default search action
Joel H. Saltz
Person information
- affiliation: University of Maryland, College Park, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j117]Saarthak Kapse, Srijan Das, Jingwei Zhang, Rajarsi R. Gupta, Joel H. Saltz, Dimitris Samaras, Prateek Prasanna:
Attention De-sparsification Matters: Inducing diversity in digital pathology representation learning. Medical Image Anal. 93: 103070 (2024) - [c263]Srikar Yellapragada, Alexandros Graikos, Prateek Prasanna, Tahsin M. Kurç, Joel H. Saltz, Dimitris Samaras:
PathLDM: Text conditioned Latent Diffusion Model for Histopathology. WACV 2024: 5170-5179 - [i46]Souradeep Chakraborty, Dana Perez, Paul Friedman, Natallia Sheuka, Constantin Friedman, Oksana Yaskiv, Rajarsi Gupta, Gregory J. Zelinsky, Joel H. Saltz, Dimitris Samaras:
Decoding the visual attention of pathologists to reveal their level of expertise. CoRR abs/2403.17255 (2024) - [i45]Minh-Quan Le, Alexandros Graikos, Srikar Yellapragada, Rajarsi Gupta, Joel H. Saltz, Dimitris Samaras:
∞-Brush: Controllable Large Image Synthesis with Diffusion Models in Infinite Dimensions. CoRR abs/2407.14709 (2024) - 2023
- [j116]André L. S. Meirelles, Tahsin M. Kurç, Jun Kong, Renato Ferreira, Joel H. Saltz, George Teodoro:
Effective and efficient active learning for deep learning-based tissue image analysis. Bioinform. 39(4) (2023) - [j115]Jakub R. Kaczmarzyk, Rajarsi Gupta, Tahsin M. Kurç, Shahira Abousamra, Joel H. Saltz, Peter K. Koo:
ChampKit: A framework for rapid evaluation of deep neural networks for patch-based histopathology classification. Comput. Methods Programs Biomed. 239: 107631 (2023) - [j114]Sijia Liu, Andrew Wen, Liwei Wang, Huan He, Sunyang Fu, Robert T. Miller, Andrew E. Williams, Daniel R. Harris, Ramakanth Kavuluru, Mei Liu, Noor Abu-El-Rub, Dalton Schutte, Rui Zhang, Masoud Rouhizadeh, John D. Osborne, Yongqun He, Umit Topaloglu, Stephanie S. Hong, Joel H. Saltz, Thomas Schaffter, Emily R. Pfaff, Christopher G. Chute, Tim Duong, Melissa A. Haendel, Rafael Fuentes, Peter Szolovits, Hua Xu, Hongfang Liu:
An open natural language processing (NLP) framework for EHR-based clinical research: a case demonstration using the National COVID Cohort Collaborative (N3C). J. Am. Medical Informatics Assoc. 30(12): 2036-2040 (2023) - [c262]Shahira Abousamra, Rajarsi Gupta, Tahsin M. Kurç, Dimitris Samaras, Joel H. Saltz, Chao Chen:
Topology-Guided Multi-Class Cell Context Generation for Digital Pathology. CVPR 2023: 3323-3333 - [c261]Jingwei Zhang, Saarthak Kapse, Ke Ma, Prateek Prasanna, Maria Vakalopoulou, Joel H. Saltz, Dimitris Samaras:
Precise Location Matching Improves Dense Contrastive Learning in Digital Pathology. IPMI 2023: 783-794 - [c260]Jingwei Zhang, Ke Ma, Saarthak Kapse, Joel H. Saltz, Maria Vakalopoulou, Prateek Prasanna, Dimitris Samaras:
SAM-Path: A Segment Anything Model for Semantic Segmentation in Digital Pathology. ISIC/Care-AI/MedAGI/DeCaF@MICCAI 2023: 161-170 - [c259]Jingwei Zhang, Saarthak Kapse, Ke Ma, Prateek Prasanna, Joel H. Saltz, Maria Vakalopoulou, Dimitris Samaras:
Prompt-MIL: Boosting Multi-instance Learning Schemes via Task-Specific Prompt Tuning. MICCAI (8) 2023: 624-634 - [c258]Shahira Abousamra, Danielle Fassler, Jiachen Yao, Rajarsi R. Gupta, Tahsin M. Kurç, Luisa F. Escobar-Hoyos, Dimitris Samaras, Kenneth Shroyer, Joel H. Saltz, Chao Chen:
