default search action
Jason D. Lee
Person information
- affiliation: Stanford University, Institute of Computational and Mathematical Engineering
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j11]Qi Cai, Zhuoran Yang, Jason D. Lee, Zhaoran Wang:
Neural Temporal Difference and Q Learning Provably Converge to Global Optima. Math. Oper. Res. 49(1): 619-651 (2024) - [c114]Alex Damian, Loucas Pillaud-Vivien, Jason D. Lee, Joan Bruna:
Computational-Statistical Gaps in Gaussian Single-Index Models (Extended Abstract). COLT 2024: 1262 - [c113]Zihan Zhang, Yuxin Chen, Jason D. Lee, Simon S. Du:
Settling the sample complexity of online reinforcement learning. COLT 2024: 5213-5219 - [c112]Zihan Zhang, Wenhao Zhan, Yuxin Chen, Simon S. Du, Jason D. Lee:
Optimal Multi-Distribution Learning. COLT 2024: 5220-5223 - [c111]Yulai Zhao, Wenhao Zhan, Xiaoyan Hu, Ho-fung Leung, Farzan Farnia, Wen Sun, Jason D. Lee:
Provably Efficient CVaR RL in Low-rank MDPs. ICLR 2024 - [c110]Nayoung Lee, Kartik Sreenivasan, Jason D. Lee, Kangwook Lee, Dimitris Papailiopoulos:
Teaching Arithmetic to Small Transformers. ICLR 2024 - [c109]Kaifeng Lyu, Jikai Jin, Zhiyuan Li, Simon Shaolei Du, Jason D. Lee, Wei Hu:
Dichotomy of Early and Late Phase Implicit Biases Can Provably Induce Grokking. ICLR 2024 - [c108]Zihao Wang, Eshaan Nichani, Jason D. Lee:
Learning Hierarchical Polynomials with Three-Layer Neural Networks. ICLR 2024 - [c107]Wenhao Zhan, Masatoshi Uehara, Wen Sun, Jason D. Lee:
Provable Reward-Agnostic Preference-Based Reinforcement Learning. ICLR 2024 - [c106]Wenhao Zhan, Masatoshi Uehara, Nathan Kallus, Jason D. Lee, Wen Sun:
Provable Offline Preference-Based Reinforcement Learning. ICLR 2024 - [c105]Zihan Zhang, Jason D. Lee, Yuxin Chen, Simon Shaolei Du:
Horizon-Free Regret for Linear Markov Decision Processes. ICLR 2024 - [c104]Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, Tri Dao:
Medusa: Simple LLM Inference Acceleration Framework with Multiple Decoding Heads. ICML 2024 - [c103]Uijeong Jang, Jason D. Lee, Ernest K. Ryu:
LoRA Training in the NTK Regime has No Spurious Local Minima. ICML 2024 - [c102]Hong Jun Jeon, Jason D. Lee, Qi Lei, Benjamin Van Roy:
An Information-Theoretic Analysis of In-Context Learning. ICML 2024 - [c101]Eshaan Nichani, Alex Damian, Jason D. Lee:
How Transformers Learn Causal Structure with Gradient Descent. ICML 2024 - [c100]Zixuan Wang, Stanley Wei, Daniel Hsu, Jason D. Lee:
Transformers Provably Learn Sparse Token Selection While Fully-Connected Nets Cannot. ICML 2024 - [c99]Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu Chen, Jason D. Lee, Wotao Yin, Mingyi Hong, Zhangyang Wang, Sijia Liu, Tianlong Chen:
Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark. ICML 2024 - [c98]Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D. Lee, Di He:
REST: Retrieval-Based Speculative Decoding. NAACL-HLT 2024: 1582-1595 - [i132]Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, Tri Dao:
Medusa: Simple LLM Inference Acceleration Framework with Multiple Decoding Heads. CoRR abs/2401.10774 (2024) - [i131]Hong Jun Jeon, Jason D. Lee, Qi Lei, Benjamin Van Roy:
An Information-Theoretic Analysis of In-Context Learning. CoRR abs/2401.15530 (2024) - [i130]James Liu, Guangxuan Xiao, Kai Li, Jason D. Lee, Song Han, Tri Dao, Tianle Cai:
BitDelta: Your Fine-Tune May Only Be Worth One Bit. CoRR abs/2402.10193 (2024) - [i129]Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu Chen, Jason D. Lee, Wotao Yin, Mingyi Hong, Zhangyang Wang, Sijia Liu, Tianlong Chen:
Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark. CoRR abs/2402.11592 (2024) - [i128]Uijeong Jang, Jason D. Lee, Ernest K. Ryu:
LoRA Training in the NTK Regime has No Spurious Local Minima. CoRR abs/2402.11867 (2024) - [i127]Eshaan Nichani, Alex Damian, Jason D. Lee:
How Transformers Learn Causal Structure with Gradient Descent. CoRR abs/2402.14735 (2024) - [i126]Angeliki Giannou, Liu Yang, Tianhao Wang, Dimitris Papailiopoulos, Jason D. Lee:
How Well Can Transformers Emulate In-context Newton's Method? CoRR abs/2403.03183 (2024) - [i125]Alex Damian, Loucas Pillaud-Vivien, Jason D. Lee, Joan Bruna:
Computational-Statistical Gaps in Gaussian Single-Index Models. CoRR abs/2403.05529 (2024) - [i124]Zihan Zhang, Jason D. Lee, Yuxin Chen, Simon S. Du:
Horizon-Free Regret for Linear Markov Decision Processes. CoRR abs/2403.10738 (2024) - [i123]Jonathan D. Chang, Wenhao Zhan, Owen Oertell, Kianté Brantley, Dipendra Misra, Jason D. Lee, Wen Sun:
Dataset Reset Policy Optimization for RLHF. CoRR abs/2404.08495 (2024) - [i122]Zhaolin Gao, Jonathan D. Chang, Wenhao Zhan, Owen Oertell, Gokul Swamy, Kianté Brantley, Thorsten Joachims, J. Andrew Bagnell, Jason D. Lee, Wen Sun:
REBEL: Reinforcement Learning via Regressing Relative Rewards. CoRR abs/2404.16767 (2024) - [i121]Jason D. Lee, Kazusato Oko, Taiji Suzuki, Denny Wu:
Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit. CoRR abs/2406.01581 (2024) - [i120]Zixuan Wang, Stanley Wei, Daniel Hsu, Jason D. Lee:
Transformers Provably Learn Sparse Token Selection While Fully-Connected Nets Cannot. CoRR abs/2406.06893 (2024) - [i119]Licong Lin, Jingfeng Wu, Sham M. Kakade, Peter L. Bartlett, Jason D. Lee:
Scaling Laws in Linear Regression: Compute, Parameters, and Data. CoRR abs/2406.08466 (2024) - [i118]Qian Yu, Yining Wang, Baihe Huang, Qi Lei, Jason D. Lee:
Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity. CoRR abs/2406.19617 (2024) - [i117]Audrey Huang, Wenhao Zhan, Tengyang Xie, Jason D. Lee, Wen Sun, Akshay Krishnamurthy, Dylan J. Foster:
Correcting the Mythos of KL-Regularization: Direct Alignment without Overoptimization via Chi-Squared Preference Optimization. CoRR abs/2407.13399 (2024) - 2023
- [j10]Wenhao Zhan, Shicong Cen, Baihe Huang, Yuxin Chen, Jason D. Lee, Yuejie Chi:
Policy Mirror Descent for Regularized Reinforcement Learning: A Generalized Framework with Linear Convergence. SIAM J. Optim. 33(2): 1061-1091 (2023) - [c97]Hanlin Zhu, Ruosong Wang, Jason D. Lee:
Provably Efficient Reinforcement Learning via Surprise Bound. AISTATS 2023: 4006-4032 - [c96]Qian Yu, Yining Wang, Baihe Huang, Qi Lei, Jason D. Lee:
Optimal Sample Complexity Bounds for Non-convex Optimization under Kurdyka-Lojasiewicz Condition. AISTATS 2023: 6806-6821 - [c95]Kurtland Chua, Qi Lei, Jason D. Lee:
Provable Hierarchy-Based Meta-Reinforcement Learning. AISTATS 2023: 10918-10967 - [c94]Alex Damian, Eshaan Nichani, Jason D. Lee:
