default search action
Tom Dhaene
Tom D'haene
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j66]Lennert Bontinck, Karel Fonteyn, Tom Dhaene, Dirk Deschrijver:
ECGencode: Compact and computationally efficient deep learning feature encoder for ECG signals. Expert Syst. Appl. 255: 124775 (2024) - [j65]Nasrulloh R. B. S. Loka, Mohamed Ibrahim, Ivo Couckuyt, Inneke Van Nieuwenhuyse, Tom Dhaene:
Cheap-expensive multi-objective Bayesian optimization for permanent magnet synchronous motor design. Eng. Comput. 40(4): 2143-2159 (2024) - [c82]Jorik De Bruycker, Michiel De Wilde, Federico Garbuglia, Ioana Nikova, Ivo Couckuyt, Tom Dhaene, Nobby Stevens:
Evaluation of Machine Learning Models for Received Signal Strength Based Visible Light Positioning with Obstacles. CSNDSP 2024: 318-323 - [c81]Arash Heidari, Sebastian Rojas-Gonzalez, Tom Dhaene, Ivo Couckuyt:
Lower Confidence Bound for Preference Selection in Interactive Multi-Objective Optimization. GECCO Companion 2024: 339-342 - [c80]Adrian Bekasiewicz, Mariusz Dzwonkowski, Tom Dhaene, Ivo Couckuyt:
Specification-Oriented Automatic Design of Topologically Agnostic Antenna Structure. ICCS (3) 2024: 11-18 - [c79]Adrian Bekasiewicz, Vorya Waladi, Tom Dhaene, Bartosz Czaplewski:
Accurate Post-processing of Spatially-Separated Antenna Measurements Realized in Non-Anechoic Environments. ICCS (3) 2024: 19-27 - [c78]Adrian Bekasiewicz, Slawomir Koziel, Tom Dhaene, Marcin Narloch:
TR-Based Antenna Design with Forward FD: The Effects of Step Size on the Optimization Performance. ICCS (3) 2024: 28-36 - [c77]Adrian Bekasiewicz, Tom Dhaene, Ivo Couckuyt, Jacek Andrzej Litka:
Miniaturization-Oriented Design of Spline-Parameterized UWB Antenna for In-Door Positioning Applications. ICCS (3) 2024: 37-45 - [i10]Arash Heidari, Sebastian Rojas-Gonzalez, Tom Dhaene, Ivo Couckuyt:
Data-Efficient Interactive Multi-Objective Optimization Using ParEGO. CoRR abs/2401.06649 (2024) - 2023
- [j64]Nasrulloh R. B. S. Loka, Ivo Couckuyt, Federico Garbuglia, Domenico Spina, Inneke Van Nieuwenhuyse, Tom Dhaene:
Bi-objective Bayesian optimization of engineering problems with cheap and expensive cost functions. Eng. Comput. 39(3): 1923-1933 (2023) - [j63]Jixiang Qing, Ivo Couckuyt, Tom Dhaene:
A robust multi-objective Bayesian optimization framework considering input uncertainty. J. Glob. Optim. 86(3): 693-711 (2023) - [j62]Geethika Bhavanasi, Lorin Werthen-Brabants, Tom Dhaene, Ivo Couckuyt:
Open-Set Patient Activity Recognition With Radar Sensors and Deep Learning. IEEE Geosci. Remote. Sens. Lett. 20: 1-5 (2023) - [c76]Jixiang Qing, Henry B. Moss, Tom Dhaene, Ivo Couckuyt:
PF2ES: Parallel Feasible Pareto Frontier Entropy Search for Multi-Objective Bayesian Optimization. AISTATS 2023: 2565-2588 - [c75]Ioana Nikova, Tom Dhaene, Ivo Couckuyt:
Cost-Aware Active Learning for Feasible Region Identification. GECCO Companion 2023: 2286-2288 - [c74]Jorik De Bruycker, Tom Dhaene, Nobby Stevens:
The Performance of RSS Based Visible Light Positioning Techniques under Different Uniformity Conditions. IPIN 2023: 1-5 - [c73]Thomas T. Kok, Willemijn Groenendaal, Dolores Blanco-Almazán, Lien Lijnen, Christophe Smeets, David Ruttens, John F. Morales, Tom Dhaene, Femke Ongenae, Sofie Van Hoecke, Dirk Deschrijver:
Comparator Model for Detecting Changes in the Ease of Breathing of COPD Patients. KDH@IJCAI 2023 - [c72]Arash Heidari, Sebastian Rojas-Gonzalez, Tom Dhaene, Ivo Couckuyt:
Data-Efficient Interactive Multi-objective Optimization Using ParEGO. PKDD/ECML Workshops (3) 2023: 519-526 - 2022
- [j61]Geethika Bhavanasi, Lorin Werthen-Brabants, Tom Dhaene, Ivo Couckuyt:
Patient activity recognition using radar sensors and machine learning. Neural Comput. Appl. 34(18): 16033-16048 (2022) - [c71]Jixiang Qing, Tom Dhaene, Ivo Couckuyt:
Spectral Representation of Robustness Measures for Optimization Under Input Uncertainty. ICML 2022: 18096-18121 - [c70]Nasrulloh Ratu Bagus Satrio Loka, Sriram Karthik Gurumurthy, Bernard S. Amevor, Antonello Monti, Tom Dhaene, Ivo Couckuyt:
Surrogate Modelling of Dynamic Phasor Simulations of Electrical Drives. IECON 2022: 1-6 - [c69]Arash Heidari, Jixiang Qing, Sebastian Rojas-Gonzalez, Jürgen Branke, Tom Dhaene, Ivo Couckuyt:
Finding Knees in Bayesian Multi-objective Optimization. PPSN (1) 2022: 104-117 - [d1]Willem Raes, Jorik De Bruycker, Nicolas Knudde, Tom Dhaene, Nobby Stevens:
Machine Learning for RSS-Based Visible Light Positioning. IEEE DataPort, 2022 - [i9]Jixiang Qing, Ivo Couckuyt, Tom Dhaene:
A Robust Multi-Objective Bayesian Optimization Framework Considering Input Uncertainty. CoRR abs/2202.12848 (2022) - [i8]Jixiang Qing, Henry B. Moss, Tom Dhaene, Ivo Couckuyt:
PF2ES: Parallel Feasible Pareto Frontier Entropy Search for Multi-Objective Bayesian Optimization Under Unknown Constraints. CoRR abs/2204.05411 (2022) - 2021
- [j60]Roberto Medico, Joeri Ruyssinck, Dirk Deschrijver, Tom Dhaene:
Learning multivariate shapelets with multi-layer neural networks for interpretable time-series classification. Adv. Data Anal. Classif. 15(4): 911-936 (2021) - [j59]Quan Lin, Jiexiang Hu, Qi Zhou, Yuansheng Cheng, Zhen Hu, Ivo Couckuyt, Tom Dhaene:
Multi-output Gaussian process prediction for computationally expensive problems with multiple levels of fidelity. Knowl. Based Syst. 227: 107151 (2021) - [c68]Willem Raes, Tom Dhaene, Nobby Stevens:
On The Usage of Gaussian Processes for Visible Light Positioning With Real Radiation Patterns. ISWCS 2021: 1-6 - 2020
- [j58]Nicolas Knudde, Willem Raes, Jorik De Bruycker, Tom Dhaene, Nobby Stevens:
Data-Efficient Gaussian Process Regression for Accurate Visible Light Positioning. IEEE Commun. Lett. 24(8): 1705-1709 (2020) - [j57]Baptist Vandersmissen, Nicolas Knudde, Azarakhsh Jalalvand, Ivo Couckuyt, Tom Dhaene, Wesley De Neve:
Indoor human activity recognition using high-dimensional sensors and deep neural networks. Neural Comput. Appl. 32(16): 12295-12309 (2020) - [j56]Willem Raes, Nicolas Knudde, Jorik De Bruycker, Tom Dhaene, Nobby Stevens:
Experimental Evaluation of Machine Learning Methods for Robust Received Signal Strength-Based Visible Light Positioning. Sensors 20(21): 6109 (2020) - [j55]Piero Belforte, Domenico Spina, Luigi Lombardi, Giulio Antonini, Tom Dhaene:
Automated Framework for Time-Domain Piecewise-Linear Fitting Method Based on Digital Wave Processing of S-Parameters. IEEE Trans. Circuits Syst. I Regul. Pap. 67-I(1): 235-248 (2020) - [j54]Tom Van Steenkiste, Willemijn Groenendaal, Pauline Dreesen, Seulki Lee, Susie Klerkx, Ruben de Francisco, Dirk Deschrijver, Tom Dhaene:
Portable Detection of Apnea and Hypopnea Events Using Bio-Impedance of the Chest and Deep Learning. IEEE J. Biomed. Health Informatics 24(9): 2589-2598 (2020) - [j53]Nicolas Knudde, Vincent Dutordoir, Joachim van der Herten, Ivo Couckuyt, Tom Dhaene:
Hierarchical Gaussian Process Models for Improved Metamodeling. ACM Trans. Model. Comput. Simul. 30(4): 23:1-23:17 (2020) - [c67]Thomas Uyttenhove, Aren Maes, Tom Van Steenkiste, Dirk Deschrijver, Tom Dhaene:
Interpretable Epilepsy Detection in Routine, Interictal EEG Data using Deep Learning. ML4H@NeurIPS 2020: 355-366 - [c66]Jixiang Qing, Nicolas Knudde, Ivo Couckuyt, Tom Dhaene, Kohei Shintani:
Batch Bayesian Active Learning For Feasible Region Identification by Local Penalization. WSC 2020: 2779-2790 - [p2]Joachim van der Herten, Nicolas Knudde, Ivo Couckuyt, Tom Dhaene:
Multi-objective Bayesian Optimization for Engineering Simulation. High-Performance Simulation-Based Optimization 2020: 47-68
2010 – 2019
- 2019
- [j52]Tom Van Steenkiste, Joeri Ruyssinck, Leen De Baets, Johan Decruyenaere, Filip De Turck, Femke Ongenae, Tom Dhaene:
Accurate prediction of blood culture outcome in the intensive care unit using long short-term memory neural networks. Artif. Intell. Medicine 97: 38-43 (2019) - [j51]Tom Van Steenkiste, Joachim van der Herten, Dirk Deschrijver, Tom Dhaene:
ALBATROS: adaptive line-based sampling trajectories for sequential measurements. Eng. Comput. 35(2): 537-550 (2019) - [j50]Tom Van Steenkiste, Willemijn Groenendaal, Dirk Deschrijver, Tom Dhaene:
Automated Sleep Apnea Detection in Raw Respiratory Signals Using Long Short-Term Memory Neural Networks. IEEE J. Biomed. Health Informatics 23(6): 2354-2364 (2019) - [c65]Rémi Delanghe, Tom Van Steenkiste, Dirk Deschrijver, Tom Dhaene:
Continuous Exploitative Measurement Trajectories Using Bayesian Optimisation. BNAIC/BENELEARN 2019 - [c64]Aren Maes, Tom Van Steenkiste, Tom Dhaene, Dirk Deschrijver:
A Study of Early Sepsis Detection Models Based on Multivariate Medical Time Series. BNAIC/BENELEARN 2019 - [c63]Tom Van Steenkiste, Dirk Deschrijver, Tom Dhaene:
Disentangled Variational Auto-Encoders for Explaining ECG Beat Embeddings. BNAIC/BENELEARN 2019 - [c62]Tom Van Steenkiste, Dirk Deschrijver, Tom Dhaene:
Interpretable ECG Beat Embedding using Disentangled Variational Auto-Encoders. CBMS 2019: 373-378 - [c61]Nicolas Knudde, Ivo Couckuyt, Kohei Shintani, Tom Dhaene:
Active Learning for Feasible Region Discovery. ICMLA 2019: 567-572 - [c60]Tom Van Steenkiste, Dirk Deschrijver, Tom Dhaene:
Sensor Fusion using Backward Shortcut Connections for Sleep Apnea Detection in Multi-Modal Data. ML4H@NeurIPS 2019: 112-125 - [c59]Jens Jocqué, Tom Van Steenkiste, Pieter Stroobant, Rémi Delanghe, Dirk Deschrijver, Tom Dhaene:
Learning To Forget: Design of Experiments for Line-Based Bayesian Optimization in Dynamic Environments. WSC 2019: 656-667 - [i7]Tom Van Steenkiste, Dirk Deschrijver, Tom Dhaene:
Generating an Explainable ECG Beat Space With Variational Auto-Encoders. CoRR abs/1911.04898 (2019) - [i6]Tom Van Steenkiste, Dirk Deschrijver, Tom Dhaene:
Sensor Fusion using Backward Shortcut Connections for Sleep Apnea Detection in Multi-Modal Data. CoRR abs/1912.06879 (2019) - 2018
- [j49]Baptist Vandersmissen, Nicolas Knudde, Azarakhsh Jalalvand, Ivo Couckuyt, André Bourdoux, Wesley De Neve, Tom Dhaene:
Indoor Person Identification Using a Low-Power FMCW Radar. IEEE Trans. Geosci. Remote. Sens. 56(7): 3941-3952 (2018) - [c58]Vincent Polfliet, Nicolas Knudde, Baptist Vandersmissen, Ivo Couckuyt, Tom Dhaene:
Structured Inference Networks Using High-Dimensional Sensors for Surveillance Purposes. EANN 2018: 16-27 - [c57]Tom Van Steenkiste, Willemijn Groenendaal, Joeri Ruyssinck, Pauline Dreesen, Susie Klerkx, Christophe Smeets, Ruben de Francisco, Dirk Deschrijver, Tom Dhaene:
Systematic Comparison of Respiratory Signals for the Automated Detection of Sleep Apnea. EMBC 2018: 449-452 - [c56]Tom Van Steenkiste, Joeri Ruyssinck, Olivier Janssens, Baptist Vandersmissen, Florian Vandecasteele, Pieter Devolder, Eric Achten, Sofie Van Hoecke, Dirk Deschrijver, Tom Dhaene:
Automated Assessment of Bone Age Using Deep Learning and Gaussian Process Regression. EMBC 2018: 674-677 - [c55]Leen De Baets, Tom Dhaene, Dirk Deschrijver, Mario Berges, Chris Develder:
VI-Based Appliance Classification Using Aggregated Power Consumption Data. SMARTCOMP 2018: 179-186 - 2017
- [j48]Arun Kaintura, Domenico Spina, Ivo Couckuyt, Luc Knockaert, Wim Bogaerts, Tom Dhaene:
A Kriging and Stochastic Collocation ensemble for uncertainty quantification in engineering applications. Eng. Comput. 33(4): 935-949 (2017) - [j47]Prashant Singh, Ivo Couckuyt, Khairy Elsayed, Dirk Deschrijver, Tom Dhaene:
Multi-objective Geometry Optimization of a Gas Cyclone Using Triple-Fidelity Co-Kriging Surrogate Models. J. Optim. Theory Appl. 175(1): 172-193 (2017) - [j46]David Plets, Krishnan Chemmangat, Dirk Deschrijver, Michael T. Mehari, Selvakumar Ulaganathan, Mostafa Pakparvar, Tom Dhaene, Jeroen Hoebeke, Ingrid Moerman, Emmeric Tanghe:
Surrogate modeling based cognitive decision engine for optimization of WLAN performance. Wirel. Networks 23(8): 2347-2359 (2017) - [c54]Leen De Baets, Chris Develder, Tom Dhaene, Dirk Deschrijver, Jingkun Gao, Mario Berges:
Handling imbalance in an extended PLAID. SustainIT 2017: 32-36 - [c53]Leen De Baets, Chris Develder, Tom Dhaene, Dirk Deschrijver:
Automated classification of appliances using elliptical fourier descriptors. SmartGridComm 2017: 153-158 - [c52]Vincent Dutordoir, Nicolas Knudde, Joachim van der Herten, Ivo Couckuyt, Tom Dhaene:
Deep Gaussian Process metamodeling of sequentially sampled non-stationary response surfaces. WSC 2017: 1728-1739 - [i5]Tom Van Steenkiste, Joachim van der Herten, Ivo Couckuyt, Tom Dhaene:
Sensitivity Analysis of Expensive Black-Box Systems Using Metamodeling. CoRR abs/1702.00650 (2017) - 2016
- [j45]Joachim van der Herten, Ivo Couckuyt, Dirk Deschrijver, Tom Dhaene:
Adaptive classification under computational budget constraints using sequential data gathering. Adv. Eng. Softw. 99: 137-146 (2016) - [j44]Keiichi Ito, Ivo Couckuyt, Roberto D'Ippolito, Tom Dhaene:
Design space exploration using Self-Organizing Map based adaptive sampling. Appl. Soft Comput. 43: 337-346 (2016) - [j43]Joeri Ruyssinck, Piet Demeester, Tom Dhaene, Yvan Saeys:
Netter: re-ranking gene network inference predictions using structural network properties. BMC Bioinform. 17: 76 (2016) - [j42]Joeri Ruyssinck, Joachim van der Herten, Rein Houthooft, Femke Ongenae, Ivo Couckuyt, Bram Gadeyne, Kirsten Colpaert, Johan Decruyenaere, Filip De Turck, Tom Dhaene:
Random Survival Forests for Predicting the Bed Occupancy in the Intensive Care Unit. Comput. Math. Methods Medicine 2016: 7087053:1-7087053:7 (2016) - [j41]Keiichi Ito, Ivo Couckuyt, Silvia Poles, Tom Dhaene:
Variance-based interaction index measuring heteroscedasticity. Comput. Phys. Commun. 203: 152-161 (2016) - [j40]Selvakumar Ulaganathan, Ivo Couckuyt, Tom Dhaene, Joris Degroote, Eric Laermans:
Performance study of gradient-enhanced Kriging. Eng. Comput. 32(1): 15-34 (2016) - [j39]Sayed Ahmed Imran Bellary, Abdus Samad, Ivo Couckuyt, Tom Dhaene:
A comparative study of kriging variants for the optimization of a turbomachinery system. Eng. Comput. 32(1): 49-59 (2016) - [j38]Michael Tetemke Mehari, Eli De Poorter, Ivo Couckuyt, Dirk Deschrijver, Günter Vermeeren, David Plets, Wout Joseph, Luc Martens, Tom Dhaene, Ingrid Moerman:
Efficient Identification of a Multi-Objective Pareto Front on a Wireless Experimentation Facility. IEEE Trans. Wirel. Commun. 15(10): 6662-6675 (2016) - [j37]Selvakumar Ulaganathan, Dirk Deschrijver, Mostafa Pakparvar, Ivo Couckuyt, Wei Liu, David Plets, Wout Joseph, Tom Dhaene, Luc Martens, Ingrid Moerman:
Building accurate radio environment maps from multi-fidelity spectrum sensing data. Wirel. Networks 22(8): 2551-2562 (2016) - [c51]Joachim van der Herten, Ivo Couckuyt, Dirk Deschrijver, Tom Dhaene:
Multi-objective variable subset selection using heterogeneous surrogate modeling and sequential design. CEC 2016: 1634-1641 - [c50]Selvakumar Ulaganathan, Ivo Couckuyt, Tom Dhaene, Eric Laermans, Joris Degroote:
A hybrid sequential sampling based metamodelling approach for high dimensional problems. CEC 2016: 1917-1923 - [c49]Sofie Van Gassen, Tom Dhaene, Yvan Saeys:
Machine Learning Challenges for Single Cell Data. ECML/PKDD (3) 2016: 275-279 - [c48]Fábio Passos, Elisenda Roca, Rafael Castro-López, Francisco V. Fernández, Y. Ye, Domenico Spina, Tom Dhaene:
Frequency-dependent parameterized macromodeling of integrated inductors. SMACD 2016: 1-4 - [c47]Tom Van Steenkiste, Joachim van der Herten, Ivo Couckuyt, Tom Dhaene:
Sensitivity analysis of expensive black-box systems using metamodeling. WSC 2016: 578-589 - [i4]Joachim van der Herten, Ivo Couckuyt, Dirk Deschrijver, Tom Dhaene:
Fast Calculation of the Knowledge Gradient for Optimization of Deterministic Engineering Simulations. CoRR abs/1608.04550 (2016) - [i3]Joachim van der Herten, Ivo Couckuyt, Dirk Deschrijver, Tom Dhaene:
Active Learning for Approximation of Expensive Functions with Normal Distributed Output Uncertainty. CoRR abs/1608.05225 (2016) - [i2]Joachim van der Herten, Ivo Couckuyt, Tom Dhaene:
Hypervolume-based Multi-objective Bayesian Optimization with Student-t Processes. CoRR abs/1612.00393 (2016) - [i1]Leen De Baets, Joeri Ruyssinck, Thomas Peiffer, Johan Decruyenaere, Filip De Turck, Femke Ongenae, Tom Dhaene:
Positive blood culture detection in time series data using a BiLSTM network. CoRR abs/1612.00962 (2016) - 2015
- [j36]Michael T. Mehari, Eli De Poorter, Ivo Couckuyt, Dirk Deschrijver, Jono Vanhie-Van Gerwen, Daan Pareit, Tom Dhaene, Ingrid Moerman:
Efficient global optimization of multi-parameter network problems on wireless testbeds. Ad Hoc Networks 29: 15-31 (2015) - [j35]Rein Houthooft, Joeri Ruyssinck, Joachim van der Herten, Sean Stijven, Ivo Couckuyt, Bram Gadeyne, Femke Ongenae, Kirsten Colpaert, Johan Decruyenaere, Tom Dhaene, Filip De Turck:
Predictive modelling of survival and length of stay in critically ill patients using sequential organ failure scores. Artif. Intell. Medicine 63(3): 191-207 (2015) - [j34]Alexander Decruyenaere, Philippe Decruyenaere, Patrick Peeters, Frank Vermassen, Tom Dhaene, Ivo Couckuyt:
Prediction of delayed graft function after kidney transplantation: comparison between logistic regression and machine learning methods. BMC Medical Informatics Decis. Mak. 15: 83 (2015) - [j33]Joachim van der Herten, Ivo Couckuyt, Dirk Deschrijver, Tom Dhaene:
A Fuzzy Hybrid Sequential Design Strategy for Global Surrogate Modeling of High-Dimensional Computer Experiments. SIAM J. Sci. Comput. 37(2) (2015) - [j32]Elizabeth Rita Samuel, Luc Knockaert, Tom Dhaene:
Matrix-Interpolation-Based Parametric Model Order Reduction for Multiconductor Transmission Lines With Delays. IEEE Trans. Circuits Syst. II Express Briefs 62-II(3): 276-280 (2015) - [c46]Mostafa Pakparvar, David Plets, Jeroen Hoebeke, Dirk Deschrijver, Michael T. Mehari, Tom Dhaene, Ingrid Moerman, Luc Martens, Wout Joseph:
Throughput optimization strategies for large-scale wireless LANs. BMSB 2015: 1-6 - [c45]Leen De Baets, Sofie Van Gassen, Tom Dhaene, Yvan Saeys:
Unsupervised Trajectory Inference Using Graph Mining. CIBB 2015: 84-97 - [c44]Selvakumar Ulaganathan, Ivo Couckuyt, Dirk Deschrijver, Eric Laermans, Tom Dhaene:
A Matlab Toolbox for Kriging Metamodelling. ICCS 2015: 2708-2713 - [c43]Mostafa Pakparvar, Krishnan Chemmangat, Dirk Deschrijver, Michael T. Mehari, David Plets, Tom Dhaene, Jeroen Hoebeke, Ingrid Moerman, Luc Martens, Wout Joseph:
Throughput optimization of wireless LANs by surrogate model based cognitive decision making. WCNC Workshops 2015: 188-193 - [c42]Joachim van der Herten, Ivo Couckuyt, Dirk Deschrijver, Tom Dhaene:
Constructing classifiers of expensive simulation-based data by sequential experimental design. WSC 2015: 3166-3167 - 2014
- [j31]Mostafa Pakparvar, David Plets, Emmeric Tanghe, Dirk Deschrijver, Wei Liu, Krishnan Chemmangat, Ingrid Moerman, Tom Dhaene, Luc Martens, Wout Joseph:
A cognitive QoS management framework for WLANs. EURASIP J. Wirel. Commun. Netw. 2014: 191 (2014) - [j30]Ivo Couckuyt, Dirk Deschrijver, Tom Dhaene:
Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization. J. Glob. Optim. 60(3): 575-594 (2014) - [j29]Ivo Couckuyt, Tom Dhaene, Piet Demeester:
ooDACE toolbox: a flexible object-oriented Kriging implementation. J. Mach. Learn. Res. 15(1): 3183-3186 (2014) - [j28]Elizabeth Rita Samuel, Luc Knockaert, Tom Dhaene:
Model Order Reduction of Time-Delay Systems Using a Laguerre Expansion Technique. IEEE Trans. Circuits Syst. I Regul. Pap. 61-I(6): 1815-1823 (2014) - [c41]Prashant Singh, Ivo Couckuyt, Francesco Ferranti, Tom Dhaene:
A constrained multi-objective surrogate-based optimization algorithm. IEEE Congress on Evolutionary Computation 2014: 3080-3087 - [c40]Joachim van der Herten, Dirk Deschrijver, Tom Dhaene:
Fuzzy local linear approximation-based sequential design. CIES 2014: 17-21 - [c39]Michael T. Mehari, Eli De Poorter, Ivo Couckuyt, Dirk Deschrijver, Jono Vanhie-Van Gerwen, Tom Dhaene, Ingrid Moerman:
Efficient multi-objective optimization of wireless network problems on wireless testbeds. CNSM 2014: 212-217 - [c38]Elizabeth Rita Samuel, Luc Knockaert, Tom Dhaene:
Passivity Preserving Multipoint Model Order Reduction using Reflective Exploration. ICINCO (1) 2014: 483-491 - [c37]Celine Vens, Sofie Van Gassen, Tom Dhaene, Yvan Saeys:
Complex Aggregates over Clusters of Elements. ILP 2014: 181-193 - [c36]Selvakumar Ulaganathan, Ivo Couckuyt, Tom Dhaene, Eric Laermans, Joris Degroote:
On the use of gradients in kriging surrogate models. WSC 2014: 2692-2701 - [c35]Prashant Singh, Francesco Ferranti, Dirk Deschrijver, Ivo Couckuyt, Tom Dhaene:
Classification aided domain reduction for high dimensional optimization. WSC 2014: 3928-3939 - 2013
- [j27]Femke Ongenae, Stijn Van Looy, David Verstraeten, Thierry Verplancke, Dominique Benoit, Filip De Turck, Tom Dhaene, Benjamin Schrauwen, Johan Decruyenaere:
Time series classification for the prediction of dialysis in critically ill patients using echo statenetworks. Eng. Appl. Artif. Intell. 26(3): 984-996 (2013) - [j26]Femke Ongenae, Maxim Claeys, Thomas Dupont, Wannes Kerckhove, Piet Verhoeve, Tom Dhaene, Filip De Turck:
A probabilistic ontology-based platform for self-learning context-aware healthcare applications. Expert Syst. Appl. 40(18): 7629-7646 (2013) - [j25]Ivo Couckuyt, Jef Aernouts, Dirk Deschrijver, Filip De Turck, Tom Dhaene:
Identification of quasi-optimal regions in the design space using surrogate modeling. Eng. Comput. 29(2): 127-138 (2013) - [j24]Steven Latré, Wim Van de Meerssche, Dirk Deschrijver, Dimitri Papadimitriou, Tom Dhaene, Filip De Turck:
A cognitive accountability mechanism for penalizing misbehaving ECN-based TCP stacks. Int. J. Netw. Manag. 23(1): 16-40 (2013) - [j23]Nicolas Staelens, Dirk Deschrijver, Ekaterina Vladislavleva, Brecht Vermeulen, Tom Dhaene, Piet Demeester:
Constructing a No-Reference H.264/AVC Bitstream-Based Video Quality Metric Using Genetic Programming-Based Symbolic Regression. IEEE Trans. Circuits Syst. Video Technol. 23(8): 1322-1333 (2013) - [c34]Ivo Couckuyt, Dirk Gorissen, Karel Crombecq, Dirk Deschrijver, Tom Dhaene:
The SUMO toolbox: A tool for automatic regression modeling and active learning. AFRICON 2013: 1-4 - [c33]Dimitri de Jonghe, Dirk Deschrijver, Tom Dhaene, Georges G. E. Gielen:
Extracting analytical nonlinear models from analog circuits by recursive vector fitting of transfer function trajectories. DATE 2013: 1448-1453 - [c32]Elizabeth Rita Samuel, Luc Knockaert, Tom Dhaene:
Parametric Macromodeling using Interpolation of Sylvester based State-space Realizations. ICINCO (1) 2013: 319-325 - [c31]