Unsupervised Stain Decomposition via Inversion Regulation for Multiplex Immunohistochemistry Images. MIDL 2023: 74-94 - [c257]Vu Nguyen, Prantik Howlader, Le Hou, Dimitris Samaras, Rajarsi R. Gupta, Joel H. Saltz:
Few Shot Hematopoietic Cell Classification. MIDL 2023: 1085-1103 - [i44]Jingwei Zhang, Saarthak Kapse, Ke Ma, Prateek Prasanna, Joel H. Saltz, Maria Vakalopoulou, Dimitris Samaras:
Prompt-MIL: Boosting Multi-Instance Learning Schemes via Task-specific Prompt Tuning. CoRR abs/2303.12214 (2023) - [i43]Shahira Abousamra, Rajarsi Gupta, Tahsin M. Kurç, Dimitris Samaras, Joel H. Saltz, Chao Chen:
Topology-Guided Multi-Class Cell Context Generation for Digital Pathology. CoRR abs/2304.02255 (2023) - [i42]Erich Bremer, Tammy DiPrima, Joseph Balsamo, Jonas S. Almeida, Rajarsi Gupta, Joel H. Saltz:
Halcyon - A Pathology Imaging and Feature analysis and Management System. CoRR abs/2304.10612 (2023) - [i41]Jingwei Zhang, Ke Ma, Saarthak Kapse, Joel H. Saltz, Maria Vakalopoulou, Prateek Prasanna, Dimitris Samaras:
SAM-Path: A Segment Anything Model for Semantic Segmentation in Digital Pathology. CoRR abs/2307.09570 (2023) - [i40]Srikar Yellapragada, Alexandros Graikos, Prateek Prasanna, Tahsin M. Kurç, Joel H. Saltz, Dimitris Samaras:
PathLDM: Text conditioned Latent Diffusion Model for Histopathology. CoRR abs/2309.00748 (2023) - [i39]Jakub R. Kaczmarzyk, Alan O'Callaghan, Fiona Inglis, Tahsin M. Kurç, Rajarsi Gupta, Erich Bremer, Peter Bankhead, Joel H. Saltz:
Open and reusable deep learning for pathology with WSInfer and QuPath. CoRR abs/2309.04631 (2023) - [i38]Saarthak Kapse, Srijan Das, Jingwei Zhang, Rajarsi R. Gupta, Joel H. Saltz, Dimitris Samaras, Prateek Prasanna:
Attention De-sparsification Matters: Inducing Diversity in Digital Pathology Representation Learning. CoRR abs/2309.06439 (2023) - [i37]Alexandros Graikos, Srikar Yellapragada, Minh-Quan Le, Saarthak Kapse, Prateek Prasanna, Joel H. Saltz, Dimitris Samaras:
Learned representation-guided diffusion models for large-image generation. CoRR abs/2312.07330 (2023) - [i36]Saarthak Kapse, Pushpak Pati, Srijan Das, Jingwei Zhang, Chao Chen, Maria Vakalopoulou, Joel H. Saltz, Dimitris Samaras, Rajarsi R. Gupta, Prateek Prasanna:
SI-MIL: Taming Deep MIL for Self-Interpretability in Gigapixel Histopathology. CoRR abs/2312.15010 (2023) - 2022
- [j113]André L. S. Meirelles, Tahsin M. Kurç, Joel H. Saltz, George Teodoro:
Effective active learning in digital pathology: A case study in tumor infiltrating lymphocytes. Comput. Methods Programs Biomed. 220: 106828 (2022) - [j112]Katie R. Bradwell, Jacob T. Wooldridge, Benjamin R. C. Amor, Tellen D. Bennett, Adit Anand, Carolyn Bremer, Yun Jae Yoo, Zhenglong Qian, Steven G. Johnson, Emily R. Pfaff, Andrew T. Girvin, Amin Manna, Emily Niehaus, Stephanie S. Hong, Xiaohan Tanner Zhang, Richard L. Zhu, Mark Bissell, Nabeel Qureshi, Joel H. Saltz, Melissa A. Haendel, Christopher G. Chute, Harold P. Lehmann, Richard A. Moffitt:
Harmonizing units and values of quantitative data elements in a very large nationally pooled electronic health record (EHR) dataset. J. Am. Medical Informatics Assoc. 