Self-Stabilization: The Implicit Bias of Gradient Descent at the Edge of Stability. ICLR 2023 - [c93]Zhuoqing Song, Jason D. Lee, Zhuoran Yang:
Can We Find Nash Equilibria at a Linear Rate in Markov Games? ICLR 2023 - [c92]Wenhao Zhan, Jason D. Lee, Zhuoran Yang:
Decentralized Optimistic Hyperpolicy Mirror Descent: Provably No-Regret Learning in Markov Games. ICLR 2023 - [c91]Wenhao Zhan, Masatoshi Uehara, Wen Sun, Jason D. Lee:
PAC Reinforcement Learning for Predictive State Representations. ICLR 2023 - [c90]Hadi Daneshmand, Jason D. Lee, Chi Jin:
Efficient displacement convex optimization with particle gradient descent. ICML 2023: 6836-6854 - [c89]Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D. Lee, Dimitris Papailiopoulos:
Looped Transformers as Programmable Computers. ICML 2023: 11398-11442 - [c88]Jikai Jin, Zhiyuan Li, Kaifeng Lyu, Simon Shaolei Du, Jason D. Lee:
Understanding Incremental Learning of Gradient Descent: A Fine-grained Analysis of Matrix Sensing. ICML 2023: 15200-15238 - [c87]Masatoshi Uehara, Ayush Sekhari, Jason D. Lee, Nathan Kallus, Wen Sun:
Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings. ICML 2023: 34615-34641 - [c86]Yulai Zhao, Zhuoran Yang, Zhaoran Wang, Jason D. Lee:
Local Optimization Achieves Global Optimality in Multi-Agent Reinforcement Learning. ICML 2023: 42200-42226 - [c85]Xinyi Chen, Edgar Minasyan, Jason D. Lee, Elad Hazan:
Regret Guarantees for Online Deep Control. L4DC 2023: 1032-1045 - [c84]Gen Li, Wenhao Zhan, Jason D. Lee, Yuejie Chi, Yuxin Chen:
Reward-agnostic Fine-tuning: Provable Statistical Benefits of Hybrid Reinforcement Learning. NeurIPS 2023 - [c83]Alex Damian, Eshaan Nichani, Rong Ge, Jason D. Lee:
Smoothing the Landscape Boosts the Signal for SGD: Optimal Sample Complexity for Learning Single Index Models. NeurIPS 2023 - [c82]Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D. Lee, Danqi Chen, Sanjeev Arora:
Fine-Tuning Language Models with Just Forward Passes. NeurIPS 2023 - [c81]Eshaan Nichani, Alex Damian, Jason D. Lee:
Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural Networks. NeurIPS 2023 - [c80]Masatoshi Uehara, Nathan Kallus, Jason D. Lee, Wen Sun:
Offline Minimax Soft-Q-learning Under Realizability and Partial Coverage. NeurIPS 2023 - [c79]Jingfeng Wu, Vladimir Braverman, Jason D. Lee:
Implicit Bias of Gradient Descent for Logistic Regression at the Edge of Stability. NeurIPS 2023 - [c78]Qian Yu, Yining Wang, Baihe Huang, Qi Lei, Jason D. Lee:
Sample Complexity for Quadratic Bandits: Hessian Dependent Bounds and Optimal Algorithms. NeurIPS 2023 - [i116]Jikai Jin, Zhiyuan Li, Kaifeng Lyu, Simon S. Du, Jason D. Lee:
Understanding Incremental Learning of Gradient Descent: A Fine-grained Analysis of Matrix Sensing. CoRR abs/2301.11500 (2023) - [i115]Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D. Lee, Dimitris S. Papailiopoulos:
Looped Transformers as Programmable Computers. CoRR abs/2301.13196 (2023) - [i114]Masatoshi Uehara, Nathan Kallus, Jason D. Lee, Wen Sun:
Refined Value-Based Offline RL under Realizability and Partial Coverage. CoRR abs/2302.02392 (2023) - [i113]Hadi Daneshmand, Jason D. Lee, Chi Jin:
Efficient displacement convex optimization with particle gradient descent. CoRR abs/2302.04753 (2023) - [i112]Hanlin Zhu, Ruosong Wang, Jason D. Lee:
Provably Efficient Reinforcement Learning via Surprise Bound. CoRR abs/2302.11634 (2023) - [i111]Zhuoqing Song, Jason D. Lee, Zhuoran Yang:
Can We Find Nash Equilibria at a Linear Rate in Markov Games? CoRR abs/2303.03095 (2023) - [i110]Yulai Zhao, Zhuoran Yang, Zhaoran Wang, Jason D. Lee:
Local Optimization Achieves Global Optimality in Multi-Agent Reinforcement Learning. CoRR abs/2305.04819 (2023) - [i109]Eshaan Nichani, Alex Damian, Jason D. Lee:
Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural Networks. CoRR abs/2305.06986 (2023) - [i108]Gen Li, Wenhao Zhan, Jason D. Lee, Yuejie Chi, Yuxin Chen:
Reward-agnostic Fine-tuning: Provable Statistical Benefits of Hybrid Reinforcement Learning. CoRR abs/2305.10282 (2023) - [i107]Alex Damian, Eshaan Nichani, Rong Ge, Jason D. Lee:
Smoothing the Landscape Boosts the Signal for SGD: Optimal Sample Complexity for Learning Single Index Models. CoRR abs/2305.10633 (2023) - [i106]Jingfeng Wu, Vladimir Braverman, Jason D. Lee:
Implicit Bias of Gradient Descent for Logistic Regression at the Edge of Stability. CoRR abs/2305.11788 (2023) - [i105]Wenhao Zhan, Masatoshi Uehara, Nathan Kallus, Jason D. Lee, Wen Sun:
Provable Offline Reinforcement Learning with Human Feedback. CoRR abs/2305.14816 (2023) - [i104]Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D. Lee, Danqi Chen, Sanjeev Arora:
Fine-Tuning Language Models with Just Forward Passes. CoRR abs/2305.17333 (2023) - [i103]Ziang Song, Tianle Cai, Jason D. Lee, Weijie J. Su:
Reward Collapse in Aligning Large Language Models. CoRR abs/2305.17608 (2023) - [i102]Wenhao Zhan, Masatoshi Uehara, Wen Sun, Jason D. Lee:
How to Query Human Feedback Efficiently in RL? CoRR abs/2305.18505 (2023) - [i101]Etash Kumar Guha, Jason D. Lee:
Solving Robust MDPs through No-Regret Dynamics. CoRR abs/2305.19035 (2023) - [i100]Qian Yu, Yining Wang, Baihe Huang, Qi Lei, Jason D. Lee:
Sample Complexity for Quadratic Bandits: Hessian Dependent Bounds and Optimal Algorithms. CoRR abs/2306.12383 (2023) - [i99]Tianle Cai, Kaixuan Huang, Jason D. Lee, Mengdi Wang:
Scaling In-Context Demonstrations with Structured Attention. CoRR abs/2307.02690 (2023) - [i98]Nayoung Lee, Kartik Sreenivasan, Jason D. Lee, Kangwook Lee, Dimitris Papailiopoulos:
Teaching Arithmetic to Small Transformers. CoRR abs/2307.03381 (2023) - [i97]Zihan Zhang, Yuxin Chen, Jason D. Lee, Simon S. Du:
Settling the Sample Complexity of Online Reinforcement Learning. CoRR abs/2307.13586 (2023) - [i96]Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D. Lee, Di He:
REST: Retrieval-Based Speculative Decoding. CoRR abs/2311.08252 (2023) - [i95]Yulai Zhao, Wenhao Zhan, Xiaoyan Hu, Ho-fung Leung, Farzan Farnia, Wen Sun, Jason D. Lee:
Provably Efficient CVaR RL in Low-rank MDPs. CoRR abs/2311.11965 (2023) - [i94]Zihao Wang, Eshaan Nichani, Jason D. Lee:
Learning Hierarchical Polynomials with Three-Layer Neural Networks. CoRR abs/2311.13774 (2023) - [i93]Kaifeng Lyu, Jikai Jin, Zhiyuan Li, Simon S. Du, Jason D. Lee, Wei Hu:
Dichotomy of Early and Late Phase Implicit Biases Can Provably Induce Grokking. CoRR abs/2311.18817 (2023) - [i92]Zihan Zhang, Wenhao Zhan, Yuxin Chen, Simon S. Du, Jason D. Lee:
Optimal Multi-Distribution Learning. CoRR abs/2312.05134 (2023) - [i91]Baihe Huang, Banghua Zhu, Hanlin Zhu, Jason D. Lee, Jiantao Jiao, Michael I. Jordan:
Towards Optimal Statistical Watermarking. CoRR abs/2312.07930 (2023) - 2022
- [c77]Yulai Zhao, Yuandong Tian, Jason D. Lee, Simon S. Du:
Provably Efficient Policy Optimization for Two-Player Zero-Sum Markov Games. AISTATS 2022: 2736-2761 - [c76]Itay Safran, Jason D. Lee:
Optimization-Based Separations for Neural Networks. COLT 2022: 3-64 - [c75]Wenhao Zhan, Baihe Huang, Audrey Huang, Nan Jiang, Jason D. Lee:
Offline Reinforcement Learning with Realizability and Single-policy Concentrability. COLT 2022: 2730-2775 - [c74]Alexandru Damian, Jason D. Lee, Mahdi Soltanolkotabi:
Neural Networks can Learn Representations with Gradient Descent. COLT 2022: 5413-5452 - [c73]DiJia Su, Jason D. Lee, John M. Mulvey, H. Vincent Poor:
Competitive Multi-Agent Reinforcement Learning with Self-Supervised Representation. ICASSP 2022: 4098-4102 - [c72]Baihe Huang, Jason D. Lee, Zhaoran Wang, Zhuoran Yang:
Towards General Function Approximation in Zero-Sum Markov Games. ICLR 2022 - [c71]Zhiyuan Li, Tianhao Wang, Jason D. Lee, Sanjeev Arora:
Implicit Bias of Gradient Descent on Reparametrized Models: On Equivalence to Mirror Descent. NeurIPS 2022 - [c70]Eshaan Nichani, Yu Bai, Jason D. Lee:
Identifying good directions to escape the NTK regime and efficiently learn low-degree plus sparse polynomials. NeurIPS 2022 - [c69]Christopher De Sa, Satyen Kale, Jason D. Lee, Ayush Sekhari, Karthik Sridharan:
From Gradient Flow on Population Loss to Learning with Stochastic Gradient Descent. NeurIPS 2022 - [c68]Itay Safran, Gal Vardi, Jason D. Lee:
On the Effective Number of Linear Regions in Shallow Univariate ReLU Networks: Convergence Guarantees and Implicit Bias. NeurIPS 2022 - [c67]Masatoshi Uehara, Ayush Sekhari, Jason D. Lee, Nathan Kallus, Wen Sun:
Provably Efficient Reinforcement Learning in Partially Observable Dynamical Systems. NeurIPS 2022 - [i90]Wenhao Zhan, Baihe Huang, Audrey Huang, Nan Jiang, Jason D. Lee:
Offline Reinforcement Learning with Realizability and Single-policy Concentrability. CoRR abs/2202.04634 (2022) - [i89]Jiaqi Yang, Qi Lei, Jason D. Lee, Simon S. Du:
Nearly Minimax Algorithms for Linear Bandits with Shared Representation. CoRR abs/2203.15664 (2022) - [i88]Itay Safran, Gal Vardi, Jason D. Lee:
On the Effective Number of Linear Regions in Shallow Univariate ReLU Networks: Convergence Guarantees and Implicit Bias. CoRR abs/2205.09072 (2022) - [i87]Wenhao Zhan, Jason D. Lee, Zhuoran Yang:
Decentralized Optimistic Hyperpolicy Mirror Descent: Provably No-Regret Learning in Markov Games. CoRR abs/2206.01588 (2022) - [i86]Eshaan Nichani, Yu Bai, Jason D. Lee:
Identifying good directions to escape the NTK regime and efficiently learn low-degree plus sparse polynomials. CoRR abs/2206.03688 (2022) - [i85]Masatoshi Uehara, Ayush Sekhari, Jason D. Lee, Nathan Kallus, Wen Sun:
Provably Efficient Reinforcement Learning in Partially Observable Dynamical Systems. CoRR abs/2206.12020 (2022) - [i84]Masatoshi Uehara, Ayush Sekhari, Jason D. Lee, Nathan Kallus, Wen Sun:
Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings. CoRR abs/2206.12081 (2022) - [i83]Alex Damian, Jason D. Lee, Mahdi Soltanolkotabi:
Neural Networks can Learn Representations with Gradient Descent. CoRR abs/2206.15144 (2022) - [i82]Zhiyuan Li, Tianhao Wang, Jason D. Lee, Sanjeev Arora:
Implicit Bias of Gradient Descent on Reparametrized Models: On Equivalence to Mirror Descent. CoRR abs/2207.04036 (2022) - [i81]Wenhao Zhan, Masatoshi Uehara, Wen Sun, Jason D. Lee:
PAC Reinforcement Learning for Predictive State Representations. CoRR abs/2207.05738 (2022) - [i80]Alex Damian, Eshaan Nichani, Jason D. Lee:
Self-Stabilization: The Implicit Bias of Gradient Descent at the Edge of Stability. CoRR abs/2209.15594 (2022) - [i79]Satyen Kale, Jason D. Lee, Chris De Sa, Ayush Sekhari, Karthik Sridharan:
From Gradient Flow on Population Loss to Learning with Stochastic Gradient Descent. CoRR abs/2210.06705 (2022) - [i78]Zihan Wang, Jason D. Lee, Qi Lei:
Reconstructing Training Data from Model Gradient, Provably. CoRR abs/2212.03714 (2022) - 2021
- [j9]Alekh Agarwal, Sham M. Kakade, Jason D. Lee, Gaurav Mahajan:
On the Theory of Policy Gradient Methods: Optimality, Approximation, and Distribution Shift. J. Mach. Learn. Res. 22: 98:1-98:76 (2021) - [j8]Songtao Lu, Jason D. Lee, Meisam Razaviyayn, Mingyi Hong:
Linearized ADMM Converges to Second-Order Stationary Points for Non-Convex Problems. IEEE Trans. Signal Process. 69: 4859-4874 (2021) - [c66]Cong Fang, Jason D. Lee, Pengkun Yang, Tong Zhang:
Modeling from Features: a Mean-field Framework for Over-parameterized Deep Neural Networks. COLT 2021: 1887-1936 - [c65]Jeff Z. HaoChen, Colin Wei, Jason D. Lee, Tengyu Ma:
Shape Matters: Understanding the Implicit Bias of the Noise Covariance. COLT 2021: 2315-2357 - [c64]Simon Shaolei Du, Wei Hu, Sham M. Kakade, Jason D. Lee, Qi Lei:
Few-Shot Learning via Learning the Representation, Provably. ICLR 2021 - [c63]Jiaqi Yang, Wei Hu, Jason D. Lee, Simon Shaolei Du:
Impact of Representation Learning in Linear Bandits. ICLR 2021 - [c62]Yu Bai, Minshuo Chen, Pan Zhou, Tuo Zhao, Jason D. Lee, Sham M. Kakade, Huan Wang, Caiming Xiong:
How Important is the Train-Validation Split in Meta-Learning? ICML 2021: 543-553 - [c61]Tianle Cai, Ruiqi Gao, Jason D. Lee, Qi Lei:
A Theory of Label Propagation for Subpopulation Shift. ICML 2021: 1170-1182 - [c60]Simon S. Du, Sham M. Kakade, Jason D. Lee, Shachar Lovett, Gaurav Mahajan, Wen Sun, Ruosong Wang:
Bilinear Classes: A Structural Framework for Provable Generalization in RL. ICML 2021: 2826-2836 - [c59]Qi Lei, Wei Hu, Jason D. Lee:
Near-Optimal Linear Regression under Distribution Shift. ICML 2021: 6164-6174 - [c58]Jason D. Lee, Qi Lei, Nikunj Saunshi, Jiacheng Zhuo:
Predicting What You Already Know Helps: Provable Self-Supervised Learning. NeurIPS 2021: 309-323 - [c57]Kurtland Chua, Qi Lei, Jason D. Lee:
How Fine-Tuning Allows for Effective Meta-Learning. NeurIPS 2021: 8871-8884 - [c56]Baihe Huang, Kaixuan Huang, Sham M. Kakade, Jason D. Lee, Qi Lei, Runzhe Wang, Jiaqi Yang:
Going Beyond Linear RL: Sample Efficient Neural Function Approximation. NeurIPS 2021: 8968-8983 - [c55]