default search action
Vikash Mansinghka 0001
Person information
- affiliation: Massachusetts Institute of Technologyn (MIT), Cambridge, MA, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j9]Mathieu Huot, Matin Ghavami, Alexander K. Lew, Ulrich Schaechtle, Cameron E. Freer, Zane Shelby, Martin C. Rinard, Feras A. Saad, Vikash K. Mansinghka:
GenSQL: A Probabilistic Programming System for Querying Generative Models of Database Tables. Proc. ACM Program. Lang. 8(PLDI): 790-815 (2024) - [j8]McCoy R. Becker, Alexander K. Lew, Xiaoyan Wang, Matin Ghavami, Mathieu Huot, Martin C. Rinard, Vikash K. Mansinghka:
Probabilistic Programming with Programmable Variational Inference. Proc. ACM Program. Lang. 8(PLDI): 2123-2147 (2024) - [c40]Tan Zhi-Xuan, Lance Ying, Vikash Mansinghka, Joshua B. Tenenbaum:
Pragmatic Instruction Following and Goal Assistance via Cooperative Language-Guided Inverse Planning. AAMAS 2024: 2094-2103 - [i64]Lance Ying, Tan Zhi-Xuan, Lionel Wong, Vikash Mansinghka, Joshua B. Tenenbaum:
Grounding Language about Belief in a Bayesian Theory-of-Mind. CoRR abs/2402.10416 (2024) - [i63]Tan Zhi-Xuan, Lance Ying, Vikash Mansinghka, Joshua B. Tenenbaum:
Pragmatic Instruction Following and Goal Assistance via Cooperative Language-Guided Inverse Planning. CoRR abs/2402.17930 (2024) - [i62]Aidan Curtis, George Matheos, Nishad Gothoskar, Vikash Mansinghka, Joshua B. Tenenbaum, Tomás Lozano-Pérez, Leslie Pack Kaelbling:
Partially Observable Task and Motion Planning with Uncertainty and Risk Awareness. CoRR abs/2403.10454 (2024) - [i61]Mathieu Huot, Matin Ghavami, Alexander K. Lew, Ulrich Schaechtle, Cameron E. Freer, Zane Shelby, Martin C. Rinard, Feras A. Saad, Vikash K. Mansinghka:
GenSQL: A Probabilistic Programming System for Querying Generative Models of Database Tables. CoRR abs/2406.15652 (2024) - [i60]McCoy R. Becker, Alexander K. Lew, Xiaoyan Wang, Matin Ghavami, Mathieu Huot, Martin C. Rinard, Vikash K. Mansinghka:
Probabilistic Programming with Programmable Variational Inference. CoRR abs/2406.15742 (2024) - [i59]Tan Zhi-Xuan, Gloria Kang, Vikash Mansinghka, Joshua B. Tenenbaum:
Infinite Ends from Finite Samples: Open-Ended Goal Inference as Top-Down Bayesian Filtering of Bottom-Up Proposals. CoRR abs/2407.16770 (2024) - [i58]Katherine M. Collins, Ilia Sucholutsky, Umang Bhatt, Kartik Chandra, Lionel Wong, Mina Lee, Cedegao E. Zhang, Tan Zhi-Xuan, Mark K. Ho, Vikash Mansinghka, Adrian Weller, Joshua B. Tenenbaum, Thomas L. Griffiths:
Building Machines that Learn and Think with People. CoRR abs/2408.03943 (2024) - [i57]Lance Ying, Tan Zhi-Xuan, Lionel Wong, Vikash Mansinghka, Joshua B. Tenenbaum:
Understanding Epistemic Language with a Bayesian Theory of Mind. CoRR abs/2408.12022 (2024) - 2023
- [j7]Alexander K. Lew, Matin Ghavamizadeh, Martin C. Rinard, Vikash K. Mansinghka:
Probabilistic Programming with Stochastic Probabilities. Proc. ACM Program. Lang. 7(PLDI): 1708-1732 (2023) - [j6]Alexander K. Lew, Mathieu Huot, Sam Staton, Vikash K. Mansinghka:
ADEV: Sound Automatic Differentiation of Expected Values of Probabilistic Programs. Proc. ACM Program. Lang. 7(POPL): 121-153 (2023) - [c39]Alexander K. Lew, George Matheos, Tan Zhi-Xuan, Matin Ghavamizadeh, Nishad Gothoskar, Stuart Russell, Vikash K. Mansinghka:
SMCP3: Sequential Monte Carlo with Probabilistic Program Proposals. AISTATS 2023: 7061-7088 - [c38]Matthew D. Hoffman, Tuan Anh Le, Pavel Sountsov, Christopher Suter, Ben Lee, Vikash K. Mansinghka, Rif A. Saurous:
ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images. AISTATS 2023: 10425-10444 - [c37]Tan Zhi-Xuan, Paul Stefan Lunis, Nathalie Fernandez Echeverri, Vikash Mansinghka, Josh Tenenbaum:
Language Models as Informative Goal Priors in a Bayesian Theory of Mind. CogSci 2023 - [c36]Guangyao Zhou, Nishad Gothoskar, Lirui Wang, Joshua B. Tenenbaum, Dan Gutfreund, Miguel Lázaro-Gredilla, Dileep George, Vikash K. Mansinghka:
3D Neural Embedding Likelihood: Probabilistic Inverse Graphics for Robust 6D Pose Estimation. ICCV 2023: 21568-21579 - [c35]Feras Saad, Brian Patton, Matthew Douglas Hoffman, Rif A. Saurous, Vikash Mansinghka:
Sequential Monte Carlo Learning for Time Series Structure Discovery. ICML 2023: 29473-29489 - [c34]Mathieu Huot, Alexander K. Lew, Vikash K. Mansinghka, Sam Staton:
ωPAP Spaces: Reasoning Denotationally About Higher-Order, Recursive Probabilistic and Differentiable Programs. LICS 2023: 1-14 - [i56]Guangyao Zhou, Nishad Gothoskar, Lirui Wang, Joshua B. Tenenbaum, Dan Gutfreund, Miguel Lázaro-Gredilla, Dileep George, Vikash K. Mansinghka:
3D Neural Embedding Likelihood for Robust Sim-to-Real Transfer in Inverse Graphics. CoRR abs/2302.03744 (2023) - [i55]Mathieu Huot, Alexander K. Lew, Vikash K. Mansinghka, Sam Staton:
ωPAP Spaces: Reasoning Denotationally About Higher-Order, Recursive Probabilistic and Differentiable Programs. CoRR abs/2302.10636 (2023) - [i54]Alexander K. Lew, Tan Zhi-Xuan, Gabriel Grand, Vikash K. Mansinghka:
Sequential Monte Carlo Steering of Large Language Models using Probabilistic Programs. CoRR abs/2306.03081 (2023) - [i53]Gaurav Arya, Ruben Seyer, Frank Schäfer, Alexander K. Lew, Mathieu Huot, Vikash K. Mansinghka, Chris Rackauckas, Kartik Chandra, Moritz Schauer:
Differentiating Metropolis-Hastings to Optimize Intractable Densities. CoRR abs/2306.07961 (2023) - [i52]Lionel Wong, Gabriel Grand, Alexander K. Lew, Noah D. Goodman, Vikash K. Mansinghka, Jacob Andreas, Joshua B. Tenenbaum:
From Word Models to World Models: Translating from Natural Language to the Probabilistic Language of Thought. CoRR abs/2306.12672 (2023) - [i51]Lance Ying, Tan Zhi-Xuan, Vikash Mansinghka, Joshua B. Tenenbaum:
Inferring the Goals of Communicating Agents from Actions and Instructions. CoRR abs/2306.16207 (2023) - [i50]Feras A. Saad, Brian J. Patton, Matthew D. Hoffman, Rif A. Saurous, Vikash K. Mansinghka:
Sequential Monte Carlo Learning for Time Series Structure Discovery. CoRR abs/2307.09607 (2023) - [i49]Nishad Gothoskar, Matin Ghavami, Eric Li, Aidan Curtis, Michael Noseworthy, Karen Chung, Brian Patton, William T. Freeman, Joshua B. Tenenbaum, Mirko Klukas, Vikash K. Mansinghka:
Bayes3D: fast learning and inference in structured generative models of 3D objects and scenes. CoRR abs/2312.08715 (2023) - 2022
- [c33]Feras Saad, Marco F. Cusumano-Towner, Vikash Mansinghka:
Estimators of Entropy and Information via Inference in Probabilistic Models. AISTATS 2022: 5604-5621 - [c32]Nishad Gothoskar, Miguel Lázaro-Gredilla, Yasemin Bekiroglu, Abhishek Agarwal, Joshua B. Tenenbaum, Vikash K. Mansinghka, Dileep George:
DURableVS: Data-efficient Unsupervised Recalibrating Visual Servoing via online learning in a structured generative model. ICRA 2022: 6674-6680 - [c31]Alexander K. Lew, Marco F. Cusumano-Towner, Vikash K. Mansinghka:
Recursive Monte Carlo and variational inference with auxiliary variables. UAI 2022: 1096-1106 - [i48]Nishad Gothoskar, Miguel Lázaro-Gredilla, Yasemin Bekiroglu, Abhishek Agarwal, Joshua B. Tenenbaum, Vikash K. Mansinghka, Dileep George:
DURableVS: Data-efficient Unsupervised Recalibrating Visual Servoing via online learning in a structured generative model. CoRR abs/2202.03697 (2022) - [i47]Feras A. Saad, Marco F. Cusumano-Towner, Vikash K. Mansinghka:
Estimators of Entropy and Information via Inference in Probabilistic Models. CoRR abs/2202.12363 (2022) - [i46]Alexander K. Lew, Marco F. Cusumano-Towner, Vikash K. Mansinghka:
Recursive Monte Carlo and Variational Inference with Auxiliary Variables. CoRR abs/2203.02836 (2022) - [i45]Tan Zhi-Xuan, Nishad Gothoskar, Falk Pollok, Dan Gutfreund, Joshua B. Tenenbaum, Vikash K. Mansinghka:
Solving the Baby Intuitions Benchmark with a Hierarchically Bayesian Theory of Mind. CoRR abs/2208.02914 (2022) - [i44]Tan Zhi-Xuan, Joshua B. Tenenbaum, Vikash K. Mansinghka:
Abstract Interpretation for Generalized Heuristic Search in Model-Based Planning. CoRR abs/2208.02938 (2022) - [i43]Matthew D. Hoffman, Tuan Anh Le, Pavel Sountsov, Christopher Suter, Ben Lee, Vikash K. Mansinghka, Rif A. Saurous:
ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images. CoRR abs/2210.17415 (2022) - [i42]Alexander K. Lew, Mathieu Huot, Sam Staton, Vikash K. Mansinghka:
ADEV: Sound Automatic Differentiation of Expected Values of Probabilistic Programs. CoRR abs/2212.06386 (2022) - 2021
- [c30]Alexander K. Lew, Monica Agrawal, David A. Sontag, Vikash Mansinghka:
PClean: Bayesian Data Cleaning at Scale with Domain-Specific Probabilistic Programming. AISTATS 2021: 1927-1935 - [c29]Arwa Alanqary, Gloria Z. Lin, Joie Le, Tan Zhi-Xuan, Vikash Mansinghka, Josh Tenenbaum:
Modeling the Mistakes of Boundedly Rational Agents Within a Bayesian Theory of Mind. CogSci 2021 - [c28]Nishad Gothoskar, Marco F. Cusumano-Towner, Ben Zinberg, Matin Ghavamizadeh, Falk Pollok, Austin Garrett, Josh Tenenbaum, Dan Gutfreund, Vikash K. Mansinghka:
3DP3: 3D Scene Perception via Probabilistic Programming. NeurIPS 2021: 9600-9612 - [c27]Feras A. Saad, Martin C. Rinard, Vikash K. Mansinghka:
SPPL: probabilistic programming with fast exact symbolic inference. PLDI 2021: 804-819 - [c26]Feras A. Saad, Vikash K. Mansinghka:
Hierarchical infinite relational model. UAI 2021: 1067-1077 - [i41]Sam Witty, David D. Jensen, Vikash Mansinghka:
A Simulation-Based Test of Identifiability for Bayesian Causal Inference. CoRR abs/2102.11761 (2021) - [i40]Arwa Alanqary, Gloria Z. Lin, Joie Le, Tan Zhi-Xuan, Vikash K. Mansinghka, Joshua B. Tenenbaum:
Modeling the Mistakes of Boundedly Rational Agents Within a Bayesian Theory of Mind. CoRR abs/2106.13249 (2021) - [i39]Feras A. Saad, Vikash K. Mansinghka:
Hierarchical Infinite Relational Model. CoRR abs/2108.07208 (2021) - [i38]Nicholas Roy, Ingmar Posner, Tim D. Barfoot, Philippe Beaudoin, Yoshua Bengio, Jeannette Bohg, Oliver Brock, Isabelle Depatie, Dieter Fox, Daniel E. Koditschek, Tomás Lozano-Pérez, Vikash Mansinghka, Christopher J. Pal, Blake A. Richards, Dorsa Sadigh, Stefan Schaal, Gaurav S. Sukhatme, Denis Thérien, Marc Toussaint, Michiel van de Panne:
From Machine Learning to Robotics: Challenges and Opportunities for Embodied Intelligence. CoRR abs/2110.15245 (2021) - [i37]Nishad Gothoskar, Marco F. Cusumano-Towner, Ben Zinberg, Matin Ghavamizadeh, Falk Pollok, Austin Garrett, Joshua B. Tenenbaum, Dan Gutfreund, Vikash K. Mansinghka:
3DP3: 3D Scene Perception via Probabilistic Programming. CoRR abs/2111.00312 (2021) - [i36]Alexander K. Lew, Mathieu Huot, Vikash K. Mansinghka:
Towards Denotational Semantics of AD for Higher-Order, Recursive, Probabilistic Languages. CoRR abs/2111.15456 (2021) - 2020
- [j5]Alexander K. Lew, Marco F. Cusumano-Towner, Benjamin Sherman, Michael Carbin, Vikash K. Mansinghka:
Trace types and denotational semantics for sound programmable inference in probabilistic languages. Proc. ACM Program. Lang. 4(POPL): 19:1-19:32 (2020) - [j4]Feras A. Saad, Cameron E. Freer, Martin C. Rinard, Vikash K. Mansinghka:
Optimal approximate sampling from discrete probability distributions. Proc. ACM Program. Lang. 4(POPL): 36:1-36:31 (2020) - [c25]Feras Saad, Cameron E. Freer, Martin C. Rinard, Vikash Mansinghka:
The Fast Loaded Dice Roller: A Near-Optimal Exact Sampler for Discrete Probability Distributions. AISTATS 2020: 1036-1046 - [c24]Alexander K. Lew, Michael Henry Tessler, Vikash Mansinghka, Josh Tenenbaum:
Leveraging Unstructured Statistical Knowledge in a Probabilistic Language of Thought. CogSci 2020 - [c23]Sam Witty, Kenta Takatsu, David D. Jensen, Vikash Mansinghka:
Causal Inference using Gaussian Processes with Structured Latent Confounders. ICML 2020: 10313-10323 - [c22]Tan Zhi-Xuan, Jordyn L. Mann, Tom Silver, Josh Tenenbaum, Vikash Mansinghka:
Online Bayesian Goal Inference for Boundedly Rational Planning Agents. NeurIPS 2020 - [i35]Feras A. Saad, Cameron E. Freer, Martin C. Rinard, Vikash K. Mansinghka:
Optimal Approximate Sampling from Discrete Probability Distributions. CoRR abs/2001.04555 (2020) - [i34]Feras A. Saad, Cameron E. Freer, Martin C. Rinard, Vikash K. Mansinghka:
The Fast Loaded Dice Roller: A Near-Optimal Exact Sampler for Discrete Probability Distributions. CoRR abs/2003.03830 (2020) - [i33]Tan Zhi-Xuan, Jordyn L. Mann, Tom Silver, Joshua B. Tenenbaum, Vikash K. Mansinghka:
Online Bayesian Goal Inference for Boundedly-Rational Planning Agents. CoRR abs/2006.07532 (2020) - [i32]Span Spanbauer, Cameron E. Freer, Vikash Mansinghka:
Deep Involutive Generative Models for Neural MCMC. CoRR abs/2006.15167 (2020) - [i31]Sam Witty, Kenta Takatsu, David D. Jensen, Vikash Mansinghka:
Causal Inference using Gaussian Processes with Structured Latent Confounders. CoRR abs/2007.07127 (2020) - [i30]Alexander K. Lew, Monica Agrawal, David A. Sontag, Vikash K. Mansinghka:
PClean: Bayesian Data Cleaning at Scale with Domain-Specific Probabilistic Programming. CoRR abs/2007.11838 (2020) - [i29]Feras A. Saad, Martin C. Rinard, Vikash K. Mansinghka:
Exact Symbolic Inference in Probabilistic Programs via Sum-Product Representations. CoRR abs/2010.03485 (2020)
2010 – 2019
- 2019
- [j3]Feras A. Saad, Marco F. Cusumano-Towner, Ulrich Schaechtle, Martin C. Rinard, Vikash K. Mansinghka:
Bayesian synthesis of probabilistic programs for automatic data modeling. Proc. ACM Program. Lang. 3(POPL): 37:1-37:32 (2019) - [c21]Feras A. Saad, Cameron E. Freer, Nathanael L. Ackerman, Vikash K. Mansinghka:
A Family of Exact Goodness-of-Fit Tests for High-Dimensional Discrete Distributions. AISTATS 2019: 1640-1649 - [c20]Marco F. Cusumano-Towner, Feras A. Saad, Alexander K. Lew, Vikash K. Mansinghka:
Gen: a general-purpose probabilistic programming system with programmable inference. PLDI 2019: 221-236 - [c19]Alan F. Blackwell, Luke Church, Martin Erwig, James Geddes, Andy Gordon, Maria I. Gorinova, Atilim Gunes Baydin, Bradley Gram-Hansen, Tobias Kohn, Neil D. Lawrence, Vikash Mansinghka, Brooks Paige, Tomas Petricek, Diana Robinson, Advait Sarkar, Oliver Strickson:
Usability of Probabilistic Programming Languages. PPIG 2019 - [i28]Feras A. Saad, Cameron E. Freer, Nathanael L. Ackerman, Vikash K. Mansinghka:
A Family of Exact Goodness-of-Fit Tests for High-Dimensional Discrete Distributions. CoRR abs/1902.10142 (2019) - [i27]Javier Felip, Nilesh A. Ahuja, David Gómez-Gutiérrez, Omesh Tickoo, Vikash Mansinghka:
Real-time Approximate Bayesian Computation for Scene Understanding. CoRR abs/1905.13307 (2019) - [i26]Shivam Handa, Vikash Mansinghka, Martin C. Rinard:
Compositional Inference Metaprogramming with Convergence Guarantees. CoRR abs/1907.05451 (2019) - [i25]Feras A. Saad, Marco F. Cusumano-Towner, Ulrich Schaechtle, Martin C. Rinard, Vikash K. Mansinghka:
Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling. CoRR abs/1907.06249 (2019) - [i24]Sam Witty, Alexander K. Lew, David D. Jensen, Vikash Mansinghka:
Bayesian causal inference via probabilistic program synthesis. CoRR abs/1910.14124 (2019) - 2018
- [c18]Feras Saad, Vikash Mansinghka:
Temporally-Reweighted Chinese Restaurant Process Mixtures for Clustering, Imputing, and Forecasting Multivariate Time Series. AISTATS 2018: 755-764 - [c17]Marco F. Cusumano-Towner, Vikash K. Mansinghka:
A design proposal for Gen: probabilistic programming with fast custom inference via code generation. MAPL@PLDI 2018: 52-57 - [c16]Marco F. Cusumano-Towner, Benjamin Bichsel, Timon Gehr, Martin T. Vechev, Vikash K. Mansinghka:
Incremental inference for probabilistic programs. PLDI 2018: 571-585 - [c15]Vikash K. Mansinghka, Ulrich Schaechtle, Shivam Handa, Alexey Radul, Yutian Chen, Martin C. Rinard:
Probabilistic programming with programmable inference. PLDI 2018: 603-616 - [i23]Marco F. Cusumano-Towner, Vikash K. Mansinghka:
Using probabilistic programs as proposals. CoRR abs/1801.03612 (2018) - 2017
- [j2]Ardavan Saeedi, Tejas D. Kulkarni, Vikash K. Mansinghka, Samuel J. Gershman:
Variational Particle Approximations. J. Mach. Learn. Res. 18: 69:1-69:29 (2017) - [c14]Feras Saad, Vikash Mansinghka:
Detecting Dependencies in Sparse, Multivariate Databases Using Probabilistic Programming and Non-parametric Bayes. AISTATS 2017: 632-641 - [c13]Marco F. Cusumano-Towner, Vikash K. Mansinghka:
AIDE: An algorithm for measuring the accuracy of probabilistic inference algorithms. NIPS 2017: 3000-3010 - [i22]Feras Saad, Leonardo Casarsa, Vikash Mansinghka:
Probabilistic Search for Structured Data via Probabilistic Programming and Nonparametric Bayes. CoRR abs/1704.01087 (2017) - [i21]Marco F. Cusumano-Towner, Alexey Radul, David Wingate, Vikash K. Mansinghka:
Probabilistic programs for inferring the goals of autonomous agents. CoRR abs/1704.04977 (2017) - [i20]Marco F. Cusumano-Towner, Vikash K. Mansinghka:
AIDE: An algorithm for measuring the accuracy of probabilistic inference algorithms. CoRR abs/1705.07224 (2017) - [i19]Feras A. Saad, Vikash K. Mansinghka:
A Bayesian Nonparametric Method for Clustering Imputation, and Forecasting in Multivariate Time Series. CoRR abs/1710.06900 (2017) - 2016
- [j1]Vikash Mansinghka, Patrick Shafto, Eric Jonas, Cap Petschulat, Max Gasner, Joshua B. Tenenbaum:
CrossCat: A Fully Bayesian Nonparametric Method for Analyzing Heterogeneous, High Dimensional Data. J. Mach. Learn. Res. 17: 138:1-138:49 (2016) - [c12]Feras Saad, Vikash K. Mansinghka:
A Probabilistic Programming Approach To Probabilistic Data Analysis. NIPS 2016: 2011-2019 - [i18]Marco F. Cusumano-Towner, Vikash K. Mansinghka:
Quantifying the probable approximation error of probabilistic inference programs. CoRR abs/1606.00068 (2016) - [i17]Feras Saad, Vikash Mansinghka:
Probabilistic Data Analysis with Probabilistic Programming. CoRR abs/1608.05347 (2016) - [i16]Feras Saad, Vikash Mansinghka:
Detecting Dependencies in High-Dimensional, Sparse Databases Using Probabilistic Programming and Non-parametric Bayes. CoRR abs/1611.01708 (2016) - [i15]Marco F. Cusumano-Towner, Vikash K. Mansinghka:
Measuring the non-asymptotic convergence of sequential Monte Carlo samplers using probabilistic programming. CoRR abs/1612.02161 (2016) - [i14]Marco F. Cusumano-Towner, Vikash K. Mansinghka:
Encapsulating models and approximate inference programs in probabilistic modules. CoRR abs/1612.04759 (2016) - 2015
- [c11]Jan-Willem van de Meent, Hongseok Yang, Vikash Mansinghka, Frank D. Wood:
Particle Gibbs with Ancestor Sampling for Probabilistic Programs. AISTATS 2015 - [c10]Tejas D. Kulkarni, Pushmeet Kohli, Joshua B. Tenenbaum, Vikash Mansinghka:
Picture: A probabilistic programming language for scene perception. CVPR 2015: 4390-4399 - [c9]Jonathan H. Huggins, Karthik Narasimhan, Ardavan Saeedi, Vikash Mansinghka:
JUMP-Means: Small-Variance Asymptotics for Markov Jump Processes. ICML 2015: 693-701 - [i13]Jan-Willem van de Meent, Hongseok Yang, Vikash Mansinghka, Frank D. Wood:
Particle Gibbs with Ancestor Sampling for Probabilistic Programs. CoRR abs/1501.06769 (2015) - [i12]Jonathan H. Huggins, Karthik Narasimhan, Ardavan Saeedi, Vikash K. Mansinghka:
JUMP-Means: Small-Variance Asymptotics for Markov Jump Processes. CoRR abs/1503.00332 (2015) - [i11]Frank D. Wood, Jan-Willem van de Meent, Vikash Mansinghka:
A New Approach to Probabilistic Programming Inference. CoRR abs/1507.00996 (2015) - [i10]Vikash Mansinghka, Patrick Shafto, Eric Jonas, Cap Petschulat, Max Gasner, Joshua B. Tenenbaum:
CrossCat: A Fully Bayesian Nonparametric Method for Analyzing Heterogeneous, High Dimensional Data. CoRR abs/1512.01272 (2015) - [i9]Vikash Mansinghka, Richard Tibbetts, Jay Baxter, Patrick Shafto, Baxter Eaves:
BayesDB: A probabilistic programming system for querying the probable implications of data. CoRR abs/1512.05006 (2015) - [i8]Ulrich Schaechtle, Ben Zinberg, Alexey Radul, Kostas Stathis, Vikash K. Mansinghka:
Probabilistic Programming with Gaussian Process Memoization. CoRR abs/1512.05665 (2015) - 2014
- [c8]Frank D. Wood, Jan-Willem van de Meent, Vikash Mansinghka:
A New Approach to Probabilistic Programming Inference. AISTATS 2014: 1024-1032 - [i7]Vikash Mansinghka, Eric Jonas:
Building fast Bayesian computing machines out of intentionally stochastic, digital parts. CoRR abs/1402.4914 (2014) - [i6]Vikash Mansinghka, Daniel Selsam, Yura N. Perov:
Venture: a higher-order probabilistic programming platform with programmable inference. CoRR abs/1404.0099 (2014) - [i5]Tejas D. Kulkarni, Vikash K. Mansinghka, Pushmeet Kohli, Joshua B. Tenenbaum:
Inverse Graphics with Probabilistic CAD Models. CoRR abs/1407.1339 (2014) - 2013
- [c7]Biplab Deka, Alex A. Birklykke, Henry Duwe, Vikash K. Mansinghka, Rakesh Kumar:
Markov chain algorithms: A template for building future robust low power systems. ACSSC 2013: 118-125 - [c6]Vikash K. Mansinghka, Tejas D. Kulkarni, Yura N. Perov, Joshua B. Tenenbaum:
Approximate Bayesian Image Interpretation using Generative Probabilistic Graphics Programs. NIPS 2013: 1520-1528 - [i4]Dan Lovell, Jonathan Malmaud, Ryan P. Adams, Vikash K. Mansinghka:
ClusterCluster: Parallel Markov Chain Monte Carlo for Dirichlet Process Mixtures. CoRR abs/1304.2302 (2013) - [i3]Vikash K. Mansinghka, Tejas D. Kulkarni, Yura N. Perov, Joshua B. Tenenbaum:
Approximate Bayesian Image Interpretation using Generative Probabilistic Graphics Programs. CoRR abs/1307.0060 (2013) - 2012
- [i2]Noah D. Goodman, Vikash Mansinghka, Daniel M. Roy, Kallista A. Bonawitz, Joshua B. Tenenbaum:
Church: a language for generative models. CoRR abs/1206.3255 (2012) - [i1]Vikash Mansinghka, Charles Kemp, Thomas L. Griffiths, Joshua B. Tenenbaum:
Structured Priors for Structure Learning. CoRR abs/1206.6852 (2012)
2000 – 2009
- 2009
- [c5]Vikash Mansinghka, Daniel M. Roy, Eric Jonas, Joshua B. Tenenbaum:
Exact and Approximate Sampling by Systematic Stochastic Search. AISTATS 2009: 400-407 - 2008
- [c4]Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Kallista A. Bonawitz, Joshua B. Tenenbaum:
Church: a language for generative models. UAI 2008: 220-229 - 2007
- [c3]Vikash K. Mansinghka, Daniel M. Roy, Ryan Rifkin, Joshua B. Tenenbaum:
AClass: A simple, online, parallelizable algorithm for probabilistic classification. AISTATS 2007: 315-322 - 2006
- [c2]Daniel M. Roy, Charles Kemp, Vikash Mansinghka, Joshua B. Tenenbaum:
Learning annotated hierarchies from relational data. NIPS 2006: 1185-1192 - [c1]Vikash K. Mansinghka, Charles Kemp, Thomas L. Griffiths, Joshua B. Tenenbaum:
Structured Priors for Structure Learning. UAI 2006
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:14 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint