default search action
Stephen H. Muggleton
Person information
- affiliation: Imperial College London, Department of Computing, UK
- affiliation: University of York, Department of Computer Science, UK
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [e13]Stephen H. Muggleton, Alireza Tamaddoni-Nezhad:
Inductive Logic Programming - 31st International Conference, ILP 2022, Windsor Great Park, UK, September 28-30, 2022, Proceedings. Lecture Notes in Computer Science 13779, Springer 2024, ISBN 978-3-031-55629-6 [contents] - [i21]Lun Ai, Stephen H. Muggleton, Shi-Shun Liang, Geoff S. Baldwin:
Boolean matrix logic programming for active learning of gene functions in genome-scale metabolic network models. CoRR abs/2405.06724 (2024) - [i20]Lun Ai, Stephen H. Muggleton, Shi-Shun Liang, Geoff S. Baldwin:
Simulating Petri nets with Boolean Matrix Logic Programming. CoRR abs/2405.11412 (2024) - [i19]Lun Ai, Stephen H. Muggleton:
Boolean Matrix Logic Programming. CoRR abs/2408.10369 (2024) - [i18]Lun Ai, Stephen H. Muggleton, Shi-Shun Liang, Geoff S. Baldwin:
Active learning of digenic functions with boolean matrix logic programming. CoRR abs/2408.14487 (2024) - 2023
- [j53]Lun Ai, Johannes Langer, Stephen H. Muggleton, Ute Schmid:
Explanatory machine learning for sequential human teaching. Mach. Learn. 112(10): 3591-3632 (2023) - [i17]Lun Ai, Shi-Shun Liang, Wang-Zhou Dai, Liam Hallett, Stephen H. Muggleton, Geoff S. Baldwin:
Human Comprehensible Active Learning of Genome-Scale Metabolic Networks. CoRR abs/2308.12740 (2023) - 2022
- [j52]Andrew Cropper, Sebastijan Dumancic, Richard Evans, Stephen H. Muggleton:
Inductive logic programming at 30. Mach. Learn. 111(1): 147-172 (2022) - [j51]Stassa Patsantzis, Stephen H. Muggleton:
Correction to: Meta-interpretive learning as metarule specialisation. Mach. Learn. 111(8): 3061 (2022) - [j50]Stassa Patsantzis, Stephen H. Muggleton:
Meta-interpretive learning as metarule specialisation. Mach. Learn. 111(10): 3703-3731 (2022) - [p4]Stephen H. Muggleton, Wang-Zhou Dai:
Human-like Computer Vision. Human-Like Machine Intelligence 2022: 199-217 - [p3]Alireza Tamaddoni-Nezhad, David A. Bohan, Ghazal Afroozi Milani, Alan Raybould, Stephen H. Muggleton:
Human-Machine Scientific Discovery. Human-Like Machine Intelligence 2022: 297-315 - [e12]Stephen H. Muggleton, Nicholas Chater:
Human-Like Machine Intelligence. Oxford University Press 2022, ISBN 9780191895333 [contents] - [i16]Lun Ai, Johannes Langer, Stephen H. Muggleton, Ute Schmid:
Explanatory machine learning for sequential human teaching. CoRR abs/2205.10250 (2022) - 2021
- [j49]Lun Ai, Stephen H. Muggleton, Céline Hocquette, Mark Gromowski, Ute Schmid:
Beneficial and harmful explanatory machine learning. Mach. Learn. 110(4): 695-721 (2021) - [j48]Stassa Patsantzis, Stephen H. Muggleton:
Top program construction and reduction for polynomial time Meta-Interpretive learning. Mach. Learn. 110(4): 755-778 (2021) - [c119]Le-Wen Cai, Wang-Zhou Dai, Yu-Xuan Huang, Yufeng Li, Stephen H. Muggleton, Yuan Jiang:
Abductive Learning with Ground Knowledge Base. IJCAI 2021: 1815-1821 - [c118]Wang-Zhou Dai, Stephen H. Muggleton:
Abductive Knowledge Induction from Raw Data. IJCAI 2021: 1845-1851 - [c117]Didac Barroso-Bergada, Alireza Tamaddoni-Nezhad, Stephen H. Muggleton, Corinne Vacher, Nika Galic, David A. Bohan:
Machine Learning of Microbial Interactions Using Abductive ILP and Hypothesis Frequency/Compression Estimation. ILP 2021: 26-40 - [c116]Dany Varghese, Roman Bauer, Daniel Baxter-Beard, Stephen H. Muggleton, Alireza Tamaddoni-Nezhad:
Human-Like Rule Learning from Images Using One-Shot Hypothesis Derivation. ILP 2021: 234-250 - [c115]Yu-Xuan Huang, Wang-Zhou Dai, Le-Wen Cai, Stephen H. Muggleton, Yuan Jiang:
Fast Abductive Learning by Similarity-based Consistency Optimization. NeurIPS 2021: 26574-26584 - [i15]Stassa Patsantzis, Stephen H. Muggleton:
Top Program Construction and Reduction for polynomial time Meta-Interpretive Learning. CoRR abs/2101.05050 (2021) - [i14]Andrew Cropper, Sebastijan Dumancic, Richard Evans, Stephen H. Muggleton:
Inductive logic programming at 30. CoRR abs/2102.10556 (2021) - [i13]Wang-Zhou Dai, Liam Hallett, Stephen H. Muggleton, Geoff S. Baldwin:
Automated Biodesign Engineering by Abductive Meta-Interpretive Learning. CoRR abs/2105.07758 (2021) - [i12]Stassa Patsantzis, Stephen H. Muggleton:
Meta-Interpretive Learning as Metarule Specialisation. CoRR abs/2106.07464 (2021) - 2020
- [j47]Andrew Cropper, Rolf Morel, Stephen H. Muggleton:
Learning higher-order logic programs. Mach. Learn. 109(7): 1289-1322 (2020) - [c114]Andrew Cropper, Rolf Morel, Stephen H. Muggleton:
Learning Higher-Order Programs through Predicate Invention. AAAI 2020: 13655-13658 - [c113]Céline Hocquette, Stephen H. Muggleton:
Complete Bottom-Up Predicate Invention in Meta-Interpretive Learning. IJCAI 2020: 2312-2318 - [c112]Andrew Cropper, Sebastijan Dumancic, Stephen H. Muggleton:
Turning 30: New Ideas in Inductive Logic Programming. IJCAI 2020: 4833-4839 - [i11]Andrew Cropper, Sebastijan Dumancic, Stephen H. Muggleton:
Turning 30: New Ideas in Inductive Logic Programming. CoRR abs/2002.11002 (2020) - [i10]Lun Ai, Stephen H. Muggleton, Céline Hocquette, Mark Gromowski, Ute Schmid:
Beneficial and Harmful Explanatory Machine Learning. CoRR abs/2009.06410 (2020) - [i9]Wang-Zhou Dai, Stephen H. Muggleton:
Abductive Knowledge Induction From Raw Data. CoRR abs/2010.03514 (2020)
2010 – 2019
- 2019
- [j46]Andrew Cropper, Stephen H. Muggleton:
Learning efficient logic programs. Mach. Learn. 108(7): 1063-1083 (2019) - [j45]Stephen H. Muggleton, Céline Hocquette:
Machine Discovery of Comprehensible Strategies for Simple Games Using Meta-interpretive Learning. New Gener. Comput. 37(2): 203-217 (2019) - [j44]Ryutaro Ichise, Stephen H. Muggleton, Kouji Kozaki, Freddy Lécué, Dongyan Zhao, Takahiro Kawamura:
Special Issue on Semantic Technology. New Gener. Comput. 37(4): 359-360 (2019) - [i8]Céline Hocquette, Stephen H. Muggleton:
Can Meta-Interpretive Learning outperform Deep Reinforcement Learning of Evaluable Game strategies? CoRR abs/1902.09835 (2019) - [i7]Andrew Cropper, Rolf Morel, Stephen H. Muggleton:
Learning higher-order logic programs. CoRR abs/1907.10953 (2019) - [i6]Luc De Raedt, Richard Evans, Stephen H. Muggleton, Ute Schmid:
Approaches and Applications of Inductive Programming (Dagstuhl Seminar 19202). Dagstuhl Reports 9(5): 58-88 (2019) - 2018
- [j43]Stephen H. Muggleton, Wang-Zhou Dai, Claude Sammut, Alireza Tamaddoni-Nezhad, Jing Wen, Zhi-Hua Zhou:
Meta-Interpretive Learning from noisy images. Mach. Learn. 107(7): 1097-1118 (2018) - [j42]Stephen H. Muggleton, Ute Schmid, Christina Zeller, Alireza Tamaddoni-Nezhad, Tarek R. Besold:
Ultra-Strong Machine Learning: comprehensibility of programs learned with ILP. Mach. Learn. 107(7): 1119-1140 (2018) - [c111]Céline Hocquette, Stephen H. Muggleton:
How Much Can Experimental Cost Be Reduced in Active Learning of Agent Strategies? ILP 2018: 38-53 - [e11]Ryutaro Ichise, Freddy Lécué, Takahiro Kawamura, Dongyan Zhao, Stephen H. Muggleton, Kouji Kozaki:
Semantic Technology - 8th Joint International Conference, JIST 2018, Awaji, Japan, November 26-28, 2018, Proceedings. Lecture Notes in Computer Science 11341, Springer 2018, ISBN 978-3-030-04283-7 [contents] - 2017
- [c110]Hank Conn, Stephen H. Muggleton:
The Effect of Predicate Order on Curriculum Learning in ILP. ILP (Late Breaking Papers) 2017: 17-21 - [c109]Wang-Zhou Dai, Stephen H. Muggleton, Jing Wen, Alireza Tamaddoni-Nezhad, Zhi-Hua Zhou:
Logical Vision: One-Shot Meta-Interpretive Learning from Real Images. ILP 2017: 46-62 - [c108]Stephen H. Muggleton:
Meta-Interpretive Learning: Achievements and Challenges (Invited Paper). RuleML+RR 2017: 1-6 - [i5]Ute Schmid, Stephen H. Muggleton, Rishabh Singh:
Approaches and Applications of Inductive Programming (Dagstuhl Seminar 17382). Dagstuhl Reports 7(9): 86-108 (2017) - 2016
- [c107]Andrew Cropper, Stephen H. Muggleton:
Learning Higher-Order Logic Programs through Abstraction and Invention. IJCAI 2016: 1418-1424 - [c106]Ute Schmid, Christina Zeller, Tarek R. Besold, Alireza Tamaddoni-Nezhad, Stephen H. Muggleton:
How Does Predicate Invention Affect Human Comprehensibility? ILP 2016: 52-67 - 2015
- [j41]Sumit Gulwani, José Hernández-Orallo, Emanuel Kitzelmann, Stephen H. Muggleton, Ute Schmid, Benjamin G. Zorn:
Inductive programming meets the real world. Commun. ACM 58(11): 90-99 (2015) - [j40]Stephen H. Muggleton, Dianhuan Lin, Alireza Tamaddoni-Nezhad:
Meta-interpretive learning of higher-order dyadic datalog: predicate invention revisited. Mach. Learn. 100(1): 49-73 (2015) - [c105]Andrew Cropper, Stephen H. Muggleton:
Learning Efficient Logical Robot Strategies Involving Composable Objects. IJCAI 2015: 3423-3429 - [c104]Wang-Zhou Dai, Stephen H. Muggleton, Zhi-Hua Zhou:
Logical Vision: Meta-Interpretive Learning for Simple Geometrical Concepts. ILP (Late Breaking Papers) 2015: 1-16 - [c103]Colin Farquhar, Gudmund Grov, Andrew Cropper, Stephen H. Muggleton, Alan Bundy:
Typed meta-interpretive learning for proof strategies. ILP (Late Breaking Papers) 2015: 17-32 - [c102]Andrew Cropper, Alireza Tamaddoni-Nezhad, Stephen H. Muggleton:
Meta-Interpretive Learning of Data Transformation Programs. ILP 2015: 46-59 - [c101]Andrew Cropper, Stephen H. Muggleton:
Can predicate invention compensate for incomplete background knowledge? SCAI 2015: 27-36 - [i4]José Hernández-Orallo, Stephen H. Muggleton, Ute Schmid, Benjamin G. Zorn:
Approaches and Applications of Inductive Programming (Dagstuhl Seminar 15442). Dagstuhl Reports 5(10): 89-111 (2015) - 2014
- [j39]Stephen H. Muggleton:
Alan Turing and the development of Artificial Intelligence. AI Commun. 27(1): 3-10 (2014) - [j38]Stephen H. Muggleton, Dianhuan Lin, Niels Pahlavi, Alireza Tamaddoni-Nezhad:
Meta-interpretive learning: application to grammatical inference. Mach. Learn. 94(1): 25-49 (2014) - [c100]Dianhuan Lin, Eyal Dechter, Kevin Ellis, Joshua B. Tenenbaum, Stephen H. Muggleton:
Bias reformulation for one-shot function induction. ECAI 2014: 525-530 - [c99]Andrew Cropper, Stephen H. Muggleton:
Logical Minimisation of Meta-Rules Within Meta-Interpretive Learning. ILP 2014: 62-75 - [c98]Alireza Tamaddoni-Nezhad, David A. Bohan, Alan Raybould, Stephen H. Muggleton:
Towards Machine Learning of Predictive Models from Ecological Data. ILP 2014: 154-167 - [e10]Stephen H. Muggleton, Hiroaki Watanabe:
Latest Advances in Inductive Logic Programming, ILP 2011, Late Breaking Papers, Windsor Great Park, UK, July 31 - August 3, 2011. Imperial College Press / World Scientific 2014, ISBN 978-1-78326-508-4 [contents] - 2013
- [j37]Dunja Mladenic, Stephen H. Muggleton, Ivan Bratko:
Editors's Introduction to the Special Issue on "100 Years of Alan Turing and 20 Years of SLAIS". Informatica (Slovenia) 37(1): 1 (2013) - [c97]Stephen H. Muggleton, Dianhuan Lin:
Meta-Interpretive Learning of Higher-Order Dyadic Datalog: Predicate Invention revisited. IJCAI 2013: 1551-1557 - [c96]Stephen H. Muggleton, Dianhuan Lin, Jianzhong Chen, Alireza Tamaddoni-Nezhad:
MetaBayes: Bayesian Meta-Interpretative Learning Using Higher-Order Stochastic Refinement. ILP 2013: 1-17 - 2012
- [j36]José Carlos Almeida Santos, Houssam Nassif, David Page, Stephen H. Muggleton, Michael J. E. Sternberg:
Automated identification of protein-ligand interaction features using Inductive Logic Programming: a hexose binding case study. BMC Bioinform. 13: 162 (2012) - [j35]Stephen H. Muggleton, Luc De Raedt, David Poole, Ivan Bratko, Peter A. Flach, Katsumi Inoue, Ashwin Srinivasan:
ILP turns 20 - Biography and future challenges. Mach. Learn. 86(1): 3-23 (2012) - [j34]Stephen H. Muggleton, Jianzhong Chen:
Guest editorial: special issue on Inductive Logic Programming (ILP 2011). Mach. Learn. 89(3): 213-214 (2012) - [c95]Steve Barker, Andrew J. I. Jones, Antonis C. Kakas, Robert A. Kowalski, Alessio Lomuscio, Rob Miller, Stephen H. Muggleton, Giovanni Sartor:
The Scientific Contribution of Marek Sergot. Logic Programs, Norms and Action 2012: 4-11 - [c94]Ghazal Afroozi Milani, David A. Bohan, Stuart J. Dunbar, Stephen H. Muggleton, Alan Raybould, Alireza Tamaddoni-Nezhad:
Machine Learning and Text Mining of Trophic Links. ICMLA (2) 2012: 410-415 - [e9]Stephen H. Muggleton, Alireza Tamaddoni-Nezhad, Francesca A. Lisi:
Inductive Logic Programming - 21st International Conference, ILP 2011, Windsor Great Park, UK, July 31 - August 3, 2011, Revised Selected Papers. Lecture Notes in Computer Science 7207, Springer 2012, ISBN 978-3-642-31950-1 [contents] - 2011
- [j33]Victor Lesk, Jan Taubert, Christopher J. Rawlings, Stuart J. Dunbar, Stephen H. Muggleton:
WIBL: Workbench for Integrative Biological Learning. J. Integr. Bioinform. 8(2) (2011) - [c93]Stephen H. Muggleton, Changze Xu:
Can ILP Learn Complete and Correct Game Strategies? ILP (Late Breaking Papers) 2011: 3-10 - [c92]Andreas Kirkeby Fidjeland, Wayne Luk, Stephen H. Muggleton:
Customisable Multi-Processor Acceleration of Inductive Logic Programming. ILP (Late Breaking Papers) 2011: 123-141 - [c91]Niels Pahlavi, Stephen H. Muggleton:
Towards Efficient Higher-Order Logic Learning in a First-Order Datalog Framework. ILP (Late Breaking Papers) 2011: 209-216 - [c90]Robert J. Henderson, Stephen H. Muggleton:
Automatic Invention of Functional Abstractions. ILP (Late Breaking Papers) 2011: 217-224 - [c89]Dianhuan Lin, Jianzhong Chen, Hiroaki Watanabe, Stephen H. Muggleton, Pooja Jain, Michael J. E. Sternberg, Charles Baxter, Richard A. Currie, Stuart J. Dunbar, Mark Earll, José Domingo Salazar:
Does Multi-Clause Learning Help in Real-World Applications? ILP 2011: 221-237 - [c88]Stephen H. Muggleton, Dianhuan Lin, Alireza Tamaddoni-Nezhad:
MC-TopLog: Complete Multi-clause Learning Guided by a Top Theory. ILP 2011: 238-254 - [c87]Alireza Tamaddoni-Nezhad, David A. Bohan, Alan Raybould, Stephen H. Muggleton:
Machine Learning a Probabilistic Network of Ecological Interactions. ILP 2011: 332-346 - [c86]Hiroaki Watanabe, Stephen H. Muggleton:
Projection-Based PILP: Computational Learning Theory with Empirical Results. ILP 2011: 358-372 - 2010
- [c85]Jose Santos, Stephen H. Muggleton:
Subsumer: A Prolog theta-subsumption engine. ICLP (Technical Communications) 2010: 172-181 - [c84]Stephen H. Muggleton:
Knowledge Mining Biological Network Models. Intelligent Information Processing 2010: 2 - [c83]Stephen H. Muggleton, Jianzhong Chen, Hiroaki Watanabe, Stuart J. Dunbar, Charles Baxter, Richard A. Currie, José Domingo Salazar, Jan Taubert, Michael J. E. Sternberg:
Variation of Background Knowledge in an Industrial Application of ILP. ILP 2010: 158-170 - [c82]Niels Pahlavi, Stephen H. Muggleton:
Can HOLL Outperform FOLL? ILP 2010: 198-205 - [c81]Jose Santos, Stephen H. Muggleton:
When Does It Pay Off to Use Sophisticated Entailment Engines in ILP? ILP 2010: 214-221 - [c80]Alireza Tamaddoni-Nezhad, Stephen H. Muggleton:
Stochastic Refinement. ILP 2010: 222-237
2000 – 2009
- 2009
- [j32]Alireza Tamaddoni-Nezhad, Stephen H. Muggleton:
The lattice structure and refinement operators for the hypothesis space bounded by a bottom clause. Mach. Learn. 76(1): 37-72 (2009) - [j31]Huma Lodhi, Stephen H. Muggleton, Michael J. E. Sternberg:
Multi-Class protein fold recognition using large margin logic based divide and conquer learning. SIGKDD Explor. 11(2): 117-122 (2009) - [c79]Huma Lodhi, Stephen H. Muggleton, Michael J. E. Sternberg:
Learning Large Margin First Order Decision Lists for Multi-Class Classification. Discovery Science 2009: 168-183 - [c78]José Carlos Almeida Santos, Alireza Tamaddoni-Nezhad, Stephen H. Muggleton:
An ILP System for Learning Head Output Connected Predicates. EPIA 2009: 150-159 - [c77]Stephen H. Muggleton, Aline Paes, Vítor Santos Costa, Gerson Zaverucha:
Chess Revision: Acquiring the Rules of Chess Variants through FOL Theory Revision from Examples. ILP 2009: 123-130 - [c76]Stephen H. Muggleton, José Carlos Almeida Santos, Alireza Tamaddoni-Nezhad:
ProGolem: A System Based on Relative Minimal Generalisation. ILP 2009: 131-148 - [c75]Hiroaki Watanabe, Stephen H. Muggleton:
Can ILP Be Applied to Large Datasets? ILP 2009: 249-256 - [c74]Huma Lodhi, Stephen H. Muggleton, Michael J. E. Sternberg:
Multi-class protein fold recognition using large margin logic based divide and conquer learning. KDD Workshop on Statistical and Relational Learning in Bioinformatics 2009: 22-26 - 2008
- [j30]Kazuhisa Tsunoyama, Ata Amini, Michael J. E. Sternberg, Stephen H. Muggleton:
Scaffold Hopping in Drug Discovery Using Inductive Logic Programming. J. Chem. Inf. Model. 48(5): 949-957 (2008) - [j29]Stephen H. Muggleton, Ramón P. Otero, Simon Colton:
Guest editorial: special issue on Inductive Logic Programming. Mach. Learn. 70(2-3): 119-120 (2008) - [j28]Stephen H. Muggleton, Alireza Tamaddoni-Nezhad:
QG/GA: a stochastic search for Progol. Mach. Learn. 70(2-3): 121-133 (2008) - [j27]Thomas G. Dietterich, Pedro M. Domingos, Lise Getoor, Stephen H. Muggleton, Prasad Tadepalli:
Structured machine learning: the next ten years. Mach. Learn. 73(1): 3-23 (2008) - [j26]Jianzhong Chen, Stephen H. Muggleton, José Carlos Almeida Santos:
Learning probabilistic logic models from probabilistic examples. Mach. Learn. 73(1): 55-85 (2008) - [c73]Andreas Fidjeland, Wayne Luk, Stephen H. Muggleton:
A Customisable Multiprocessor for Application-Optimised Inductive Logic Programming. BCS Int. Acad. Conf. 2008: 318-330 - [c72]Stephen H. Muggleton, José Carlos Almeida Santos, Alireza Tamaddoni-Nezhad:
TopLog: ILP Using a Logic Program Declarative Bias. ICLP 2008: 687-692 - [c71]Alireza Tamaddoni-Nezhad, Stephen H. Muggleton:
A Note on Refinement Operators for IE-Based ILP Systems. ILP 2008: 297-314 - [c70]Stephen H. Muggleton:
Developing Robust Synthetic Biology Designs Using a Microfluidic Robot Scientist. SBIA 2008: 4 - [c69]Stephen H. Muggleton:
From ILP to PILP. SBIA 2008: 7 - [p2]Jianzhong Chen, Lawrence A. Kelley, Stephen H. Muggleton, Michael J. E. Sternberg:
Protein Fold Discovery Using Stochastic Logic Programs. Probabilistic Inductive Logic Programming 2008: 244-262 - [p1]Stephen H. Muggleton, Jianzhong Chen:
A Behavioral Comparison of Some Probabilistic Logic Models. Probabilistic Inductive Logic Programming 2008: 305-324 - [e8]Luc De Raedt, Thomas G. Dietterich, Lise Getoor, Kristian Kersting, Stephen H. Muggleton:
Probabilistic, Logical and Relational Learning - A Further Synthesis, 15.04. - 20.04.2007. Dagstuhl Seminar Proceedings 07161, Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany 2008 [contents] - [e7]Luc De Raedt, Paolo Frasconi, Kristian Kersting, Stephen H. Muggleton:
Probabilistic Inductive Logic Programming - Theory and Applications. Lecture Notes in Computer Science 4911, Springer 2008, ISBN 978-3-540-78651-1 [contents] - 2007
- [j25]Edward O. Cannon, Ata Amini, Andreas Bender, Michael J. E. Sternberg, Stephen H. Muggleton, Robert C. Glen, John B. O. Mitchell:
Support vector inductive logic programming outperforms the naive Bayes classifier and inductive logic programming for the classification of bioactive chemical compounds. J. Comput. Aided Mol. Des. 21(5): 269-280 (2007) - [j24]Ata Amini, Stephen H. Muggleton, Huma Lodhi, Michael J. E. Sternberg:
A Novel Logic-Based Approach for Quantitative Toxicology Prediction. J. Chem. Inf. Model. 47(3): 998-1006 (2007) - [c68]Jianzhong Chen, Stephen H. Muggleton, Jose Santos:
Learning Probabilistic Logic Models from Probabilistic Examples (Extended Abstract). ILP 2007: 22-23 - [c67]Jianzhong Chen, Stephen H. Muggleton, Jose Santos:
Abductive Stochastic Logic Programs for Metabolic Network Inhibition Learning. MLG 2007 - [e6]Stephen H. Muggleton, Ramón P. Otero, Alireza Tamaddoni-Nezhad:
Inductive Logic Programming, 16th International Conference, ILP 2006, Santiago de Compostela, Spain, August 24-27, 2006, Revised Selected Papers. Lecture Notes in Computer Science 4455, Springer 2007, ISBN 978-3-540-73846-6 [contents] - [i3]Luc De Raedt, Thomas G. Dietterich, Lise Getoor, Kristian Kersting, Stephen H. Muggleton:
07161 Abstracts Collection -- Probabilistic, Logical and Relational Learning - A Further Synthesis. Probabilistic, Logical and Relational Learning - A Further Synthesis 2007 - 2006
- [j23]Simon Colton, Stephen H. Muggleton:
Mathematical applications of inductive logic programming. Mach. Learn. 64(1-3): 25-64 (2006) - [j22]Alireza Tamaddoni-Nezhad, Raphael Chaleil, Antonis C. Kakas, Stephen H. Muggleton:
Application of abductive ILP to learning metabolic network inhibition from temporal data. Mach. Learn. 64(1-3): 209-230 (2006) - [c66]