default search action
Simo Särkkä
Person information
- affiliation: Aalto University, Finland
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j80]Nathanael Bosch, Adrien Corenflos, Fatemeh Yaghoobi, Filip Tronarp, Philipp Hennig, Simo Särkkä:
Parallel-in-Time Probabilistic Numerical ODE Solvers. J. Mach. Learn. Res. 25: 206:1-206:27 (2024) - [j79]Muhammad F. Emzir, Zheng Zhao, Lahouari Cheded, Simo Särkkä:
Gaussian-Based Parametric Bijections for Automatic Projection Filters. IEEE Trans. Autom. Control. 69(5): 3449-3456 (2024) - [j78]Zaeed Khan, Matias Rusanen, Miika Arvonen, Timo Leppänen, Simo Särkkä:
Joint Use of a Low Thermal Resolution Thermal Camera and an RGB Camera for Respiration Measurement. IEEE Trans. Instrum. Meas. 73: 1-14 (2024) - [c89]Christos Merkatas, Simo Särkkä:
A Gibbs Sampler for Bayesian Nonparametric State-Space Models. ICASSP 2024: 13236-13240 - [c88]Sahel Iqbal, Adrien Corenflos, Simo Särkkä, Hany Abdulsamad:
Nesting Particle Filters for Experimental Design in Dynamical Systems. ICML 2024 - [i56]Yvann Le Fay, Simo Särkkä, Adrien Corenflos:
Modelling pathwise uncertainty of Stochastic Differential Equations samplers via Probabilistic Numerics. CoRR abs/2401.03338 (2024) - [i55]Ahmad Farooq, Cristian A. Galvis-Florez, Simo Särkkä:
Quantum-Assisted Hilbert-Space Gaussian Process Regression. CoRR abs/2402.00544 (2024) - [i54]Sahel Iqbal, Adrien Corenflos, Simo Särkkä, Hany Abdulsamad:
Nesting Particle Filters for Experimental Design in Dynamical Systems. CoRR abs/2402.07868 (2024) - [i53]Adrien Corenflos, Zheng Zhao, Simo Särkkä, Jens Sjölund, Thomas B. Schön:
Conditioning diffusion models by explicit forward-backward bridging. CoRR abs/2405.13794 (2024) - [i52]Mahdi Nasiri, Sahel Iqbal, Simo Särkkä:
Physics-Informed Machine Learning for Grade Prediction in Froth Flotation. CoRR abs/2408.15267 (2024) - 2023
- [j77]Harshit Agrawal, Ari Hietanen, Simo Särkkä:
Deep Learning Based Projection Domain Metal Segmentation for Metal Artifact Reduction in Cone Beam Computed Tomography. IEEE Access 11: 100371-100382 (2023) - [j76]William J. Wilkinson, Simo Särkkä, Arno Solin:
Bayes-Newton Methods for Approximate Bayesian Inference with PSD Guarantees. J. Mach. Learn. Res. 24: 83:1-83:50 (2023) - [j75]Hao Dong, Xieyuanli Chen, Simo Särkkä, Cyrill Stachniss:
Online pole segmentation on range images for long-term LiDAR localization in urban environments. Robotics Auton. Syst. 159: 104283 (2023) - [j74]Muhammad F. Emzir, Zheng Zhao, Simo Särkkä:
Multidimensional projection filters via automatic differentiation and sparse-grid integration. Signal Process. 204: 108832 (2023) - [j73]Simo Särkkä, Ángel F. García-Fernández:
Temporal Parallelization of Dynamic Programming and Linear Quadratic Control. IEEE Trans. Autom. Control. 68(2): 851-866 (2023) - [j72]Syeda Sakira Hassan, Simo Särkkä:
Fourier-Hermite Dynamic Programming for Optimal Control. IEEE Trans. Autom. Control. 68(10): 6377-6384 (2023) - [j71]Toni Karvonen, Jon Cockayne, Filip Tronarp, Simo Särkkä:
A probabilistic Taylor expansion with Gaussian processes. Trans. Mach. Learn. Res. 2023 (2023) - [j70]Zheng Zhao, Simo Särkkä, Jens Sjölund, Thomas B. Schön:
Probabilistic Estimation of Instantaneous Frequencies of Chirp Signals. IEEE Trans. Signal Process. 71: 461-476 (2023) - [c87]Fatemeh Yaghoobi, Hany Abdulsamad, Simo Särkkä:
A Recursive Newton Method for Smoothing in Nonlinear State Space Models. EUSIPCO 2023: 1758-1762 - [c86]Simo Särkkä, Ángel F. García-Fernández:
On The Temporal Parallelisation of The Viterbi Algorithm. EUSIPCO 2023: 2018-2022 - [c85]Xiaofeng Ma, Simo Särkkä:
Indoor Positioning Methods Based on Dual Feet-Mounted IMUs With Distance Constraints. IPIN 2023: 1-6 - [c84]Arina Odnoblyudova, Caglar Hizli, St John, Andrea Cognolato, Anne Juuti, Simo Särkkä, Kirsi Pietiläinen, Pekka Marttinen:
Nonparametric modeling of the composite effect of multiple nutrients on blood glucose dynamics. ML4H@NeurIPS 2023: 428-444 - [c83]Ajinkya Gorad, Simo Särkkä:
Rao-Blackwellized Monte Carlo Data Association With Deep Metric For Object Tracking. MLSP 2023: 1-6 - [c82]Cristian A. Galvis-Florez, Daniel Reitzner, Simo Särkkä:
Single Qubit State Estimation on NISQ Devices with Limited Resources and SIC-POVMs. QCE 2023: 111-119 - [c81]Ajinkya Gorad, Sakira Hassan, Simo Särkkä:
Vessel Bearing Estimation Using Visible and Thermal Imaging. SCIA (2) 2023: 373-381 - [c80]Chetan Gupta, Rustam Latypov, Yannic Maus, Shreyas Pai, Simo Särkkä, Jan Studený, Jukka Suomela, Jara Uitto, Hossein Vahidi:
Fast Dynamic Programming in Trees in the MPC Model. SPAA 2023: 443-453 - [i51]Adrien Corenflos, Simo Särkkä:
Auxiliary MCMC and particle Gibbs samplers for parallelisable inference in latent dynamical systems. CoRR abs/2303.00301 (2023) - [i50]Chetan Gupta, Rustam Latypov, Yannic Maus, Shreyas Pai, Simo Särkkä, Jan Studený, Jukka Suomela, Jara Uitto, Hossein Vahidi:
Fast Dynamic Programming in Trees in the MPC Model. CoRR abs/2305.03693 (2023) - [i49]Fatemeh Yaghoobi, Hany Abdulsamad, Simo Särkkä:
A Recursive Newton Method for Smoothing in Nonlinear State Space Models. CoRR abs/2306.09148 (2023) - [i48]Nathanael Bosch, Adrien Corenflos, Fatemeh Yaghoobi, Filip Tronarp, Philipp Hennig, Simo Särkkä:
Parallel-in-Time Probabilistic Numerical ODE Solvers. CoRR abs/2310.01145 (2023) - [i47]Arina Odnoblyudova, Çaglar Hizli, St John, Andrea Cognolato, Anne Juuti, Simo Särkkä, Kirsi Pietiläinen, Pekka Marttinen:
Nonparametric modeling of the composite effect of multiple nutrients on blood glucose dynamics. CoRR abs/2311.03129 (2023) - [i46]Hany Abdulsamad, Sahel Iqbal, Adrien Corenflos, Simo Särkkä:
Risk-Sensitive Stochastic Optimal Control as Rao-Blackwellized Markovian Score Climbing. CoRR abs/2312.14000 (2023) - 2022
- [j69]Joel Jaskari, Jaakko Sahlsten, Theodoros Damoulas, Jeremias Knoblauch, Simo Särkkä, Leo Kärkkäinen, Kustaa Hietala, Kimmo K. Kaski:
Uncertainty-Aware Deep Learning Methods for Robust Diabetic Retinopathy Classification. IEEE Access 10: 76669-76681 (2022) - [j68]Adrien Corenflos, Nicolas Chopin, Simo Särkkä:
De-Sequentialized Monte Carlo: a parallel-in-time particle smoother. J. Mach. Learn. Res. 23: 283:1-283:39 (2022) - [j67]Zheng Zhao, Simo Särkkä:
Non-Linear Gaussian Smoothing With Taylor Moment Expansion. IEEE Signal Process. Lett. 29: 80-84 (2022) - [j66]Rui Gao, Simo Särkkä, Rubén M. Clavería, Simon J. Godsill:
Autonomous Tracking and State Estimation With Generalized Group Lasso. IEEE Trans. Cybern. 52(11): 12056-12070 (2022) - [j65]Sarang Thombre, Zheng Zhao, Henrik Ramm-Schmidt, José M. Vallet Garcia, Tuomo Malkamäki, Sergey Nikolskiy, Toni Hammarberg, Hiski Nuortie, Mohammad Zahidul H. Bhuiyan, Simo Särkkä, Ville V. Lehtola:
Sensors and AI Techniques for Situational Awareness in Autonomous Ships: A Review. IEEE Trans. Intell. Transp. Syst. 23(1): 64-83 (2022) - [j64]Simo Särkkä, Lassi Roininen, Manon Kok, Roland Hostettler, Andreas Hauptmann:
Guest Editorial: MLSP 2020 Special Issue. J. Signal Process. Syst. 94(2): 131-132 (2022) - [c79]Adrien Corenflos, Zheng Zhao, Simo Särkkä:
Temporal Gaussian Process Regression in Logarithmic Time. FUSION 2022: 1-5 - [c78]Muhammad F. Emzir, Niki A. Loppi, Zheng Zhao, Syeda Sakira Hassan, Simo Särkkä:
Fast optimize-and-sample method for differentiable Galerkin approximations of multi-layered Gaussian process priors. FUSION 2022: 1-7 - [c77]Matti Raitoharju, Roland Hostettler, Simo Särkkä:
Posterior linearisation filter for non-linear state transformation noises. FUSION 2022: 1-6 - [c76]Filip Tronarp, Simo Särkkä:
Continuous-Discrete Filtering and Smoothing on Submanifolds of Euclidean Space. FUSION 2022: 1-8 - [i45]Joel Jaskari, Jaakko Sahlsten, Theodoros Damoulas, Jeremias Knoblauch, Simo Särkkä, Leo Kärkkäinen, Kustaa Hietala, Kimmo Kaski:
Uncertainty-aware deep learning methods for robust diabetic retinopathy classification. CoRR abs/2201.09042 (2022) - [i44]Adrien Corenflos, Nicolas Chopin, Simo Särkkä:
De-Sequentialized Monte Carlo: a parallel-in-time particle smoother. CoRR abs/2202.02264 (2022) - [i43]Sakira Hassan, Simo Särkkä:
Fourier-Hermite Dynamic Programming for Optimal Control. CoRR abs/2202.13453 (2022) - [i42]Fatemeh Yaghoobi, Adrien Corenflos, Sakira Hassan, Simo Särkkä:
Parallel square-root statistical linear regression for inference in nonlinear state space models. CoRR abs/2207.00426 (2022) - [i41]Hao Dong, Xieyuanli Chen, Simo Särkkä, Cyrill Stachniss:
Online Pole Segmentation on Range Images for Long-term LiDAR Localization in Urban Environments. CoRR abs/2208.07364 (2022) - [i40]Harshit Agrawal, Ari Hietanen, Simo Särkkä:
Metal artifact correction in cone beam computed tomography using synthetic X-ray data. CoRR abs/2208.08288 (2022) - [i39]Simo Särkkä, Ángel F. García-Fernández:
Temporal Parallelisation of the HJB Equation and Continuous-Time Linear Quadratic Control. CoRR abs/2212.11744 (2022) - 2021
- [j63]Toni Karvonen, Simo Särkkä, Ken'ichiro Tanaka:
Kernel-based interpolation at approximate Fekete points. Numer. Algorithms 87(1): 445-468 (2021) - [j62]Toni Karvonen, Simo Särkkä, Ken'ichiro Tanaka:
Correction to: Kernel-based interpolation at approximate Fekete points. Numer. Algorithms 87(1): 469-471 (2021) - [j61]Filip Tronarp, Simo Särkkä, Philipp Hennig:
Bayesian ODE solvers: the maximum a posteriori estimate. Stat. Comput. 31(3): 23 (2021) - [j60]Zheng Zhao, Muhammad F. Emzir, Simo Särkkä:
Deep state-space Gaussian processes. Stat. Comput. 31(6): 75 (2021) - [j59]Simo Särkkä, Ángel F. García-Fernández:
Temporal Parallelization of Bayesian Smoothers. IEEE Trans. Autom. Control. 66(1): 299-306 (2021) - [j58]Jakub Prüher, Toni Karvonen, Chris J. Oates, Ondrej Straka, Simo Särkkä:
Improved Calibration of Numerical Integration Error in Sigma-Point Filters. IEEE Trans. Autom. Control. 66(3): 1286-1292 (2021) - [j57]Zheng Zhao, Toni Karvonen, Roland Hostettler, Simo Särkkä:
Taylor Moment Expansion for Continuous-Discrete Gaussian Filtering. IEEE Trans. Autom. Control. 66(9): 4460-4467 (2021) - [j56]Syeda Sakira Hassan, Simo Särkkä, Ángel F. García-Fernández:
Temporal Parallelization of Inference in Hidden Markov Models. IEEE Trans. Signal Process. 69: 4875-4887 (2021) - [c75]Leo McCormack, Archontis Politis, Simo Särkkä, Ville Pulkki:
Real-Time Tracking of Multiple Acoustical Sources Utilising Rao-Blackwellised Particle Filtering. EUSIPCO 2021: 206-210 - [c74]Fatemeh Yaghoobi, Adrien Corenflos, Sakira Hassan, Simo Särkkä:
Parallel Iterated Extended and Sigma-Point Kalman Smoothers. ICASSP 2021: 5350-5354 - [c73]Matti Raitoharju, Henri Nurminen, Demet Cilden-Guler, Simo Särkkä:
Kalman filtering with empirical noise models. ICL-GNSS 2021: 1-7 - [c72]Harshit Agrawal, Ari Hietanen, Simo Särkkä:
Metal Artifact Reduction In Cone-Beam Extremity Images Using Gated Convolutions. ISBI 2021: 1087-1090 - [c71]Simo Särkkä, Christos Merkatas, Toni Karvonen:
Gaussian Approximations of SDES in Metropolis-Adjusted Langevin Algorithms. MLSP 2021: 1-6 - [i38]Fatemeh Yaghoobi, Adrien Corenflos, Sakira Hassan, Simo Särkkä:
Parallel Iterated Extended and Sigma-point Kalman Smoothers. CoRR abs/2102.00514 (2021) - [i37]Toni Karvonen, Jon Cockayne, Filip Tronarp, Simo Särkkä:
A Probabilistic Taylor Expansion with Applications in Filtering and Differential Equations. CoRR abs/2102.00877 (2021) - [i36]Sakira Hassan, Simo Särkkä, Ángel F. García-Fernández:
Temporal Parallelization of Inference in Hidden Markov Models. CoRR abs/2102.05743 (2021) - [i35]Adrien Corenflos, Zheng Zhao, Simo Särkkä:
Gaussian Process Regression in Logarithmic Time. CoRR abs/2102.09964 (2021) - [i34]Simo Särkkä, Ángel F. García-Fernández:
Temporal Parallelisation of Dynamic Programming and Linear Quadratic Control. CoRR abs/2104.03186 (2021) - [i33]David Luengo, Luca Martino, Mónica F. Bugallo, Victor Elvira, Simo Särkkä:
A Survey of Monte Carlo Methods for Parameter Estimation. CoRR abs/2107.11820 (2021) - [i32]Zheng Zhao, Simo Särkkä:
Non-linear Gaussian smoothing with Taylor moment expansion. CoRR abs/2110.01396 (2021) - [i31]William J. Wilkinson, Simo Särkkä, Arno Solin:
Bayes-Newton Methods for Approximate Bayesian Inference with PSD Guarantees. CoRR abs/2111.01721 (2021) - 2020
- [j55]Joel Jaskari, Janne Myllärinen, Markus Leskinen, Ali Bahrami Rad, Jaakko Hollmén, Sture Andersson, Simo Särkkä:
Machine Learning Methods for Neonatal Mortality and Morbidity Classification. IEEE Access 8: 123347-123358 (2020) - [j54]Toni Karvonen, Simo Särkkä:
Worst-case optimal approximation with increasingly flat Gaussian kernels. Adv. Comput. Math. 46(2): 21 (2020) - [j53]David Luengo, Luca Martino, Mónica F. Bugallo, Víctor Elvira, Simo Särkkä:
A survey of Monte Carlo methods for parameter estimation. EURASIP J. Adv. Signal Process. 2020(1): 25 (2020) - [j52]Toni Karvonen, George Wynne, Filip Tronarp, Chris J. Oates, Simo Särkkä:
Maximum Likelihood Estimation and Uncertainty Quantification for Gaussian Process Approximation of Deterministic Functions. SIAM/ASA J. Uncertain. Quantification 8(3): 926-958 (2020) - [j51]Arno Solin, Simo Särkkä:
Hilbert space methods for reduced-rank Gaussian process regression. Stat. Comput. 30(2): 419-446 (2020) - [j50]Toni Karvonen, Silvère Bonnabel, Eric Moulines, Simo Särkkä:
On Stability of a Class of Filters for Nonlinear Stochastic Systems. SIAM J. Control. Optim. 58(4): 2023-2049 (2020) - [j49]Matti Raitoharju, Ángel F. García-Fernández, Roland Hostettler, Robert Piché, Simo Särkkä:
Gaussian mixture models for signal mapping and positioning. Signal Process. 168 (2020) - [j48]Roland Hostettler, Filip Tronarp, Ángel F. García-Fernández, Simo Särkkä:
Importance Densities for Particle Filtering Using Iterated Conditional Expectations. IEEE Signal Process. Lett. 27: 211-215 (2020) - [j47]Rui Gao, Filip Tronarp, Simo Särkkä:
Variable Splitting Methods for Constrained State Estimation in Partially Observed Markov Processes. IEEE Signal Process. Lett. 27: 1305-1309 (2020) - [j46]Hüseyin Yigitler, Ossi Kaltiokallio, Roland Hostettler, Alemayehu Solomon Abrar, Riku Jäntti, Neal Patwari, Simo Särkkä:
RSS Models for Respiration Rate Monitoring. IEEE Trans. Mob. Comput. 19(3): 680-696 (2020) - [j45]Zheng Zhao, Simo Särkkä, Ali Bahrami Rad:
Kalman-based Spectro-Temporal ECG Analysis using Deep Convolutional Networks for Atrial Fibrillation Detection. J. Signal Process. Syst. 92(7): 621-636 (2020) - [c70]Janne Mustaniemi, Juho Kannala, Jiri Matas, Simo Särkkä, Janne Heikkilä:
LSD_2 - Joint Denoising and Deblurring of Short and Long Exposure Images with CNNs. BMVC 2020 - [c69]Salla Aario, Ajinkya Gorad, Miika Arvonen, Simo Särkkä:
Respiratory Pattern Recognition from Low-Resolution Thermal Imaging. ESANN 2020: 469-474 - [c68]Rui Gao, Simo Särkkä:
Augmented Sigma-Point Lagrangian Splitting Method for Sparse Nonlinear State Estimation. EUSIPCO 2020: 2090-2094 - [c67]Zheng Zhao, Filip Tronarp, Roland Hostettler, Simo Särkkä:
State-Space Gaussian Process for Drift Estimation in Stochastic Differential Equations. ICASSP 2020: 5295-5299 - [c66]Simo Särkkä, Lennart Svensson:
Levenberg-Marquardt and Line-Search Extended Kalman Smoothers. ICASSP 2020: 5875-5879 - [c65]Ajinkya Gorad, Zheng Zhao, Simo Särkkä:
Parameter Estimation in Non-Linear State-Space Models by Automatic Differentiation of Non-Linear Kalman Filters. MLSP 2020: 1-6 - [i30]Toni Karvonen, George Wynne, Filip Tronarp, Chris J. Oates, Simo Särkkä:
Maximum likelihood estimation and uncertainty quantification for Gaussian process approximation of deterministic functions. CoRR abs/2001.10965 (2020) - [i29]Jarkko Suuronen, Muhammad F. Emzir, Sari Lasanen, Simo Särkkä, Lassi Roininen:
Enhancing Industrial X-ray Tomography by Data-Centric Statistical Methods. CoRR abs/2003.03814 (2020) - [i28]Filip Tronarp, Simo Särkkä, Philipp Hennig:
Bayesian ODE Solvers: The Maximum A Posteriori Estimate. CoRR abs/2004.00623 (2020) - [i27]Rui Gao, Filip Tronarp, Simo Särkkä:
Variable Splitting Methods for Constrained State Estimation in Partially Observed Markov Processes. CoRR abs/2005.08275 (2020) - [i26]Zheng Zhao, Muhammad F. Emzir, Simo Särkkä:
Deep State-Space Gaussian Processes. CoRR abs/2008.04733 (2020)
2010 – 2019
- 2019
- [j44]Juha Sarmavuori, Simo Särkkä:
Numerical integration as a finite matrix approximation to multiplication operator. J. Comput. Appl. Math. 353: 283-291 (2019) - [j43]Michael Schober, Simo Särkkä, Philipp Hennig:
A probabilistic model for the numerical solution of initial value problems. Stat. Comput. 29(1): 99-122 (2019) - [j42]Toni Karvonen, Simo Särkkä, Chris J. Oates:
Symmetry exploits for Bayesian cubature methods. Stat. Comput. 29(6): 1231-1248 (2019) - [j41]Filip Tronarp, Hans Kersting, Simo Särkkä, Philipp Hennig:
Probabilistic solutions to ordinary differential equations as nonlinear Bayesian filtering: a new perspective. Stat. Comput. 29(6): 1297-1315 (2019) - [j40]Toni Karvonen, Motonobu Kanagawa, Simo Särkkä:
On the positivity and magnitudes of Bayesian quadrature weights. Stat. Comput. 29(6): 1317-1333 (2019) - [j39]Filip Tronarp, Simo Särkkä:
Iterative statistical linear regression for Gaussian smoothing in continuous-time non-linear stochastic dynamic systems. Signal Process. 159: 1-12 (2019) - [j38]Filip Tronarp, Toni Karvonen, Simo Särkkä:
Student's $t$-Filters for Noise Scale Estimation. IEEE Signal Process. Lett. 26(2): 352-356 (2019) - [j37]Ángel F. García-Fernández, Filip Tronarp, Simo Särkkä:
Gaussian Process Classification Using Posterior Linearization. IEEE Signal Process. Lett. 26(5): 735-739 (2019) - [j36]Roland Hostettler, Simo Särkkä:
Rao-Blackwellized Gaussian Smoothing. IEEE Trans. Autom. Control. 64(1): 305-312 (2019) - [j35]Simo Särkkä, Mauricio A. Álvarez, Neil D. Lawrence:
Gaussian Process Latent Force Models for Learning and Stochastic Control of Physical Systems. IEEE Trans. Autom. Control. 64(7): 2953-2960 (2019) - [j34]Ángel F. García-Fernández, Filip Tronarp, Simo Särkkä:
Gaussian Target Tracking With Direction-of-Arrival von Mises-Fisher Measurements. IEEE Trans. Signal Process. 67(11): 2960-2972 (2019) - [j33]Rui Gao, Filip Tronarp, Simo Särkkä:
Iterated Extended Kalman Smoother-Based Variable Splitting for L1-Regularized State Estimation. IEEE Trans. Signal Process. 67(19): 5078-5092 (2019) - [j32]Ángel F. García-Fernández, Roland Hostettler, Simo Särkkä:
Rao-Blackwellized Posterior Linearization Backward SLAM. IEEE Trans. Veh. Technol. 68(5): 4734-4747 (2019) - [c64]Roland Hostettler, Ángel F. García-Fernández, Filip Tronarp, Simo Särkkä:
Joint Calibration of Inertial Sensors and Magnetometers using von Mises-Fisher Filtering and Expectation Maximization. FUSION 2019: 1-8 - [c63]Matti Raitoharju, Ángel F. García-Fernández, Simo Särkkä:
Partitioned Update Binomial Gaussian Mixture Filter. FUSION 2019: 1-8 - [c62]Filip Tronarp, Simo Särkkä:
Updates in Bayesian Filtering by Continuous Projections on a Manifold of Densities. ICASSP 2019: 5032-5036 - [c61]Muhammad F. Emzir, Sari Lasanen, Zenith Purisha, Simo Särkkä:
Hilbert-Space Reduced-Rank Methods For Deep Gaussian Processes. MLSP 2019: 1-6 - [c60]Rui Gao, Filip Tronarp, Zheng Zhao, Simo Särkkä:
Regularized State Estimation And Parameter Learning Via Augmented Lagrangian Kalman Smoother Method. MLSP 2019: 1-6 - [c59]Roland Hostettler, Simo Särkkä:
Rejection-Sampling-Based Ancestor Sampling for Particle Gibbs. MLSP 2019: 1-6 - [c58]Toni Karvonen, Filip Tronarp, Simo Särkkä:
Asymptotics of Maximum Likelihood Parameter Estimates For Gaussian Processes: The Ornstein-Uhlenbeck Prior. MLSP 2019: 1-6 - [c57]Janne Mustaniemi, Juho Kannala, Simo Särkkä, Jiri Matas, Janne Heikkilä:
Gyroscope-Aided Motion Deblurring with Deep Networks. WACV 2019: 1914-1922 - [i25]Morteza Zabihi, Ali Bahrami Rad, Serkan Kiranyaz, Simo Särkkä, Moncef Gabbouj:
1D Convolutional Neural Network Models for Sleep Arousal Detection. CoRR abs/1903.01552 (2019) - [i24]Rui Gao, Filip Tronarp, Simo Särkkä:
Iterated Extended Kalman Smoother-based Variable Splitting for L1-Regularized State Estimation. CoRR abs/1903.08605 (2019) - [i23]