29(7): 1172-1182 (2022) - [j111]Jason A. Thomas, Randi E. Foraker, Noa Zamstein, Jon D. Morrow, Philip R. O. Payne, Adam B. Wilcox, Melissa A. Haendel, Christopher G. Chute, Kenneth R. Gersing, Anita Walden, Tellen D. Bennett, David A. Eichmann, Justin Guinney, Warren A. Kibbe, Hongfang Liu, Emily R. Pfaff, Peter N. Robinson, Joel H. Saltz, Heidi Spratt, Justin Starren, Christine Suver, Chunlei Wu, Davera Gabriel, Stephanie S. Hong, Kristin Kostka, Harold P. Lehmann, Richard A. Moffitt, Michele Morris, Matvey B. Palchuk, Xiaohan Tanner Zhang, Richard L. Zhu, Benjamin R. C. Amor, Mark M. Bissell, Marshall Clark, Andrew T. Girvin, Adam M. Lee, Robert T. Miller, Kellie M. Walters, Yooree Chae, Connor Cook, Alexandra Dest, Racquel R. Dietz, Thomas Dillon, Patricia A. Francis, Rafael Fuentes, Alexis Graves, Andrew J. Neumann, Shawn T. O'Neil, Usman Sheikh, Andréa M. Volz, Elizabeth Zampino, Christopher P. Austin, Samuel Bozzette, Mariam Deacy, Nicole Garbarini, Michael G. Kurilla, Sam G. Michael, Joni L. Rutter, Meredith Temple-O'Connor, Katie Rebecca Bradwell, Amin Manna, Nabeel Qureshi, Mary Morrison Saltz, Julie A. McMurry, Carolyn T. Bramante, Jeremy Richard Harper, Wenndy Hernandez, Farrukh M. Koraishy, Federico Mariona, Saidulu Mattapally, Amit Saha, Satyanarayana Vedula, Yujuan Fu, Nisha Mathews, Ofer Mendelevitch:
Demonstrating an approach for evaluating synthetic geospatial and temporal epidemiologic data utility: results from analyzing >1.8 million SARS-CoV-2 tests in the United States National COVID Cohort Collaborative (N3C). J. Am. Medical Informatics Assoc. 29(8): 1350-1365 (2022) - [j110]Willian Barreiros Jr., Alba C. M. A. Melo, Jun Kong, Renato Ferreira, Tahsin M. Kurç, Joel H. Saltz, George Teodoro:
Efficient microscopy image analysis on CPU-GPU systems with cost-aware irregular data partitioning. J. Parallel Distributed Comput. 164: 40-54 (2022) - [c256]Saumya Gupta, Xiaoling Hu, James Kaan, Michael Jin, Mutshipay Mpoy, Katherine Chung, Gagandeep Singh, Mary M. Saltz, Tahsin M. Kurç, Joel H. Saltz, Apostolos Tassiopoulos, Prateek Prasanna, Chao Chen:
Learning Topological Interactions for Multi-Class Medical Image Segmentation. ECCV (29) 2022: 701-718 - [c255]Souradeep Chakraborty, Ke Ma, Rajarsi Gupta, Beatrice Knudsen, Gregory J. Zelinsky, Joel H. Saltz, Dimitris Samaras:
Visual Attention Analysis Of Pathologists Examining Whole Slide Images Of Prostate Cancer. ISBI 2022: 1-5 - [c254]Souradeep Chakraborty, Rajarsi Gupta, Ke Ma, Darshana Govind, Pinaki Sarder, Won-Tak Choi, Waqas Mahmud, Eric Yee, Felicia Allard, Beatrice Knudsen, Gregory J. Zelinsky, Joel H. Saltz, Dimitris Samaras:
Predicting the Visual Attention of Pathologists Evaluating Whole Slide Images of Cancer. MOVI@MICCAI 2022: 11-21 - [c253]Jingwei Zhang, Xin Zhang, Ke Ma, Rajarsi Gupta, Joel H. Saltz, Maria Vakalopoulou, Dimitris Samaras:
Gigapixel Whole-Slide Images Classification Using Locally Supervised Learning. MICCAI (2) 2022: 192-201 - [i35]Souradeep Chakraborty, Ke Ma, Rajarsi Gupta, Beatrice Knudsen, Gregory J. Zelinsky, Joel H. Saltz, Dimitris Samaras:
Visual attention analysis of pathologists examining whole slide images of Prostate cancer. CoRR abs/2202.08437 (2022) - [i34]Ujjwal Baid, Sarthak Pati, Tahsin M. Kurç, Rajarsi Gupta, Erich Bremer, Shahira Abousamra, Siddhesh P. Thakur, Joel H. Saltz, Spyridon Bakas:
Federated Learning for the Classification of Tumor Infiltrating Lymphocytes. CoRR abs/2203.16622 (2022) - [i33]Mahmudul Hasan, Jakub R. Kaczmarzyk, David Paredes, Lyanne Oblein, Jaymie Oentoro, Shahira Abousamra, Michael Horowitz, Dimitris Samaras, Chao Chen, Tahsin M. Kurç, Kenneth R. Shroyer, Joel H. Saltz:
A Novel Framework for Characterization of Tumor-Immune Spatial Relationships in Tumor Microenvironment. CoRR abs/2204.12283 (2022) - [i32]Jakub R. Kaczmarzyk, Tahsin M. Kurç, Shahira Abousamra, Rajarsi Gupta, Joel H. Saltz, Peter K. Koo:
