim Wiegerinck:
Optimising newspaper sales using neural-Bayesian technology. Neural Comput. Appl. 12(3-4): 212-219 (2003) - [j14]Bart Bakker, Tom Heskes:
Clustering ensembles of neural network models. Neural Networks 16(2): 261-269 (2003) - [j13]Onno Zoeter, Tom Heskes:
Hierarchical Visualization of Time-Series Data Using Switching Linear Dynamical Systems. IEEE Trans. Pattern Anal. Mach. Intell. 25(10): 1202-1214 (2003) - 2002
- [j12]Tom Heskes, Bart Bakker, Bert Kappen:
Approximate algorithms for neural-Bayesian approaches. Theor. Comput. Sci. 287(1): 219-238 (2002) - 2001
- [j11]Tom Heskes:
Self-organizing maps, vector quantization, and mixture modeling. IEEE Trans. Neural Networks 12(6): 1299-1305 (2001) - 2000
- [j10]Piërre van de Laar, Tom Heskes:
Input selection based on an ensemble. Neurocomputing 34(1-4): 227-238 (2000) - [j9]Tom Heskes:
On "Natural" Learning and Pruning in Multilayered Perceptrons. Neural Comput. 12(4): 881-901 (2000) - 1999
- [j8]Piërre van de Laar, Tom Heskes, Stan C. A. M. Gielen:
Partial Retraining: A New Approach to Input Relevance Determination. Int. J. Neural Syst. 9(1): 75-85 (1999) - [j7]Piërre van de Laar, Tom Heskes:
Pruning Using Parameter and Neuronal Metrics. Neural Comput. 11(4): 977-993 (1999) - 1998
- [j6]Tom Heskes:
Bias/Variance Decompositions for Likelihood-Based Estimators. Neural Comput. 10(6): 1425-1433 (1998) - 1997
- [j5]Piërre van de Laar, Tom Heskes, Stan C. A. M. Gielen:
Task-Dependent Learning of Attention. Neural Networks 10(6): 981-992 (1997) - 1996
- [j4]Tom Heskes:
Transition times in self-organizing maps. Biol. Cybern. 75(1): 49-57 (1996) - [j3]Wim Wiegerinck, Tom Heskes:
How Dependencies between Successive Examples Affect On-Line Learning. Neural Comput. 8(8): 1743-1765 (1996) - [j2]Tom Heskes, Wim Wiegerinck:
A theoretical comparison of batch-mode, on-line, cyclic, and almost-cyclic learning. IEEE Trans. Neural Networks 7(4): 919-925 (1996) - 1992
- [j1]Tom Heskes, Stan C. A. M. Gielen:
Retrieval of pattern sequences at variable speeds in a neural network with delays. Neural Networks 5(1): 145-152 (1992)
Conference and Workshop Papers
- 2023
- [c97]Mirthe Maria Van Diepen, Ioan Gabriel Bucur, Tom Heskes, Tom Claassen:
Beyond the Markov Equivalence Class: Extending Causal Discovery under Latent Confounding. CLeaR 2023: 707-725 - 2022
- [c96]Jelle Piepenbrock, Tom Heskes, Mikolás Janota, Josef Urban:
Guiding an Automated Theorem Prover with Neural Rewriting. IJCAR 2022: 597-617 - 2020
- [c95]Tom Heskes, Evi Sijben, Ioan Gabriel Bucur, Tom Claassen:
Causal Shapley Values: Exploiting Causal Knowledge to Explain Individual Predictions of Complex Models. NeurIPS 2020 - [c94]Konrad P. Mielke, Tom Claassen, Mark A. J. Huijbregts, Aafke M. Schipper, Tom M. Heskes:
Discovering cause-effect relationships in spatial systems with a known direction based on observational data. PGM 2020: 305-316 - [c93]Ioan Gabriel Bucur, Tom Claassen, Tom Heskes:
MASSIVE: Tractable and Robust Bayesian Learning of Many-Dimensional Instrumental Variable Models. UAI 2020: 1049-1058 - 2018
- [c92]Ioan Gabriel Bucur, Tom van Bussel, Tom Claassen, Tom Heskes:
A Bayesian Approach for Inferring Local Causal Structure in Gene Regulatory Networks. PGM 2018: 37-48 - [c91]Ruifei Cui, Perry Groot, Moritz Schauer, Tom Heskes:
Learning the Causal Structure of Copula Models with Latent Variables. UAI 2018: 188-197 - [c90]Fabian Gieseke, Cosmin Eugen Oancea, Ashish Mahabal, Christian Igel, Tom Heskes:
Bigger Buffer k-d Trees on Multi-Many-Core Systems. VECPAR 2018: 202-214 - 2017
- [c89]Ioan Gabriel Bucur, Tom Claassen, Tom Heskes:
Robust Causal Estimation in the Large-Sample Limit without Strict Faithfulness. AISTATS 2017: 1523-1531 - [c88]Ruifei Cui, Perry Groot, Tom Heskes:
Robust Estimation of Gaussian Copula Causal Structure from Mixed Data with Missing Values. ICDM 2017: 835-840 - [c87]Fabian Gieseke, Kai Lars Polsterer, Ashish Mahabal, Christian Igel, Tom Heskes:
Massively-parallel best subset selection for ordinary least-squares regression. SSCI 2017: 1-8 - 2016
- [c86]Terrence W. Deacon, Tom Heskes, Stefan Leijnen:
Exploring Constraint: Simulating Self-Organization and Autogenesis in the Autogenic Automaton. ALIFE 2016: 68-75 - [c85]Tom Heskes:
Causal Discovery from Big Data - Mission (Im)possible?. ICAART (1) 2016: 7 - [c84]Mohsen Ghafoorian, Nico Karssemeijer, Tom Heskes, I. W. M. van Uden, Frank-Erik de Leeuw, Elena Marchiori, Bram van Ginneken, Bram Platel:
Non-uniform patch sampling with deep convolutional neural networks for white matter hyperintensity segmentation. ISBI 2016: 1414-1417 - [c83]Koen Vijverberg, Mohsen Ghafoorian, Inge W. M. van Uden, Frank-Erik de Leeuw, Bram Platel, Tom Heskes:
A single-layer network unsupervised feature learning method for white matter hyperintensity segmentation. Medical Imaging: Computer-Aided Diagnosis 2016: 97851C - [c82]Elena Sokolova, Martine Hoogman, Perry Groot, Tom Claassen, Tom Heskes:
Computing Lower and Upper Bounds on the Probability of Causal Statements. Probabilistic Graphical Models 2016: 487-498 - [c81]Ruifei Cui, Perry Groot, Tom Heskes:
Copula PC Algorithm for Causal Discovery from Mixed Data. ECML/PKDD (2) 2016: 377-392 - 2015
- [c80]Elena Sokolova, Perry Groot, Tom Claassen, Daniel von Rhein, Jan K. Buitelaar, Tom Heskes:
Causal Discovery from Medical Data: Dealing with Missing Values and a Mixture of Discrete and Continuous Data. AIME 2015: 177-181 - [c79]Laurens Wiel, Tom Heskes, Evgeni Levin:
KeCo: Kernel-Based Online Co-agreement Algorithm. Discovery Science 2015: 308-315 - [c78]Fabian Gieseke, Tapio Pahikkala, Tom Heskes:
Batch Steepest-Descent-Mildest-Ascent for Interactive Maximum Margin Clustering. IDA 2015: 95-107 - [c77]Thomas Grubinger, Adriana Birlutiu, Holger Schöner, Thomas Natschläger, Tom Heskes:
Domain Generalization Based on Transfer Component Analysis. IWANN (1) 2015: 325-334 - [c76]Mohsen Ghafoorian, Nico Karssemeijer, Inge van Uden, Frank-Erik de Leeuw, Tom Heskes, Elena Marchiori, Bram Platel:
Small white matter lesion detection in cerebral small vessel disease. Medical Imaging: Computer-Aided Diagnosis 2015: 941411 - [c75]Ridho Rahmadi, Perry Groot, Marianne Heins, Hans Knoop, Tom Heskes:
Causality on Longitudinal Data: Stable Specification Search in Constrained Structural Equation Modeling. AALTD@PKDD/ECML 2015 - [c74]Sanne Schoenmakers, Tom Heskes, Marcel van Gerven:
Hidden Markov Models for Reading Words from the Human Brain. PRNI 2015: 89-92 - 2014
- [c73]Binyam Gebrekidan Gebre, Onno Crasborn, Peter Wittenburg, Sebastian Drude, Tom Heskes:
Unsupervised Feature Learning for Visual Sign Language Identification. ACL (2) 2014: 370-376 - [c72]Binyam Gebrekidan Gebre, Peter Wittenburg, Tom Heskes, Sebastian Drude:
Motion history images for online speaker/signer diarization. ICASSP 2014: 1537-1541 - [c71]Mike Koeman, Tom Heskes:
Mutual Information Estimation with Random Forests. ICONIP (2) 2014: 524-531 - [c70]Binyam Gebrekidan Gebre, Peter Wittenburg, Sebastian Drude, Marijn Huijbregts, Tom Heskes:
Speaker diarization using gesture and speech. INTERSPEECH 2014: 582-586 - [c69]Elena Sokolova, Perry Groot, Tom Claassen, Tom Heskes:
Causal Discovery from Databases with Discrete and Continuous Variables. Probabilistic Graphical Models 2014: 442-457 - [c68]Adriana Birlutiu, Tom Heskes:
Using Topology Information for Protein-Protein Interaction Prediction. PRIB 2014: 10-22 - [c67]Sanne Schoenmakers, Marcel van Gerven, Tom Heskes:
Gaussian mixture models improve fMRI-based image reconstruction. PRNI 2014: 1-4 - 2013
- [c66]Binyam Gebrekidan Gebre, Marcos Zampieri, Peter Wittenburg, Tom Heskes:
Improving Native Language Identification with TF-IDF Weighting. BEA@NAACL-HLT 2013: 216-223 - [c65]Binyam Gebrekidan Gebre, Peter Wittenburg, Tom Heskes:
Automatic Signer Diarization - The Mover Is the Signer Approach. CVPR Workshops 2013: 283-287 - [c64]Binyam Gebrekidan Gebre, Peter Wittenburg, Tom Heskes:
The gesturer is the speaker. ICASSP 2013: 3751-3755 - [c63]Binyam Gebrekidan Gebre, Peter Wittenburg, Tom Heskes:
Automatic sign language identification. ICIP 2013: 2626-2630 - [c62]Tom Claassen, Tom Heskes:
Bayesian Probabilities for Constraint-Based Causal Discovery. IJCAI 2013: 2992-2996 - [c61]Evgeni Tsivtsivadze, Tom Heskes, Armand Paauw:
Multi-view Multi-class Classification for Identification of Pathogenic Bacterial Strains. MCS 2013: 61-72 - [c60]Evgeni Tsivtsivadze, Hanneke Borgdorff, Janneke van de Wijgert, Frank H. J. Schuren, Rita Verhelst, Tom Heskes:
Neighborhood Co-regularized Multi-view Spectral Clustering of Microbiome Data. PSL 2013: 80-90 - [c59]Tom Claassen, Joris M. Mooij, Tom Heskes:
Learning Sparse Causal Models is not NP-hard. UAI 2013 - [c58]Joris M. Mooij, Tom Heskes:
Cyclic Causal Discovery from Continuous Equilibrium Data. UAI 2013 - 2012
- [c57]Daniel Kühlwein, Twan van Laarhoven, Evgeni Tsivtsivadze, Josef Urban, Tom Heskes:
Overview and Evaluation of Premise Selection Techniques for Large Theory Mathematics. IJCAR 2012: 378-392 - [c56]Tom de Ruijter, Evgeni Tsivtsivadze, Tom Heskes:
Online Co-regularized Algorithms. Discovery Science 2012: 184-193 - [c55]Marcel A. J. van Gerven, Tom Heskes:
A Linear Gaussian Framework for Decoding of Perceived Images. PRNI 2012: 1-4 - [c54]Tom Claassen, Tom Heskes:
A Bayesian Approach to Constraint Based Causal Inference. UAI 2012: 207-216 - 2011
- [c53]Tom Claassen, Tom Heskes:
A structure independent algorithm for causal discovery. ESANN 2011 - [c52]John A. Quinn, Joris M. Mooij, Tom Heskes, Michael Biehl:
Learning of causal relations. ESANN 2011 - [c51]Daniel Kühlwein, Josef Urban, Evgeni Tsivtsivadze, Herman Geuvers, Tom Heskes:
Multi-output Ranking for Automated Reasoning. KDIR 2011: 42-51 - [c50]Marcel van Gerven, Eric Maris, Tom Heskes:
A Markov Random Field Approach to Neural Encoding and Decoding. ICANN (2) 2011: 1-8 - [c49]Perry Groot, Adriana Birlutiu, Tom Heskes:
Learning from Multiple Annotators with Gaussian Processes. ICANN (2) 2011: 159-164 - [c48]Daniel Kühlwein, Josef Urban, Evgeni Tsivtsivadze, Herman Geuvers, Tom Heskes:
Learning2Reason. Calculemus/MKM 2011: 298-300 - [c47]Ali Bahramisharif, Marcel A. J. van Gerven, Jan-Mathijs Schoffelen, Zoubin Ghahramani, Tom Heskes:
The Dynamic Beamformer. MLINI 2011: 148-155 - [c46]Hans J. P. Wouters, Marcel A. J. van Gerven, Matthias Sebastian Treder, Tom Heskes, Ali Bahramisharif:
Covert Attention as a Paradigm for Subject-Independent Brain-Computer Interfacing. MLINI 2011: 156-163 - [c45]Joris M. Mooij, Dominik Janzing, Tom Heskes, Bernhard Schölkopf:
On Causal Discovery with Cyclic Additive Noise Models. NIPS 2011: 639-647 - [c44]Evgeni Tsivtsivadze, Josef Urban, Herman Geuvers, Tom Heskes:
Semantic Graph Kernels for Automated Reasoning. SDM 2011: 795-803 - [c43]Tom Claassen, Tom Heskes:
A Logical Characterization of Constraint-Based Causal Discovery. UAI 2011: 135-144 - 2010
- [c42]Perry Groot, Adriana Birlutiu, Tom Heskes:
Bayesian Monte Carlo for the Global Optimization of Expensive Functions. ECAI 2010: 249-254 - [c41]Tom Claassen, Tom Heskes:
Causal discovery in multiple models from different experiments. NIPS 2010: 415-423 - [c40]Botond Cseke, Tom Heskes:
Improving posterior marginal approximations in latent Gaussian models. AISTATS 2010: 121-128 - 2009
- [c39]Ali Bahramisharif, Marcel van Gerven, Tom Heskes:
Exploring the impact of alternative feature representations on BCI classification. ESANN 2009 - [c38]Adriana Birlutiu, Perry Groot, Tom Heskes:
Multi-task Preference learning with Gaussian Processes. ESANN 2009 - [c37]Marcel van Gerven, Botond Cseke, Robert Oostenveld, Tom Heskes:
Bayesian Source Localization with the Multivariate Laplace Prior. NIPS 2009: 1901-1909 - 2008
- [c36]Botond Cseke, Tom Heskes:
Bounds on the Bethe Free Energy for Gaussian Networks. UAI 2008: 97-104 - 2007
- [c35]José Miguel Hernández-Lobato, Tjeerd Dijkstra, Tom Heskes:
Regulator Discovery from Gene Expression Time Series of Malaria Parasites: a Hierachical Approach. NIPS 2007: 649-656 - [c34]Adriana Birlutiu, Tom Heskes:
Expectation Propagation for Rating Players in Sports Competitions. PKDD 2007: 374-381 - 2006
- [c33]Rasa Jurgelenaite, Tom Heskes:
EM Algorithm for Symmetric Causal Independence Models. ECML 2006: 234-245 - [c32]Rasa Jurgelenaite, Tom Heskes:
Symmetric Causal Independence Models for Classification. Probabilistic Graphical Models 2006: 163-170 - 2005
- [c31]Onno Zoeter, Tom Heskes:
Gaussian Quadrature Based Expectation Propagation. AISTATS 2005: 445-452 - [c30]Tom Heskes, Bert de Vries:
Incremental Utility Elicitation for Adaptive Personalization. BNAIC 2005: 127-134 - [c29]Rasa Jurgelenaite, Peter J. F. Lucas, Tom Heskes:
Use of the Noisy Threshold Function in Building Bayesian Networks. BNAIC 2005: 158-165 - [c28]Onno Zoeter, Tom Heskes:
Gaussian Quadrature Based Expectation Propagation. BNAIC 2005: 407 - [c27]Rasa Jurgelenaite, Peter J. F. Lucas, Tom Heskes:
Exploring the Noisy Threshold Function in Designing Bayesian Networks. SGAI Conf. 2005: 133-146 - 2004
- [c26]Alexander Ypma, Tom Heskes:
Novel approximations for inference and learning in nonlinear dynamical systems. ESANN 2004: 361-366 - 2003
- [c25]Tom Heskes, Onno Zoeter:
Generalized belief propagation for approximate inference in hybrid Bayesian networks. AISTATS 2003: 132-140 - [c24]Onno Zoeter, Tom Heskes:
Multi-scale Switching Linear Dynamical Systems. ICANN 2003: 562-572 - [c23]Tom Heskes, Onno Zoeter, Wim Wiegerinck:
Approximate Expectation Maximization. NIPS 2003: 353-360 - [c22]Alexander Ypma, Tom Heskes:
Iterated extended Kalman smoothing with expectation-propagation. NNSP 2003: 219-228 - [c21]Tom Heskes, Kees Albers, Bert Kappen:
Approximate Inference and Constrained Optimization. UAI 2003: 313-320 - 2002
- [c20]Bart Bakker, Tom Heskes:
Model Clustering for Neural Network Ensembles. ICANN 2002: 383-388 - [c19]Alexander Ypma, Tom Heskes:
Automatic Categorization of Web Pages and User Clustering with Mixtures of Hidden Markov Models. WEBKDD 2002: 35-49 - [c18]Tom Heskes:
Stable Fixed Points of Loopy Belief Propagation Are Local Minima of the Bethe Free Energy. NIPS 2002: 343-350 - [c17]Wim Wiegerinck, Tom Heskes:
Fractional Belief Propagation. NIPS 2002: 438-445 - [c16]Tom Heskes, Onno Zoeter:
Expectation Propogation for Approximate Inference in Dynamic Bayesian Networks. UAI 2002: 216-223 - [c15]Wim Wiegerinck, Tom Heskes:
IPF for Discrete Chain Factor Graphs. UAI 2002: 560-567 - 2000
- [c14]Bart J. Bakker, Bert Kappen, Tom Heskes:
Survival Analysis: A Neural-Bayesian Approach. ANNIMAB 2000: 162-167 - [c13]Tom Heskes:
Empirical Bayes for Learning to Learn. ICML 2000: 367-374 - [c12]Jakob Vogdrup Hansen, Tom Heskes:
General Bias/Variance Decomposition with Target Independent Variance of Error Functions Derived from the Exponential Family of Distributions. ICPR 2000: 2207-2210 - [c11]Tom Heskes, Jan-Joost Spanjers, Wim Wiegerinck:
EM Algorithms for Self-Organizing Maps. IJCNN (6) 2000: 9-14 - 1999
- [c10]Bart Bakker, Tom Heskes:
Model clustering by deterministic annealing. ESANN 1999: 87-92 - 1998
- [c9]Tom Heskes:
Solving a Huge Number of Similar Tasks: A Combination of Multi-Task Learning and a Hierarchical Bayesian Approach. ICML 1998: 233-241 - 1997
- [c8]Piërre van de Laar, Stan C. A. M. Gielen, Tom Heskes:
Input Selection with Partial Retraining. ICANN 1997: 469-474 - [c7]Tom Heskes:
Selecting Weighting Factors in Logarithmic Opinion Pools. NIPS 1997: 266-272 - 1996
- [c6]Tom Heskes:
Practical Confidence and Prediction Intervals. NIPS 1996: 176-182 - [c5]Tom Heskes:
Balancing Between Bagging and Bumping. NIPS 1996: 466-472 - 1995
- [c4]Piërre van de Laar, Tom Heskes, Stan C. A. M. Gielen:
A Neural Model of Visual Attention. SNN Symposium on Neural Networks 1995: 111-114 - [c3]André Pastoors, Tom Heskes:
Output Coding and Modularity for Multi-Class Problems. SNN Symposium on Neural Networks 1995: 221-224 - 1994
- [c2]Tom Heskes:
Stochastics of on-line back-propagation. ESANN 1994 - 1993
- [c1]Tom Heskes, Bert Kappen:
Error potentials for self-organization. ICNN 1993: 1219-1223
Parts in Books or Collections
- 2010
- [p1]Evgeni Tsivtsivadze, Tapio Pahikkala, Jorma Boberg, Tapio Salakoski, Tom Heskes:
Co-Regularized Least-Squares for Label Ranking. Preference Learning 2010: 107-123
Editorship
- 2015
- [e2]Marina Meila, Tom Heskes:
Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence, UAI 2015, July 12-16, 2015, Amsterdam, The Netherlands. AUAI Press 2015, ISBN 978-0-9966431-0-8 [contents] - 2010
- [e1]Tjeerd Dijkstra, Evgeni Tsivtsivadze, Elena Marchiori, Tom Heskes:
Pattern Recognition in Bioinformatics - 5th IAPR International Conference, PRIB 2010, Nijmegen, The Netherlands, September 22-24, 2010. Proceedings. Lecture Notes in Computer Science 6282, Springer 2010, ISBN 978-3-642-16000-4 [contents]
Reference Works
- 2017
- [r2]Tom Heskes:
Expectation Propagation. Encyclopedia of Machine Learning and Data Mining 2017: 482-487 - 2010
- [r1]Tom Heskes:
Expectation Propagation. Encyclopedia of Machine Learning 2010: 383-387
Informal and Other Publications
- 2024
- [i42]Binyam Gebre, Karoliina Ranta, Stef van den Elzen, Ernst Kuiper, Thijs Baars, Tom Heskes:
Pfeed: Generating near real-time personalized feeds using precomputed embedding similarities. CoRR abs/2402.16073 (2024) - [i41]Roel Bouman, Linda Schmeitz, Luco Buise, Jacco Heres, Yuliya Shapovalova, Tom Heskes:
Acquiring Better Load Estimates by Combining Anomaly and Change-point Detection in Power Grid Time-series Measurements. CoRR abs/2405.16164 (2024) - [i40]Laurens Sluijterman, Frank Kreuwel, Eric Cator, Tom Heskes:
Composite Quantile Regression With XGBoost Using the Novel Arctan Pinball Loss. CoRR abs/2406.02293 (2024) - 2023
- [i39]Laurens Sluijterman, Eric Cator, Tom Heskes:
Optimal Training of Mean Variance Estimation Neural Networks. CoRR abs/2302.08875 (2023) - [i38]Roel Bouman, Zaharah Bukhsh, Tom Heskes:
Unsupervised anomaly detection algorithms on real-world data: how many do we need? CoRR abs/2305.00735 (2023) - [i37]Laurens Sluijterman, Eric Cator, Tom Heskes:
Likelihood-ratio-based confidence intervals for neural networks. CoRR abs/2308.02221 (2023) - [i36]Charlotte Cambier van Nooten, Tom van de Poll, Sonja Füllhase, Jacco Heres, Tom Heskes, Yuliya Shapovalova:
Graph Isomorphic Networks for Assessing Reliability of the Medium-Voltage Grid. CoRR abs/2310.01181 (2023) - [i35]Lisandro Arturo Jimenez-Roa, Tom Heskes, Mariëlle Stoelinga:
Fault Trees, Decision Trees, And Binary Decision Diagrams: A Systematic Comparison. CoRR abs/2310.04448 (2023) - 2022
- [i34]Laurens Sluijterman, Eric Cator, Tom Heskes:
Confident Neural Network Regression with Bootstrapped Deep Ensembles. CoRR abs/2202.10903 (2022) - [i33]Lisandro Arturo Jimenez-Roa, Tom Heskes, Tiedo Tinga, Mariëlle Stoelinga:
Automatic inference of fault tree models via multi-objective evolutionary algorithms. CoRR abs/2204.03743 (2022) - [i32]Jelle Piepenbrock, Josef Urban, Konstantin Korovin, Miroslav Olsák, Tom Heskes, Mikolas Janota:
Machine Learning Meets The Herbrand Universe. CoRR abs/2210.03590 (2022) - 2021
- [i31]Jelle Piepenbrock, Tom Heskes, Mikolás Janota, Josef Urban:
Learning Equational Theorem Proving. CoRR abs/2102.05547 (2021) - [i30]Laurens Sluijterman, Eric Cator, Tom Heskes:
How to Evaluate Uncertainty Estimates in Machine Learning for Regression? CoRR abs/2106.03395 (2021) - [i29]Alex Kolmus, Grégory Baltus, Justin Janquart, Twan van Laarhoven, Sarah Caudill, Tom Heskes:
Swift sky localization of gravitational waves using deep learning seeded importance sampling. CoRR abs/2111.00833 (2021) - [i28]Zhuoran Liu, Zhengyu Zhao, Alex Kolmus, Tijn Berns, Twan van Laarhoven, Tom Heskes, Martha A. Larson:
Going Grayscale: The Road to Understanding and Improving Unlearnable Examples. CoRR abs/2111.13244 (2021) - 2020
- [i27]Yordan P. Raykov, Luc J. W. Evers, Reham Badawy, Bastiaan R. Bloem, Tom M. Heskes, Marjan J. Meinders, Kasper Claes, Max A. Little:
Probabilistic modelling of gait for robust passive monitoring in daily life. CoRR abs/2004.03047 (2020) - [i26]Tom Heskes, Evi Sijben, Ioan Gabriel Bucur, Tom Claassen:
Causal Shapley Values: Exploiting Causal Knowledge to Explain Individual Predictions of Complex Models. CoRR abs/2011.01625 (2020) - [i25]Ioan Gabriel Bucur, Tom Claassen, Tom Heskes:
MASSIVE: Tractable and Robust Bayesian Learning of Many-Dimensional Instrumental Variable Models. CoRR abs/2012.10141 (2020) - [i24]Errol Zalmijn, Tom Heskes, Tom Claassen:
Spectral Ranking of Causal Influence in Complex Systems. CoRR abs/2012.13195 (2020) - 2019
- [i23]Sascha Caron, Tom Heskes, Sydney Otten, Bob Stienen:
Constraining the Parameters of High-Dimensional Models with Active Learning. CoRR abs/1905.08628 (2019) - [i22]Ioan Gabriel Bucur, Tom Claassen, Tom Heskes:
Large-Scale Local Causal Inference of Gene Regulatory Relationships. CoRR abs/1909.03818 (2019) - 2018
- [i21]Ridho Rahmadi, Perry Groot, Tom Heskes:
Stable specification search in structural equation model with latent variables. CoRR abs/1805.09527 (2018) - [i20]Ruifei Cui, Ioan Gabriel Bucur, Perry Groot, Tom Heskes:
A Novel Bayesian Approach for Latent Variable Modeling from Mixed Data with Missing Values. CoRR abs/1806.04610 (2018) - [i19]Ioan Gabriel Bucur, Tom van Bussel, Tom Claassen, Tom Heskes:
A Bayesian Approach for Inferring Local Causal Structure in Gene Regulatory Networks. CoRR abs/1809.06827 (2018) - 2017
- [i18]Ioan Gabriel Bucur, Tom Claassen, Tom Heskes:
Robust Causal Estimation in the Large-Sample Limit without Strict Faithfulness. CoRR abs/1704.01864 (2017) - 2016
- [i17]Harm Berntsen, Wouter Kuijper, Tom Heskes:
The Artificial Mind's Eye: Resisting Adversarials for Convolutional Neural Networks using Internal Projection. CoRR abs/1604.04428 (2016) - [i16]Ridho Rahmadi, Perry Groot, Marieke M. H. C. van Rijn, Jan A. J. G. van den Brand, Marianne Heins, Hans Knoop, Tom Heskes:
Causality on Longitudinal Data: Stable Specification Search in Constrained Structural Equation Modeling. CoRR abs/1605.06838 (2016) - [i15]Mohsen Ghafoorian, Nico Karssemeijer, Tom Heskes, Inge van Uden, Clara I. Sánchez, Geert Litjens, Frank-Erik de Leeuw, Bram van Ginneken, Elena Marchiori, Bram Platel:
Location Sensitive Deep Convolutional Neural Networks for Segmentation of White Matter Hyperintensities. CoRR abs/1610.04834 (2016) - [i14]Mohsen Ghafoorian, Nico Karssemeijer, Tom Heskes, Mayra Bergkamp, Joost Wissink, Jiri Obels, Karlijn Keizer, Frank-Erik de Leeuw, Bram van Ginneken, Elena Marchiori, Bram Platel:
Deep Multi-scale Location-aware 3D Convolutional Neural Networks for Automated Detection of Lacunes of Presumed Vascular Origin. CoRR abs/1610.07442 (2016) - 2015
- [i13]Ridho Rahmadi, Perry Groot, Marianne Heins, Hans Knoop, Tom Heskes:
Causality on Cross-Sectional Data: Stable Specification Search in Constrained Structural Equation Modeling. CoRR abs/1506.05600 (2015) - [i12]Fabian Gieseke, Cosmin Eugen Oancea, Ashish Mahabal, Christian Igel, Tom Heskes:
Bigger Buffer k-d Trees on Multi-Many-Core Systems. CoRR abs/1512.02831 (2015) - 2014
- [i11]Botond Cseke, Tom Heskes:
Properties of Bethe Free Energies and Message Passing in Gaussian Models. CoRR abs/1401.3877 (2014) - 2013
- [i10]Tom Heskes, Onno Zoeter:
Expectation Propogation for approximate inference in dynamic Bayesian networks. CoRR abs/1301.0572 (2013) - [i9]Wim Wiegerinck, Tom Heskes:
IPF for Discrete Chain Factor Graphs. CoRR abs/1301.0613 (2013) - [i8]Evgeni Tsivtsivadze, Tom Heskes:
Semi-supervised Ranking Pursuit. CoRR abs/1307.0846 (2013) - [i7]Tom Claassen, Joris M. Mooij, Tom Heskes:
Learning Sparse Causal Models is not NP-hard. CoRR abs/1309.6824 (2013) - [i6]Joris M. Mooij, Tom Heskes:
Cyclic Causal Discovery from Continuous Equilibrium Data. CoRR abs/1309.6849 (2013) - 2012
- [i5]Tom Claassen, Tom Heskes:
A Logical Characterization of Constraint-Based Causal Discovery. CoRR abs/1202.3711 (2012) - [i4]Botond Cseke, Tom Heskes:
Bounds on the Bethe Free Energy for Gaussian Networks. CoRR abs/1206.3243 (2012) - [i3]Tom Claassen, Tom Heskes:
A Bayesian Approach to Constraint Based Causal Inference. CoRR abs/1210.4866 (2012) - [i2]Tom Heskes, Kees Albers, Hilbert J. Kappen:
Approximate Inference and Constrained Optimization. CoRR abs/1212.2480 (2012) - 2011
- [i1]Jesse Alama, Daniel Kühlwein, Evgeni Tsivtsivadze, Josef Urban, Tom Heskes:
Premise Selection for Mathematics by Corpus Analysis and Kernel Methods. CoRR abs/1108.3446 (2011)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:07 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint