default search action
Nicolas Vayatis
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j29]Sylvain W. Combettes, Paul Boniol, Antoine Mazarguil, Danping Wang, Diego Vaquero-Ramos, Marion Chauveau, Laurent Oudre, Nicolas Vayatis, Pierre-Paul Vidal, Alexandra Roren, Marie-Martine Lefèvre-Colau:
Arm-CODA: A Data Set of Upper-limb Human Movement During Routine Examination. Image Process. Line 14: 1-13 (2024) - [c51]Alejandro D. de la Concha Duarte, Nicolas Vayatis, Argyris Kalogeratos:
Online non-parametric likelihood-ratio estimation by Pearson-divergence functional minimization. AISTATS 2024: 1189-1197 - [i31]Alejandro de la Concha, Nicolas Vayatis, Argyris Kalogeratos:
Collaborative non-parametric two-sample testing. CoRR abs/2402.05715 (2024) - 2023
- [j28]Charles Truong, Mounir Atiq, Ludovic Minvielle, Renan Serra, Mathilde Mougeot, Nicolas Vayatis:
A Data Set for Fall Detection with Smart Floor Sensors. Image Process. Line 13: 183-197 (2023) - [c50]Ioannis Bargiotas, Argyris Kalogeratos, Nicolas Vayatis:
A Framework for Paired-Sample Hypothesis Testing for High-Dimensional Data. ICTAI 2023: 16-21 - [c49]Marie Garin, Antoine de Mathelin, Mathilde Mougeot, Nicolas Vayatis:
Personalized One-Shot Collaborative Learning. ICTAI 2023: 114-121 - [i30]Alejandro de la Concha, Argyris Kalogeratos, Nicolas Vayatis:
Online Centralized Non-parametric Change-point Detection via Graph-based Likelihood-ratio Estimation. CoRR abs/2301.03011 (2023) - [i29]Antoine de Mathelin, François Deheeger, Mathilde Mougeot, Nicolas Vayatis:
Deep Anti-Regularized Ensembles provide reliable out-of-distribution uncertainty quantification. CoRR abs/2304.04042 (2023) - [i28]Antoine de Mathelin, François Deheeger, Mathilde Mougeot, Nicolas Vayatis:
Maximum Weight Entropy. CoRR abs/2309.15704 (2023) - [i27]Ioannis Bargiotas, Argyris Kalogeratos, Nicolas Vayatis:
A framework for paired-sample hypothesis testing for high-dimensional data. CoRR abs/2309.16274 (2023) - [i26]Alejandro de la Concha, Nicolas Vayatis, Argyris Kalogeratos:
Online non-parametric likelihood-ratio estimation by Pearson-divergence functional minimization. CoRR abs/2311.01900 (2023) - 2022
- [j27]Antoine Mazarguil, Laurent Oudre, Nicolas Vayatis:
Non-smooth interpolation of graph signals. Signal Process. 196: 108480 (2022) - [j26]Antoine Mazarguil, Laurent Oudre, Nicolas Vayatis:
An Uncertainty Principle for Lowband Graph Signals. IEEE Signal Process. Lett. 29: 727-731 (2022) - [j25]Pierre Humbert, Laurent Oudre, Nicolas Vayatis, Julien Audiffren:
Tensor Convolutional Dictionary Learning With CP Low-Rank Activations. IEEE Trans. Signal Process. 70: 785-796 (2022) - [c48]Antoine de Mathelin, François Deheeger, Mathilde Mougeot, Nicolas Vayatis:
Discrepancy-Based Active Learning for Domain Adaptation. ICLR 2022 - [c47]Antoine de Mathelin, François Deheeger, Mathilde Mougeot, Nicolas Vayatis:
Fast and Accurate Importance Weighting for Correcting Sample Bias. ECML/PKDD (1) 2022: 659-674 - [i25]Alejandro de la Concha, Argyris Kalogeratos, Nicolas Vayatis:
Collaborative likelihood-ratio estimation over graphs. CoRR abs/2205.14461 (2022) - [i24]Antoine de Mathelin, François Deheeger, Mathilde Mougeot, Nicolas Vayatis:
Fast and Accurate Importance Weighting for Correcting Sample Bias. CoRR abs/2209.04215 (2022) - 2021
- [j24]Anne-Flore Baron, Olivier Boulant, Ivan Panico, Nicolas Vayatis:
A Compartmental Epidemiological Model Applied to the Covid-19 Epidemic. Image Process. Line 11: 105-119 (2021) - [j23]Pierre Humbert, Batiste Le Bars, Laurent Oudre, Argyris Kalogeratos, Nicolas Vayatis:
Learning Laplacian Matrix from Graph Signals with Sparse Spectral Representation. J. Mach. Learn. Res. 22: 195:1-195:47 (2021) - [c46]Alejandro de la Concha, Nicolas Vayatis, Argyris Kalogeratos:
Offline detection of change-points in the mean for stationary graph signals. AISTATS 2021: 3430-3438 - [c45]Sylvain Jung, Laurent Oudre, Charles Truong, Eric Dorveaux, Louis Gorintin, Nicolas Vayatis, Damien Ricard:
Adaptive Change-Point Detection for Studying Human Locomotion. EMBC 2021: 2020-2024 - [c44]Amir Dib, Charles Truong, Laurent Oudre, Mathilde Mougeot, Nicolas Vayatis, Heloïse Nonne:
Bayesian Feature Discovery for Predictive Maintenance. EUSIPCO 2021: 1421-1425 - [c43]Antoine de Mathelin, Guillaume Richard, François Deheeger, Mathilde Mougeot, Nicolas Vayatis:
Adversarial Weighting for Domain Adaptation in Regression. ICTAI 2021: 49-56 - [i23]Antoine de Mathelin, Mathilde Mougeot, Nicolas Vayatis:
Discrepancy-Based Active Learning for Domain Adaptation. CoRR abs/2103.03757 (2021) - [i22]Antoine de Mathelin, François Deheeger, Guillaume Richard, Mathilde Mougeot, Nicolas Vayatis:
ADAPT : Awesome Domain Adaptation Python Toolbox. CoRR abs/2107.03049 (2021) - [i21]Alejandro de la Concha, Argyris Kalogeratos, Nicolas Vayatis:
Online non-parametric change-point detection for heterogeneous data streams observed over graph nodes. CoRR abs/2110.10518 (2021) - 2020
- [j22]Olivier Boulant, Mathilde Fekom, Camille Pouchol, Theodoros Evgeniou, Anton Ovchinnikov, Raphaël Porcher, Nicolas Vayatis:
SEAIR Framework Accounting for a Personalized Risk Prediction Score: Application to the Covid-19 Epidemic. Image Process. Line 10: 150-166 (2020) - [j21]Sylvain Jung, Mona Michaud, Laurent Oudre, Eric Dorveaux, Louis Gorintin, Nicolas Vayatis, Damien Ricard:
The Use of Inertial Measurement Units for the Study of Free Living Environment Activity Assessment: A Literature Review. Sensors 20(19): 5625 (2020) - [j20]Charles Truong, Laurent Oudre, Nicolas Vayatis:
Selective review of offline change point detection methods. Signal Process. 167 (2020) - [c42]Antoine Mazarguil, Laurent Oudre, Nicolas Vayatis:
Localized Interpolation for Graph Signals. EUSIPCO 2020: 2160-2164 - [c41]Pierre Humbert, Julien Audiffren, Laurent Oudre, Nicolas Vayatis:
Low Rank Activations for Tensor-Based Convolutional Sparse Coding. ICASSP 2020: 3252-3256 - [c40]Batiste Le Bars, Pierre Humbert, Argyris Kalogeratos, Nicolas Vayatis:
Learning the piece-wise constant graph structure of a varying Ising model. ICML 2020: 675-684 - [c39]Guillaume Richard, Antoine de Mathelin, Georges Hébrail, Mathilde Mougeot, Nicolas Vayatis:
Unsupervised Multi-source Domain Adaptation for Regression. ECML/PKDD (1) 2020: 395-411 - [c38]Ioannis Bargiotas, Argyris Kalogeratos, Myrto Limnios, Pierre-Paul Vidal, Damien Ricard, Nicolas Vayatis:
Multivariate two-sample hypothesis testing through AUC maximization for biomedical applications. SETN 2020: 56-59 - [i20]Mathilde Fekom, Nicolas Vayatis, Argyris Kalogeratos:
Optimal Multiple Stopping Rule for Warm-Starting Sequential Selection. CoRR abs/2002.05160 (2020) - [i19]Mathilde Fekom, Nicolas Vayatis, Argyris Kalogeratos:
Dynamic Epidemic Control via Sequential Resource Allocation. CoRR abs/2006.07199 (2020) - [i18]Antoine de Mathelin, Guillaume Richard, Mathilde Mougeot, Nicolas Vayatis:
Adversarial Weighting for Domain Adaptation in Regression. CoRR abs/2006.08251 (2020) - [i17]Alejandro de la Concha, Nicolas Vayatis, Argyris Kalogeratos:
Offline detection of change-points in the mean for stationary graph signals. CoRR abs/2006.10628 (2020) - [i16]Pierre Humbert, Laurent Oudre, Nicolas Vayatis, Julien Audiffren:
Tensor Convolutional Sparse Coding with Low-Rank activations, an application to EEG analysis. CoRR abs/2007.02534 (2020)
2010 – 2019
- 2019
- [j19]Clément Dubost, Pierre Humbert, Arno Benizri, Jean-Pierre Tourtier, Nicolas Vayatis, Pierre-Paul Vidal:
Selection of the Best Electroencephalogram Channel to Predict the Depth of Anesthesia. Frontiers Comput. Neurosci. 13: 65 (2019) - [j18]Ioannis Bargiotas, Julien Audiffren, Nicolas Vayatis, Pierre-Paul Vidal, Alain P. Yelnik, Damien Ricard:
Local Assessment of Statokinesigram Dynamics in Time: An in-Depth Look at the Scoring Algorithm. Image Process. Line 9: 143-157 (2019) - [j17]Charles Truong, Rémi Barrois-Müller, Thomas Moreau, Clément Provost, Aliénor Vienne-Jumeau, Albane Moreau, Pierre-Paul Vidal, Nicolas Vayatis, Stéphane Buffat, Alain P. Yelnik, Damien Ricard, Laurent Oudre:
A Data Set for the Study of Human Locomotion with Inertial Measurements Units. Image Process. Line 9: 381-390 (2019) - [j16]Charles Truong, Laurent Oudre, Nicolas Vayatis:
Greedy Kernel Change-Point Detection. IEEE Trans. Signal Process. 67(24): 6204-6214 (2019) - [c37]Mathilde Fekom, Nicolas Vayatis, Argyris Kalogeratos:
Sequential Dynamic Resource Allocation for Epidemic Control. CDC 2019: 6338-6343 - [c36]Pierre Humbert, Laurent Oudre, Nicolas Vayatis:
Subsampling of Multivariate Time-Vertex Graph Signals. EUSIPCO 2019: 1-5 - [c35]Charles Truong, Laurent Oudre, Nicolas Vayatis:
Supervised Kernel Change Point Detection with Partial Annotations. ICASSP 2019: 3147-3151 - [c34]Mathilde Fekom, Nicolas Vayatis, Argyris Kalogeratos:
Optimal Multiple Stopping Rule for Warm-Starting Sequential Selection. ICTAI 2019: 1429-1433 - [i15]Ioannis Bargiotas, Argyris Kalogeratos, Myrto Limnios, Pierre-Paul Vidal, Damien Ricard, Nicolas Vayatis:
Revealing posturographic features associated with the risk of falling in patients with Parkinsonian syndromes via machine learning. CoRR abs/1907.06614 (2019) - [i14]Pierre Humbert, Julien Audiffren, Laurent Oudre, Nicolas Vayatis:
Multivariate Convolutional Sparse Coding with Low Rank Tensor. CoRR abs/1908.03367 (2019) - [i13]Mathilde Fekom, Nicolas Vayatis, Argyris Kalogeratos:
Sequential Dynamic Resource Allocation for Epidemic Control. CoRR abs/1909.09678 (2019) - [i12]Batiste Le Bars, Pierre Humbert, Argyris Kalogeratos, Nicolas Vayatis:
Detecting multiple change-points in the time-varying Ising model. CoRR abs/1910.08512 (2019) - 2018
- [j15]Laurent Oudre, Rémi Barrois, Thomas Moreau, Charles Truong, Aliénor Vienne-Jumeau, Damien Ricard, Nicolas Vayatis, Pierre-Paul Vidal:
Template-Based Step Detection with Inertial Measurement Units. Sensors 18(11): 4033 (2018) - [c33]Ioannis Bargiotas, Alice Nicolaï, Pierre-Paul Vidal, Christophe Labourdette, Nicolas Vayatis, Stéphane Buffat:
The Complementary Role of Activity Context in the Mental Workload Evaluation of Helicopter Pilots: A Multi-tasking Learning Approach. H-WORKLOAD 2018: 222-238 - [c32]Thomas Moreau, Laurent Oudre, Nicolas Vayatis:
DICOD: Distributed Convolutional Coordinate Descent for Convolutional Sparse Coding. ICML 2018: 3623-3631 - [i11]Charles Truong, Laurent Oudre, Nicolas Vayatis:
A review of change point detection methods. CoRR abs/1801.00718 (2018) - [i10]Charles Truong, Laurent Oudre, Nicolas Vayatis:
ruptures: change point detection in Python. CoRR abs/1801.00826 (2018) - [i9]Mathilde Fekom, Argyris Kalogeratos, Nicolas Vayatis:
The Multi-Round Sequential Selection Problem. CoRR abs/1809.07299 (2018) - 2017
- [c31]Ludovic Minvielle, Mounir Atiq, Renan Serra, Mathilde Mougeot, Nicolas Vayatis:
Fall detection using smart floor sensor and supervised learning. EMBC 2017: 3445-3448 - [c30]Charles Truong, Laurent Oudre, Nicolas Vayatis:
Penalty learning for changepoint detection. EUSIPCO 2017: 1569-1573 - [c29]Cédric Malherbe, Nicolas Vayatis:
Global optimization of Lipschitz functions. ICML 2017: 2314-2323 - [i8]Thomas Moreau, Laurent Oudre, Nicolas Vayatis:
Distributed Convolutional Sparse Coding. CoRR abs/1705.10087 (2017) - [i7]Kevin Scaman, Argyris Kalogeratos, Luca Corinzia, Nicolas Vayatis:
A Spectral Method for Activity Shaping in Continuous-Time Information Cascades. CoRR abs/1709.05231 (2017) - 2016
- [j14]Guillaume Merle, Jean-Marc Roussel, Jean-Jacques Lesage, Vianney Perchet, Nicolas Vayatis:
Quantitative Analysis of Dynamic Fault Trees Based on the Coupling of Structure Functions and Monte Carlo Simulation. Qual. Reliab. Eng. Int. 32(1): 7-18 (2016) - [j13]Kevin Scaman, Argyris Kalogeratos, Nicolas Vayatis:
Suppressing Epidemics in Networks Using Priority Planning. IEEE Trans. Netw. Sci. Eng. 3(4): 271-285 (2016) - [c28]Cédric Malherbe, Emile Contal, Nicolas Vayatis:
A ranking approach to global optimization. ICML 2016: 1539-1547 - [i6]Emile Contal, Nicolas Vayatis:
Stochastic Process Bandits: Upper Confidence Bounds Algorithms via Generic Chaining. CoRR abs/1602.04976 (2016) - 2015
- [c27]Kevin Scaman, Argyris Kalogeratos, Nicolas Vayatis:
A Greedy Approach for Dynamic Control of Diffusion Processes in Networks. ICTAI 2015: 652-659 - [c26]Kevin Scaman, Rémi Lemonnier, Nicolas Vayatis:
Anytime Influence Bounds and the Explosive Behavior of Continuous-Time Diffusion Networks. NIPS 2015: 2026-2034 - 2014
- [j12]Emile Richard, Stéphane Gaïffas, Nicolas Vayatis:
Link prediction in graphs with autoregressive features. J. Mach. Learn. Res. 15(1): 565-593 (2014) - [j11]Nader H. Bshouty, Gilles Stoltz, Nicolas Vayatis, Thomas Zeugmann:
Guest Editors' foreword. Theor. Comput. Sci. 558: 1-4 (2014) - [c25]Marc Bonnissel, Joris Costes, Jean-Michel Ghidaglia, Philippe Muguerra, Keld Lund Nielsen, Benjamin Poirson, Xavier Riou, Jean-Philippe Saut, Nicolas Vayatis:
A New Framework for the Simulation of Offshore Oil Facilities at the System Level. CSDM 2014: 45-57 - [c24]Emile Contal, Vianney Perchet, Nicolas Vayatis:
Gaussian Process Optimization with Mutual Information. ICML 2014: 253-261 - [c23]Rémi Lemonnier, Kevin Scaman, Nicolas Vayatis:
Tight Bounds for Influence in Diffusion Networks and Application to Bond Percolation and Epidemiology. NIPS 2014: 846-854 - [c22]Rémi Lemonnier, Nicolas Vayatis:
Nonparametric Markovian Learning of Triggering Kernels for Mutually Exciting and Mutually Inhibiting Multivariate Hawkes Processes. ECML/PKDD (2) 2014: 161-176 - [i5]Rémi Lemonnier, Kevin Scaman, Nicolas Vayatis:
Tight Bounds for Influence in Diffusion Networks and Application to Bond Percolation and Epidemiology. CoRR abs/1407.4744 (2014) - [i4]Kevin Scaman, Argyris Kalogeratos, Nicolas Vayatis:
What Makes a Good Plan? An Efficient Planning Approach to Control Diffusion Processes in Networks. CoRR abs/1407.4760 (2014) - 2013
- [j10]Stéphan Clémençon, Marine Depecker, Nicolas Vayatis:
Ranking forests. J. Mach. Learn. Res. 14(1): 39-73 (2013) - [j9]Stéphan Clémençon, Sylvain Robbiano, Nicolas Vayatis:
Ranking data with ordinal labels: optimality and pairwise aggregation. Mach. Learn. 91(1): 67-104 (2013) - [j8]Stéphan Clémençon, Marine Depecker, Nicolas Vayatis:
An empirical comparison of learning algorithms for nonparametric scoring: the TreeRank algorithm and other methods. Pattern Anal. Appl. 16(4): 475-496 (2013) - [c21]Emile Contal, David Buffoni, Alexandre Robicquet, Nicolas Vayatis:
Parallel Gaussian Process Optimization with Upper Confidence Bound and Pure Exploration. ECML/PKDD (1) 2013: 225-240 - [i3]Emile Contal, David Buffoni, Alexandre Robicquet, Nicolas Vayatis:
Parallel Gaussian Process Optimization with Upper Confidence Bound and Pure Exploration. CoRR abs/1304.5350 (2013) - [i2]Emile Contal, Nicolas Vayatis:
Gaussian Process Optimization with Mutual Information. CoRR abs/1311.4825 (2013) - 2012
- [c20]Nader H. Bshouty, Gilles Stoltz, Nicolas Vayatis, Thomas Zeugmann:
Editors' Introduction. ALT 2012: 1-11 - [c19]Pierre-André Savalle, Emile Richard, Nicolas Vayatis:
Estimation of Simultaneously Sparse and Low Rank Matrices. ICML 2012 - [c18]Emile Richard, Stéphane Gaïffas, Nicolas Vayatis:
Link Prediction in Graphs with Autoregressive Features. NIPS 2012: 2843-2851 - [e1]Nader H. Bshouty, Gilles Stoltz, Nicolas Vayatis, Thomas Zeugmann:
Algorithmic Learning Theory - 23rd International Conference, ALT 2012, Lyon, France, October 29-31, 2012. Proceedings. Lecture Notes in Computer Science 7568, Springer 2012, ISBN 978-3-642-34105-2 [contents] - [i1]Emile Richard, Andreas Argyriou, Theodoros Evgeniou, Nicolas Vayatis:
A Regularization Approach for Prediction of Edges and Node Features in Dynamic Graphs. CoRR abs/1203.5438 (2012) - 2011
- [j7]Stéphan Clémençon, Marine Depecker, Nicolas Vayatis:
Adaptive partitioning schemes for bipartite ranking - How to grow and prune a ranking tree. Mach. Learn. 83(1): 31-69 (2011) - [j6]Stéphan Clémençon, Marine Depecker, Nicolas Vayatis:
Avancées récentes dans le domaine de l'apprentissage d'ordonnancements. Rev. d'Intelligence Artif. 25(3): 345-368 (2011) - 2010
- [c17]Emile Richard, Nicolas Baskiotis, Theodoros Evgeniou, Nicolas Vayatis:
Link Discovery using Graph Feature Tracking. NIPS 2010: 1966-1974
2000 – 2009
- 2009
- [j5]Stéphan Clémençon, Nicolas Vayatis:
Tree-based ranking methods. IEEE Trans. Inf. Theory 55(9): 4316-4336 (2009) - [c16]Stéphan Clémençon, Nicolas Vayatis:
Adaptive Estimation of the Optimal ROC Curve and a Bipartite Ranking Algorithm. ALT 2009: 216-231 - [c15]Odalric-Ambrym Maillard, Nicolas Vayatis:
Complexity versus Agreement for Many Views. ALT 2009: 232-246 - [c14]Stéphan Clémençon, Nicolas Vayatis:
Nonparametric estimation of the precision-recall curve. ICML 2009: 185-192 - [c13]Stéphan Clémençon, Marine Depecker, Nicolas Vayatis:
Bagging Ranking Trees. ICMLA 2009: 658-663 - [c12]Stéphan Clémençon, Nicolas Vayatis, Marine Depecker:
AUC optimization and the two-sample problem. NIPS 2009: 360-368 - [c11]Stéphan Clémençon, Nicolas Vayatis:
On Partitioning Rules for Bipartite Ranking. AISTATS 2009: 97-104 - 2008
- [c10]Stéphan Clémençon, Nicolas Vayatis:
Approximation of the Optimal ROC Curve and a Tree-Based Ranking Algorithm. ALT 2008: 22-37 - [c9]Patrice Bertail, Stéphan Clémençon, Nicolas Vayatis:
On Bootstrapping the ROC Curve. NIPS 2008: 137-144 - [c8]Stéphan Clémençon, Nicolas Vayatis:
Empirical performance maximization for linear rank statistics. NIPS 2008: 305-312 - [c7]Stéphan Clémençon, Nicolas Vayatis:
Overlaying classifiers: a practical approach for optimal ranking. NIPS 2008: 313-320 - 2007
- [j4]Stéphan Clémençon, Nicolas Vayatis:
Ranking the Best Instances. J. Mach. Learn. Res. 8: 2671-2699 (2007) - 2006
- [j3]Anatoli B. Juditsky, Alexander V. Nazin, Alexandre B. Tsybakov, Nicolas Vayatis:
Remark on "Recursive Aggregation of Estimators by the Mirror Descent Algorithm with Averaging" published in Probl. Peredachi Inf., 2005, no. 4. Probl. Inf. Transm. 42(3): 262 (2006) - 2005
- [j2]Anatoli B. Juditsky, Alexander V. Nazin, Alexandre B. Tsybakov, Nicolas Vayatis:
Recursive Aggregation of Estimators by the Mirror Descent Algorithm with Averaging. Probl. Inf. Transm. 41(4): 368-384 (2005) - [c6]Stéphan Clémençon, Gábor Lugosi, Nicolas Vayatis:
Ranking and Scoring Using Empirical Risk Minimization. COLT 2005: 1-15 - [c5]Stéphan Clémençon, Gábor Lugosi, Nicolas Vayatis:
From Ranking to Classification: A Statistical View. GfKl 2005: 214-221 - [c4]Anatoli B. Juditsky, Alexander V. Nazin, Alexandre B. Tsybakov, Nicolas Vayatis:
Generalization Error Bounds for Aggregation by Mirror Descent with Averaging. NIPS 2005: 603-610 - 2003
- [j1]Gilles Blanchard, Gábor Lugosi, Nicolas Vayatis:
On the Rate of Convergence of Regularized Boosting Classifiers. J. Mach. Learn. Res. 4: 861-894 (2003) - 2002
- [c3]Gábor Lugosi, Nicolas Vayatis:
A Consistent Strategy for Boosting Algorithms. COLT 2002: 303-318 - 2000
- [c2]Nicolas Vayatis:
The Role of Critical Sets in Vapnik-Chervonenkis Theory. COLT 2000: 75-80
1990 – 1999
- 1999
- [c1]Nicolas Vayatis, Robert Azencott:
Distribution-Dependent Vapnik-Chervonenkis Bounds. EuroCOLT 1999: 230-240
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.