Evaluating histopathology transfer learning with ChampKit. CoRR abs/2206.06862 (2022) - [i31]Rajarsi Gupta, Jakub Kaczmarzyk, Soma Kobayashi, Tahsin M. Kurç, Joel H. Saltz:
AI and Pathology: Steering Treatment and Predicting Outcomes. CoRR abs/2206.07573 (2022) - [i30]Praphulla M. S. Bhawsar, Erich Bremer, Máire A. Duggan, Stephen J. Chanock, Montserrat Garcia-Closas, Joel H. Saltz, Jonas S. Almeida:
ImageBox3: No-Server Tile Serving to Traverse Whole Slide Images on the Web. CoRR abs/2207.01734 (2022) - [i29]Jingwei Zhang, Xin Zhang, Ke Ma, Rajarsi Gupta, Joel H. Saltz, Maria Vakalopoulou, Dimitris Samaras:
Gigapixel Whole-Slide Images Classification using Locally Supervised Learning. CoRR abs/2207.08267 (2022) - [i28]Saumya Gupta, Xiaoling Hu, James Kaan, Michael Jin, Mutshipay Mpoy, Katherine Chung, Gagandeep Singh, Mary M. Saltz, Tahsin M. Kurç, Joel H. Saltz, Apostolos Tassiopoulos, Prateek Prasanna, Chao Chen:
Learning Topological Interactions for Multi-Class Medical Image Segmentation. CoRR abs/2207.09654 (2022) - [i27]Jingwei Zhang, Saarthak Kapse, Ke Ma, Prateek Prasanna, Maria Vakalopoulou, Joel H. Saltz, Dimitris Samaras:
Precise Location Matching Improves Dense Contrastive Learning in Digital Pathology. CoRR abs/2212.12105 (2022) - 2021
- [j109]Jeremias M. Gomes, Jun Kong, Tahsin M. Kurç, Alba C. M. A. Melo, Renato Ferreira, Joel H. Saltz, George Teodoro:
Building robust pathology image analyses with uncertainty quantification. Comput. Methods Programs Biomed. 208: 106291 (2021) - [j108]Melissa A. Haendel, Christopher G. Chute, Tellen D. Bennett, David A. Eichmann, Justin Guinney, Warren A. Kibbe, Philip R. O. Payne, Emily R. Pfaff, Peter N. Robinson, Joel H. Saltz, Heidi Spratt, Christine Suver, John Wilbanks, Adam B. Wilcox, Andrew E. Williams, Chunlei Wu, Clair Blacketer, Robert L. Bradford, James J. Cimino, Marshall Clark, Evan W. Colmenares, Patricia A. Francis, Davera Gabriel, Alexis Graves, Raju Hemadri, Stephanie S. Hong, George Hripcsak, Dazhi Jiao, Jeffrey G. Klann, Kristin Kostka, Adam M. Lee, Harold P. Lehmann, Lora Lingrey, Robert T. Miller, Michele Morris, Shawn N. Murphy, Karthik Natarajan, Matvey B. Palchuk, Usman Sheikh, Harold Solbrig, Shyam Visweswaran, Anita Walden, Kellie M. Walters, Griffin M. Weber, Xiaohan Tanner Zhang, Richard L. Zhu, Benjamin R. C. Amor, Andrew T. Girvin, Amin Manna, Nabeel Qureshi, Michael G. Kurilla, Sam G. Michael, Lili M. Portilla, Joni L. Rutter, Christopher P. Austin, Ken R. Gersing:
The National COVID Cohort Collaborative (N3C): Rationale, design, infrastructure, and deployment. J. Am. Medical Informatics Assoc. 28(3): 427-443 (2021) - [j107]Xinyu Dong, Jianyuan Deng, Sina Rashidian, Kayley Abell-Hart, Wei Hou, Richard N. Rosenthal, Mary M. Saltz, Joel H. Saltz, Fusheng Wang:
Identifying risk of opioid use disorder for patients taking opioid medications with deep learning. J. Am. Medical Informatics Assoc. 28(8): 1683-1693 (2021) - [j106]Xinyu Dong, Jianyuan Deng, Wei Hou, Sina Rashidian, Richard N. Rosenthal, Mary M. Saltz, Joel H. Saltz, Fusheng Wang:
Predicting opioid overdose risk of patients with opioid prescriptions using electronic health records based on temporal deep learning. J. Biomed. Informatics 116: 103725 (2021) - [c252]Sritha Rajupet, Rachel Wong, Donna Moller, Lisa Maldonado, Tricia Weiss, Tahsin M. Kurç, Janos G. Hajagos, Hasit Shah, Mary M. Saltz, Joel H. Saltz, Veena Lingam:
Informatics to Power Post-COVID Care: A Framework for Patient Care and Secondary Data Use. AMIA 2021 - [c251]Siao Sun, Fusheng Wang, Sina Rashidian, Tahsin M. Kurç, Kayley Abell-Hart, Janos G. Hajagos, Wei Zhu, Mary M. Saltz, Joel H. Saltz:
Generating Longitudinal Synthetic EHR Data with Recurrent Autoencoders and Generative Adversarial Networks. AMIA 2021 - [c250]Jingwei Zhang, Ke Ma, John S. Van Arnam, Rajarsi Gupta, Joel H. Saltz, Maria Vakalopoulou, Dimitris Samaras:
A Joint Spatial and Magnification Based Attention Framework for Large Scale Histopathology Classification. CVPR Workshops 2021: 3776-3784 - [c249]Siao Sun, Fusheng Wang, Sina Rashidian, Tahsin M. Kurç, Kayley Abell-Hart, Janos G. Hajagos, Wei Zhu, Mary M. Saltz, Joel H. Saltz:
Generating Longitudinal Synthetic EHR Data with Recurrent Autoencoders and Generative Adversarial Networks. Poly/DMAH@VLDB 2021: 153-165 - [c248]Shahira Abousamra, David Belinsky, John S. Van Arnam, Felicia Allard, Eric Yee, Rajarsi Gupta, Tahsin M. Kurç, Dimitris Samaras, Joel H. Saltz, Chao Chen:
Multi-Class Cell Detection Using Spatial Context Representation. ICCV 2021: 3985-3994 - [c247]Aishik Konwer, Joseph Bae, Gagandeep Singh, Rishabh Gattu, Syed Ali, Jeremy Green, Tej Phatak, Amit Gupta, Chao Chen, Joel H. Saltz, Prateek Prasanna:
Predicting COVID-19 Lung Infiltrate Progression on Chest Radiographs Using Spatio-temporal LSTM based Encoder-Decoder Network. MIDL 2021: 384-398 - [c246]Ana Gainaru, Dmitry Ganyushin, Bing Xie, Tahsin M. Kurç, Joel H. Saltz, Sarp Oral, Norbert Podhorszki, Franz Poeschel, Axel Huebl, Scott Klasky:
Understanding and Leveraging the I/O Patterns of Emerging Machine Learning Analytics. SMC 2021: 119-138 - [i26]Shahira Abousamra, David Belinsky, John S. Van Arnam, Felicia Allard, Eric Yee, Rajarsi Gupta, Tahsin M. Kurç, Dimitris Samaras, Joel H. Saltz, Chao Chen:
Multi-Class Cell Detection Using Spatial Context Representation. CoRR abs/2110.04886 (2021) - 2020
- [j105]Willian Barreiros Jr., Jeremias Moreira, Tahsin M. Kurç, Jun Kong, Alba C. M. A. Melo, Joel H. Saltz, George Teodoro:
Optimizing parameter sensitivity analysis of large-scale microscopy image analysis workflows with multilevel computation reuse. Concurr. Comput. Pract. Exp. 32(2) (2020) - [j104]Andreas S. Panayides, Amir A. Amini, Nenad D. Filipovic, Ashish Sharma, Sotirios A. Tsaftaris, Alistair A. Young, David J. Foran, Nhan Do, Spyretta Golemati, Tahsin M. Kurç, Kun Huang, Konstantina S. Nikita, Ben P. Veasey, Michalis E. Zervakis, Joel H. Saltz, Constantinos S. Pattichis:
AI in Medical Imaging Informatics: Current Challenges and Future Directions. IEEE J. Biomed. Health Informatics 24(7): 1837-1857 (2020) - [c245]Sina Rashidian, Fusheng Wang, Richard A. Moffitt, Victor Garcia, Anurag Dutt, Wei Chang, Vishwam Pandya, Janos G. Hajagos, Mary M. Saltz, Joel H. Saltz:
SMOOTH-GAN: Towards Sharp and Smooth Synthetic EHR Data Generation. AIME 2020: 37-48 - [c244]David Paredes, Prateek Prasanna, Christina Preece, Rajarsi Gupta, Farzad Fereidouni, Dimitris Samaras, Tahsin M. Kurç, Richard M. Levenson, Patricia Thompson-Carino, Joel H. Saltz, Chao Chen:
Automated Assessment of the Curliness of Collagen Fiber in Breast Cancer. ECCV Workshops (1) 2020: 267-279 - [c243]Shahira Abousamra, Danielle Fassler, Le Hou, Yuwei Zhang, Rajarsi Gupta, Tahsin M. Kurç, Luisa F. Escobar-Hoyos, Dimitris Samaras, Beatrice Knudson, Kenneth Shroyer, Joel H. Saltz, Chao Chen:
Weakly-Supervised Deep Stain Decomposition for Multiplex IHC Images. ISBI 2020: 481-485 - [i25]Le Hou, Rajarsi Gupta, John S. Van Arnam, Yuwei Zhang, Kaustubh Sivalenka, Dimitris Samaras, Tahsin M. Kurç, Joel H. Saltz:
Dataset of Segmented Nuclei in Hematoxylin and Eosin Stained Histopathology Images of 10 Cancer Types. CoRR abs/2002.07913 (2020) - [i24]Erich Bremer, Jonas S. Almeida, Joel H. Saltz:
Representing Whole Slide Cancer Image Features with Hilbert Curves. CoRR abs/2005.06469 (2020) - [i23]Xinyu Dong, Jianyuan Deng, Sina Rashidian, Kayley Abell-Hart, Wei Hou, Richard N. Rosenthal, Mary M. Saltz, Joel H. Saltz, Fusheng Wang:
Identifying Risk of Opioid Use Disorder for Patients Taking Opioid Medications with Deep Learning. CoRR abs/2010.04589 (2020)
2010 – 2019
- 2019
- [j103]Jeremias M. Gomes, Willian Barreiros Jr., Tahsin M. Kurç, Alba C. M. A. Melo, Jun Kong, Joel H. Saltz, George Teodoro:
Sensitivity analysis in digital pathology: Handling large number of parameters with compute expensive workflows. Comput. Biol. Medicine 108: 371-381 (2019) - [j102]Luis F. R. Taveira, Tahsin M. Kurç, Alba C. M. A. Melo, Jun Kong, Erich Bremer, Joel H. Saltz, George Teodoro:
Multi-objective Parameter Auto-tuning for Tissue Image Segmentation Workflows. J. Digit. Imaging 32(3): 521-533 (2019) - [j101]Le Hou, Vu Nguyen, Ariel B. Kanevsky, Dimitris Samaras, Tahsin M. Kurç, Tianhao Zhao, Rajarsi R. Gupta, Yi Gao, Wenjin Chen, David J. Foran, Joel H. Saltz:
Sparse autoencoder for unsupervised nucleus detection and representation in histopathology images. Pattern Recognit. 86: 188-200 (2019) - [c242]Xinyu Dong, Sina Rashidian, Yu Wang, Janos G. Hajagos, Xia Zhao, Richard N. Rosenthal, Jun Kong, Mary M. Saltz, Joel H. Saltz, Fusheng Wang:
Machine Learning Based Opioid Overdose Prediction Using Electronic Health Records. AMIA 2019 - [c241]Robert M. Patton, Shahira Abousamra, Dimitris Samaras, Joel H. Saltz, J. Travis Johnston, Steven R. Young, Catherine D. Schuman, Thomas E. Potok, Derek C. Rose, Seung-Hwan Lim, Junghoon Chae, Le Hou:
Exascale Deep Learning to Accelerate Cancer Research. IEEE BigData 2019: 1488-1496 - [c240]Rafael Marconi Ramos, Célia Ghedini Ralha, Tahsin M. Kurç, Joel H. Saltz, George Teodoro:
Increasing Accuracy of Medical CNN Applying Optimization Algorithms: An Image Classification Case. BRACIS 2019: 233-238 - [c239]Tahsin M. Kurç, Ashish Sharma, Rajarsi Gupta, Le Hou, Han Le, Shahira Abousamra, Erich Bremer, Ryan Birmingham, Tammy Diprima, Nan Li, Feiqiao Wang, Joseph Balsamo, Whitney Bremer, Dimitris Samaras, Joel H. Saltz:
From Whole Slide Tissues to Knowledge: Mapping Sub-cellular Morphology of Cancer. BrainLes@MICCAI (2) 2019: 371-379 - [c238]Paola A. Buitrago, Nicholas A. Nystrom, Rajarsi Gupta, Joel H. Saltz:
Delivering Scalable Deep Learning to Research with Bridges-AI. CARLA 2019: 200-214 - [c237]Le Hou, Ayush Agarwal, Dimitris Samaras, Tahsin M. Kurç, Rajarsi R. Gupta, Joel H. Saltz:
Robust Histopathology Image Analysis: To Label or to Synthesize? CVPR 2019: 8533-8542 - [c236]Kolya Malkin, Caleb Robinson, Le Hou, Rachel Soobitsky, Jacob Czawlytko, Dimitris Samaras, Joel H. Saltz, Lucas Joppa, Nebojsa Jojic:
Label super-resolution networks. ICLR (Poster) 2019 - [c235]Han Le, Dimitris Samaras, Tahsin M. Kurç, Rajarsi Gupta, Kenneth Shroyer, Joel H. Saltz:
Pancreatic Cancer Detection in Whole Slide Images Using Noisy Label Annotations. MICCAI (1) 2019: 541-549 - [i22]Maozheng Zhao, Le Hou, Han Le, Dimitris Samaras, Nebojsa Jojic, Danielle Fassler, Tahsin M. Kurç, Rajarsi R. Gupta, Kolya Malkin, Shahira Abousamra, Kenneth Shroyer, Joel H. Saltz:
Label Super Resolution with Inter-Instance Loss. CoRR abs/1904.04429 (2019) - [i21]Han Le, Rajarsi R. Gupta, Le Hou, Shahira Abousamra, Danielle Fassler, Tahsin M. Kurç, Dimitris Samaras, Rebecca Batiste, Tianhao Zhao, Alison L. Van Dyke, Ashish Sharma, Erich Bremer, Jonas S. Almeida, Joel H. Saltz:
Utilizing Automated Breast Cancer Detection to Identify Spatial Distributions of Tumor Infiltrating Lymphocytes in Invasive Breast Cancer. CoRR abs/1905.10841 (2019) - [i20]Shahira Abousamra, Le Hou, Rajarsi R. Gupta, Chao Chen, Dimitris Samaras, Tahsin M. Kurç, Rebecca Batiste, Tianhao Zhao, Kenneth Shroyer, Joel H. Saltz:
Learning from Thresholds: Fully Automated Classification of Tumor Infiltrating Lymphocytes for Multiple Cancer Types. CoRR abs/1907.03960 (2019) - [i19]Robert M. Patton, J. Travis Johnston, Steven R. Young, Catherine D. Schuman, Thomas E. Potok, Derek C. Rose, Seung-Hwan Lim, Junghoon Chae, Le Hou, Shahira Abousamra, Dimitris Samaras, Joel H. Saltz:
Exascale Deep Learning to Accelerate Cancer Research. CoRR abs/1909.12291 (2019) - [i18]Eduardo Scartezini, Willian Barreiros Jr., Tahsin M. Kurç, Jun Kong, Alba C. M. A. Melo, Joel H. Saltz, George Teodoro:
Run-time Parameter Sensitivity Analysis Optimizations. CoRR abs/1910.14548 (2019) - 2018
- [j100]Jeremias M. Gomes, Alba Cristina Magalhaes Alves de Melo, Jun Kong, Tahsin M. Kurç, Joel H. Saltz, George Teodoro:
Cooperative and out-of-core execution of the irregular wavefront propagation pattern on hybrid machines with Intel® Xeon Phi™. Concurr. Comput. Pract. Exp. 30(14) (2018) - [j99]Mark Asch, Terry Moore, Rosa M. Badia, Micah Beck, Peter H. Beckman, T. Bidot, François Bodin, Franck Cappello, Alok N. Choudhary, Bronis R. de Supinski, Ewa Deelman, Jack J. Dongarra, Anshu Dubey, Geoffrey C. Fox, H. Fu, Sergi Girona, William Gropp, Michael A. Heroux, Yutaka Ishikawa, Katarzyna Keahey, David E. Keyes, Bill Kramer, J.-F. Lavignon, Y. Lu, Satoshi Matsuoka, Bernd Mohr, Daniel A. Reed, S. Requena, Joel H. Saltz, Thomas C. Schulthess, Rick L. Stevens, D. Martin Swany, Alexander S. Szalay, William M. Tang, G. Varoquaux, Jean-Pierre Vilotte, Robert W. Wisniewski, Z. Xu, Igor Zacharov:
Big data and extreme-scale computing. Int. J. High Perform. Comput. Appl. 32(4): 435-479 (2018) - [c234]Tahsin M. Kurç, Joel H. Saltz, Fred W. Prior, Ashish Sharma:
Systems Demonstration: Towards a Services Oriented Platform for Combined Radiology-Pathology Image Analysis and Interpretation. AMIA 2018 - [c233]Sheetal Pandrekar Mangesh, Xin Chen, Gaurav Gopalkrishna, Avi Srivastava, Mary M. Saltz, Joel H. Saltz, Fusheng Wang:
Social Media Based Analysis of Opioid Epidemic Using Reddit. AMIA 2018 - [i17]Luis F. R. Taveira, Tahsin M. Kurç, Alba C. M. A. Melo, Jun Kong, Erich Bremer, Joel H. Saltz, George Teodoro:
Tuning for Tissue Image Segmentation Workflows for Accuracy and Performance. CoRR abs/1810.02911 (2018) - [i16]Quoc Dang Vu, Simon Graham, Minh Nguyen Nhat To, Muhammad Shaban, Talha Qaiser, Navid Alemi Koohbanani, Syed Ali Khurram, Tahsin M. Kurç, Keyvan Farahani, Tianhao Zhao, Rajarsi R. Gupta, Jin Tae Kwak, Nasir M. Rajpoot, Joel H. Saltz:
Methods for Segmentation and Classification of Digital Microscopy Tissue Images. CoRR abs/1810.13230 (2018) - [i15]Sina Rashidian, Janos G. Hajagos, Richard A. Moffitt, Fusheng Wang, Xinyu Dong, Kayley Abell-Hart, Kimberly Noel, Rajarsi R. Gupta, Mathew Tharakan, Veena Lingam, Joel H. Saltz, Mary M. Saltz:
Disease phenotyping using deep learning: A diabetes case study. CoRR abs/1811.11818 (2018) - 2017
- [j98]George Teodoro, Tahsin M. Kurç, Guilherme Andrade, Jun Kong, Renato Ferreira, Joel H. Saltz:
Application performance analysis and efficient execution on systems with multi-core CPUs, GPUs and MICs: a case study with microscopy image analysis. Int. J. High Perform. Comput. Appl. 31(1): 32-51 (2017) - [c232]Le Hou, Dimitris Samaras, Tahsin M. Kurç, Yi Gao, Joel H. Saltz:
ConvNets with Smooth Adaptive Activation Functions for Regression. AISTATS 2017: 430-439 - [c231]Xin Chen, Yu Wang, Xiaxia Yu, Elinor Schoenfeld, Mary M. Saltz, Joel H. Saltz, Fusheng Wang:
Large-scale Analysis of Opioid Poisoning Related Hospital Visits in New York State. AMIA 2017 - [c230]Joel H. Saltz, Ashish Sharma, Alexis B. Carter, Liron Pantanowitz, Tahsin M. Kurç:
20 Years of Digital Pathology - An Overview of the Road Travelled and What is on the Horizon. AMIA 2017 - [c229]Willian Barreiros, George Teodoro, Tahsin M. Kurç, Jun Kong, Alba C. M. A. Melo, Joel H. Saltz:
Parallel and Efficient Sensitivity Analysis of Microscopy Image Segmentation Workflows in Hybrid Systems. CLUSTER 2017: 25-35 - [c228]Xin Chen, Yu Wang, Elinor Schoenfeld, Mary M. Saltz, Joel H. Saltz, Fusheng Wang:
Spatio-temporal Analysis for New York State SPARCS Data. CRI 2017 - [c227]Furqan Baig, Hoang Vo, Tahsin M. Kurç, Joel H. Saltz, Fusheng Wang:
SparkGIS: Resource Aware Efficient In-Memory Spatial Query Processing. SIGSPATIAL/GIS 2017: 28:1-28:10 - [c226]Konstantin Dmitriev, Arie E. Kaufman, Ammar A. Javed, Ralph H. Hruban, Elliot K. Fishman, Anne Marie Lennon, Joel H. Saltz:
Classification of Pancreatic Cysts in Computed Tomography Images Using a Random Forest and Convolutional Neural Network Ensemble. MICCAI (3) 2017: 150-158 - [c225]Naiyun Zhou, Xiaxia Yu, Tianhao Zhao, Si Wen, Fusheng Wang, Wei Zhu, Tahsin M. Kurç, Allen R. Tannenbaum, Joel H. Saltz, Yi Gao:
Evaluation of nucleus segmentation in digital pathology images through large scale image synthesis. Medical Imaging: Digital Pathology 2017: 101400K - [c224]Veda Murthy, Le Hou, Dimitris Samaras, Tahsin M. Kurç, Joel H. Saltz:
Center-Focusing Multi-task CNN with Injected Features for Classification of Glioma Nuclear Images. WACV 2017: 834-841 - [i14]Le Hou, Vu Nguyen, Dimitris Samaras, Tahsin M. Kurç, Yi Gao, Tianhao Zhao, Joel H. Saltz:
Sparse Autoencoder for Unsupervised Nucleus Detection and Representation in Histopathology Images. CoRR abs/1704.00406 (2017) - [i13]Le Hou, Ayush Agarwal, Dimitris Samaras, Tahsin M. Kurç, Rajarsi R. Gupta, Joel H. Saltz:
Unsupervised Histopathology Image Synthesis. CoRR abs/1712.05021 (2017) - 2016
- [c223]Erich Bremer, Tahsin M. Kurç, Yi Gao, Joel H. Saltz, Jonas S. Almeida:
Safe "cloudification" of large images through picker APIs. AMIA 2016 - [c222]Veronica E. Lynn, Niranjan Balasubramanian, Tahsin M. Kurç, Joel H. Saltz, Rebecca Jacobson:
POE: A Pathology Extraction Tool for Finding Attribute-Value Pairs in Glioma Pathology Reports. AMIA 2016 - [c221]Sarah B. Putney, Andrew White, Janos G. Hajagos, Joel H. Saltz, Jonas S. Almeida, Mary M. Saltz:
S2CR3UM: A Solution to the In Silico Relevance, Reliability & Reproducibility Conundrum. AMIA 2016 - [c220]Le Hou,