


default search action
PRNI 2015: Stanford, CA, USA
- 2015 International Workshop on Pattern Recognition in NeuroImaging, Stanford, CA, USA, June 10-12, 2015. IEEE Computer Society 2015, ISBN 978-1-4673-7145-2

Oral Session I: Graphical Methods and Connectivity
- Ricardo Pio Monti

, Romy Lorenz
, Peter Hellyer, Robert Leech
, Christoforos Anagnostopoulos
, Giovanni Montana:
Graph Embeddings of Dynamic Functional Connectivity Reveal Discriminative Patterns of Task Engagement in HCP Data. 1-4 - Itir Önal, Mete Ozay, Fatos T. Yarman-Vural:

Modeling Voxel Connectivity for Brain Decoding. 5-8 - Denis A. Engemann

, Daniel Strohmeier, Eric Larson, Alexandre Gramfort
:
Mind the Noise Covariance When Localizing Brain Sources with M/EEG. 9-12 - Paolo Avesani

, Bao Nguyen Thien
, Nivedita Agarwal
, Mark Bromberg, Lubdha Shah, Emanuele Olivetti
:
Tractography Mapping for Dissimilarity Space across Subjects. 13-16
Oral Session II: Sparse Techniques
- Elvis Dohmatob, Michael Eickenberg, Bertrand Thirion, Gaël Varoquaux:

Speeding-Up Model-Selection in Graphnet via Early-Stopping and Univariate Feature-Screening. 17-20 - Daniel Strohmeier, Alexandre Gramfort

, Jens Haueisen
:
MEG/EEG Source Imaging with a Non-Convex Penalty in the Time-Frequency Domain. 21-24 - Joao M. Monteiro, Anil Rao, John Ashburner, John Shawe-Taylor

, Janaina Mourão Miranda:
Multivariate Effect Ranking via Adaptive Sparse PLS. 25-28 - André Altmann

, Bernard Ng:
Joint Feature Extraction from Functional Connectivity Graphs with Multi-task Feature Learning. 29-32
Oral Session III: Multimodal Integration
- Sofie Therese Hansen

, Irene Winkler, Lars Kai Hansen
, Klaus-Robert Müller
, Sven Dähne:
Fusing Simultaneous EEG and fMRI Using Functional and Anatomical Information. 33-36 - Martin C. Axelsen

, Nikolaj Bak, Lars Kai Hansen
:
Testing Multimodal Integration Hypotheses with Application to Schizophrenia Data. 37-40 - Yuhong Li, Qi Dou

, Jinze Yu, Fucang Jia, Jing Qin
, Pheng-Ann Heng
:
Automatic Brain Tumor Segmentation from MR Images via a Multimodal Sparse Coding Based Probabilistic Model. 41-44 - Tingting Ye, Chen Zu, Biao Jie, Dinggang Shen, Daoqiang Zhang:

Discriminative Multi-task Feature Selection for Multi-modality Based AD/MCI Classification. 45-48
Oral Session IV: Statistical Estimation and Modeling
- Ali Faisal, Anni Nora

, Jaeho Seol
, Hanna Renvall, Riitta Salmelin
:
Kernel Convolution Model for Decoding Sounds from Time-Varying Neural Responses. 49-52 - Manjari Narayan

, Genevera I. Allen:
Population Inference for Node Level Differences in Multi-subject Functional Connectivity. 53-56 - Aina Frau-Pascual, Florence Forbes, Philippe Ciuciu:

Variational Physiologically Informed Solution to Hemodynamic and Perfusion Response Estimation from ASL fMRI Data. 57-60 - Anil Rao, Joao M. Monteiro, John Ashburner, Liana Catarina Lima Portugal, Orlando Fernandes Junior

, Leticia de Oliveira
, Mirtes Pereira
, Janaina Mourão Miranda:
A Comparison of Strategies for Incorporating Nuisance Variables into Predictive Neuroimaging Models. 61-64
Oral Session V: Statistical Inference and Best Practices
- Joset A. Etzel:

MVPA Permutation Schemes: Permutation Testing for the Group Level. 65-68 - Emanuele Olivetti

, Dirk B. Walther:
A Bayesian Test for Comparing Classifier Errors. 69-72 - Andrés Hoyos Idrobo, Yannick Schwartz, Gaël Varoquaux, Bertrand Thirion:

Improving Sparse Recovery on Structured Images with Bagged Clustering. 73-76 - Alex F. Mendelson, Maria A. Zuluaga

, Brian F. Hutton, Sébastien Ourselin:
Bolstering Heuristics for Statistical Validation of Prediction Algorithms. 77-80
Oral Session VI: Novel Applications
- Jessica Schrouff

, Christophe Phillips
, Josef Parvizi, Janaina Mourão Miranda:
Predicting Numerical Processing in Naturalistic Settings from Controlled Experimental Conditions. 81-84 - Valeria Kebets

, Jonas Richiardi
, Mitsouko van Assche, Rachel Goldstein, M. van der Meulen
, Patrik Vuilleumier
, Dimitri Van De Ville, Frédéric Assal:
Predicting Pure Amnestic Mild Cognitive Impairment Conversion to Alzheimer's Disease Using Joint Modeling of Imaging and Clinical Data. 85-88 - Sanne Schoenmakers

, Tom Heskes
, Marcel van Gerven:
Hidden Markov Models for Reading Words from the Human Brain. 89-92 - Aki Nikolaidis

, Drew Goatz, Paris Smaragdis, Arthur F. Kramer
:
Predicting Skill-Based Task Performance and Learning with fMRI Motor and Subcortical Network Connectivity. 93-96

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














