
James T. Kwok
James Tin-Yau Kwok
Person information
- affiliation: Hong Kong University of Science and Technology
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2021
- [j67]Yuefeng Ma
, Xun Liang
, Gang Sheng, James T. Kwok
, Maoli Wang
, Guangshun Li
:
Noniterative Sparse LS-SVM Based on Globally Representative Point Selection. IEEE Trans. Neural Networks Learn. Syst. 32(2): 788-798 (2021) - [i31]Hansi Yang, Quanming Yao, James T. Kwok:
Tensorizing Subgraph Search in the Supernet. CoRR abs/2101.01078 (2021) - [i30]Han Shi, Jiahui Gao, Xiaozhe Ren, Hang Xu, Xiaodan Liang, Zhenguo Li, James T. Kwok:
SparseBERT: Rethinking the Importance Analysis in Self-attention. CoRR abs/2102.12871 (2021) - 2020
- [j66]Yaqing Wang, Quanming Yao, James T. Kwok, Lionel M. Ni:
Generalizing from a Few Examples: A Survey on Few-shot Learning. ACM Comput. Surv. 53(3): 63:1-63:34 (2020) - [j65]Yaqing Wang
, James T. Kwok
, Lionel M. Ni
:
Generalized Convolutional Sparse Coding With Unknown Noise. IEEE Trans. Image Process. 29: 5386-5395 (2020) - [c124]Han Shi, Haozheng Fan, James T. Kwok:
Effective Decoding in Graph Auto-Encoder Using Triadic Closure. AAAI 2020: 906-913 - [c123]Quanming Yao, Hansi Yang, Bo Han, Gang Niu, James Tin-Yau Kwok:
Searching to Exploit Memorization Effect in Learning with Noisy Labels. ICML 2020: 10789-10798 - [c122]Rishabh Mehrotra, Ben Carterette, Yong Li, Quanming Yao, Chen Gao, James T. Kwok, Qiang Yang, Isabelle Guyon:
Advances in Recommender Systems: From Multi-stakeholder Marketplaces to Automated RecSys. KDD 2020: 3533-3534 - [c121]Han Shi, Renjie Pi, Hang Xu, Zhenguo Li, James T. Kwok, Tong Zhang:
Bridging the Gap between Sample-based and One-shot Neural Architecture Search with BONAS. NeurIPS 2020 - [c120]Quanming Yao, Xiangning Chen, James T. Kwok, Yong Li, Cho-Jui Hsieh:
Efficient Neural Interaction Function Search for Collaborative Filtering. WWW 2020: 1660-1670 - [p2]Xiawei Guo, Quanming Yao, James T. Kwok, Wei-Wei Tu, Yuqiang Chen, Wenyuan Dai, Qiang Yang:
Privacy-Preserving Stacking with Application to Cross-organizational Diabetes Prediction. Federated Learning 2020: 269-283 - [e12]Haiqin Yang
, Kitsuchart Pasupa
, Andrew Chi-Sing Leung
, James T. Kwok
, Jonathan H. Chan
, Irwin King
:
Neural Information Processing - 27th International Conference, ICONIP 2020, Bangkok, Thailand, November 18-22, 2020, Proceedings, Part IV. Communications in Computer and Information Science 1332, Springer 2020, ISBN 978-3-030-63819-1 [contents] - [e11]Haiqin Yang
, Kitsuchart Pasupa
, Andrew Chi-Sing Leung
, James T. Kwok
, Jonathan H. Chan
, Irwin King
:
Neural Information Processing - 27th International Conference, ICONIP 2020, Bangkok, Thailand, November 18-22, 2020, Proceedings, Part V. Communications in Computer and Information Science 1333, Springer 2020, ISBN 978-3-030-63822-1 [contents] - [e10]Haiqin Yang
, Kitsuchart Pasupa
, Andrew Chi-Sing Leung
, James T. Kwok
, Jonathan H. Chan
, Irwin King
:
Neural Information Processing - 27th International Conference, ICONIP 2020, Bangkok, Thailand, November 23-27, 2020, Proceedings, Part I. Lecture Notes in Computer Science 12532, Springer 2020, ISBN 978-3-030-63829-0 [contents] - [e9]Haiqin Yang
, Kitsuchart Pasupa
, Andrew Chi-Sing Leung
, James T. Kwok
, Jonathan H. Chan
, Irwin King
:
Neural Information Processing - 27th International Conference, ICONIP 2020, Bangkok, Thailand, November 23-27, 2020, Proceedings, Part II. Lecture Notes in Computer Science 12533, Springer 2020, ISBN 978-3-030-63832-0 [contents] - [e8]Haiqin Yang
, Kitsuchart Pasupa
, Andrew Chi-Sing Leung
, James T. Kwok
, Jonathan H. Chan
, Irwin King
:
Neural Information Processing - 27th International Conference, ICONIP 2020, Bangkok, Thailand, November 23-27, 2020, Proceedings, Part III. Lecture Notes in Computer Science 12534, Springer 2020, ISBN 978-3-030-63835-1 [contents] - [i29]Yaqing Wang, Quanming Yao, James T. Kwok:
Efficient Low-Rank Matrix Learning by Factorizable Nonconvex Regularization. CoRR abs/2008.06542 (2020) - [i28]Bo Han, Quanming Yao, Tongliang Liu, Gang Niu, Ivor W. Tsang, James T. Kwok, Masashi Sugiyama:
A Survey of Label-noise Representation Learning: Past, Present and Future. CoRR abs/2011.04406 (2020)
2010 – 2019
- 2019
- [j64]Quanming Yao
, James T. Kwok, Taifeng Wang, Tie-Yan Liu:
Large-Scale Low-Rank Matrix Learning with Nonconvex Regularizers. IEEE Trans. Pattern Anal. Mach. Intell. 41(11): 2628-2643 (2019) - [j63]Quanming Yao
, James T. Kwok:
Accelerated and Inexact Soft-Impute for Large-Scale Matrix and Tensor Completion. IEEE Trans. Knowl. Data Eng. 31(9): 1665-1679 (2019) - [j62]En-Liang Hu
, James T. Kwok:
Low-Rank Matrix Learning Using Biconvex Surrogate Minimization. IEEE Trans. Neural Networks Learn. Syst. 30(11): 3517-3527 (2019) - [c119]Lu Hou, Ruiliang Zhang, James T. Kwok:
Analysis of Quantized Models. ICLR (Poster) 2019 - [c118]Quanming Yao, James Tin-Yau Kwok, Bo Han:
Efficient Nonconvex Regularized Tensor Completion with Structure-aware Proximal Iterations. ICML 2019: 7035-7044 - [c117]Quanming Yao, Xiawei Guo, James T. Kwok, Wei-Wei Tu, Yuqiang Chen, Wenyuan Dai, Qiang Yang:
Privacy-Preserving Stacking with Application to Cross-organizational Diabetes Prediction. IJCAI 2019: 4114-4120 - [c116]Minsam Kim, James T. Kwok:
Dynamic Unit Surgery for Deep Neural Network Compression and Acceleration. IJCNN 2019: 1-8 - [c115]Lu Hou, Jinhua Zhu, James T. Kwok, Fei Gao, Tao Qin, Tie-Yan Liu:
Normalization Helps Training of Quantized LSTM. NeurIPS 2019: 7344-7354 - [c114]Shuai Zheng, Ziyue Huang, James T. Kwok:
Communication-Efficient Distributed Blockwise Momentum SGD with Error-Feedback. NeurIPS 2019: 11446-11456 - [c113]Zac Wellmer, James T. Kwok:
Policy Prediction Network: Model-Free Behavior Policy with Model-Based Learning in Continuous Action Space. ECML/PKDD (3) 2019: 118-133 - [i27]Yaqing Wang
, James T. Kwok, Lionel M. Ni:
General Convolutional Sparse Coding with Unknown Noise. CoRR abs/1903.03253 (2019) - [i26]Shuai Zheng
, James T. Kwok:
Blockwise Adaptivity: Faster Training and Better Generalization in Deep Learning. CoRR abs/1905.09899 (2019) - [i25]Shuai Zheng
, Ziyue Huang, James T. Kwok:
Communication-Efficient Distributed Blockwise Momentum SGD with Error-Feedback. CoRR abs/1905.10936 (2019) - [i24]Quanming Yao, Xiangning Chen, James T. Kwok, Yong Li:
Searching for Interaction Functions in Collaborative Filtering. CoRR abs/1906.12091 (2019) - [i23]Zac Wellmer, James T. Kwok:
Policy Prediction Network: Model-Free Behavior Policy with Model-Based Learning in Continuous Action Space. CoRR abs/1909.07373 (2019) - [i22]Han Shi, Renjie Pi, Hang Xu, Zhenguo Li, James T. Kwok, Tong Zhang:
Multi-objective Neural Architecture Search via Predictive Network Performance Optimization. CoRR abs/1911.09336 (2019) - [i21]Han Shi, Haozheng Fan, James T. Kwok:
Effective Decoding in Graph Auto-Encoder using Triadic Closure. CoRR abs/1911.11322 (2019) - 2018
- [j61]Elham J. Barezi, James T. Kwok, Hamid R. Rabiee:
Corrigendum to "Multi-label learning in the independent label sub-spaces" [Pattern Recognition Letters 97(2017) 8-12]. Pattern Recognit. Lett. 112: 152 (2018) - [j60]Yaqing Wang
, Quanming Yao
, James T. Kwok
, Lionel M. Ni
:
Scalable Online Convolutional Sparse Coding. IEEE Trans. Image Process. 27(10): 4850-4859 (2018) - [j59]Yue Zhu
, James T. Kwok, Zhi-Hua Zhou:
Multi-Label Learning with Global and Local Label Correlation. IEEE Trans. Knowl. Data Eng. 30(6): 1081-1094 (2018) - [j58]Yuefeng Ma
, Xun Liang
, James T. Kwok, Jianping Li, Xiaoping Zhou, Haiyan Zhang:
Fast-Solving Quasi-Optimal LS-S3VM Based on an Extended Candidate Set. IEEE Trans. Neural Networks Learn. Syst. 29(4): 1120-1131 (2018) - [c112]Lu Hou, James T. Kwok:
Loss-aware Weight Quantization of Deep Networks. ICLR (Poster) 2018 - [c111]Yaqing Wang, Quanming Yao, James Tin-Yau Kwok, Lionel M. Ni:
Online Convolutional Sparse Coding with Sample-Dependent Dictionary. ICML 2018: 5196-5205 - [c110]Shuai Zheng, James Tin-Yau Kwok:
Lightweight Stochastic Optimization for Minimizing Finite Sums with Infinite Data. ICML 2018: 5927-5935 - [c109]Quanming Yao, James T. Kwok:
Scalable Robust Matrix Factorization with Nonconvex Loss. NeurIPS 2018: 5066-5075 - [i20]Huan Zhao, Quanming Yao, Yangqiu Song, James T. Kwok, Dik Lun Lee:
Learning with Heterogeneous Side Information Fusion for Recommender Systems. CoRR abs/1801.02411 (2018) - [i19]Lu Hou, James T. Kwok:
Loss-aware Weight Quantization of Deep Networks. CoRR abs/1802.08635 (2018) - [i18]Yaqing Wang, Quanming Yao, James T. Kwok, Lionel M. Ni:
Online Convolutional Sparse Coding with Sample-Dependent Dictionary. CoRR abs/1804.10366 (2018) - [i17]Lu Hou, James T. Kwok:
Power Law in Sparsified Deep Neural Networks. CoRR abs/1805.01891 (2018) - [i16]Shuai Zheng, James T. Kwok:
Lightweight Stochastic Optimization for Minimizing Finite Sums with Infinite Data. CoRR abs/1806.02927 (2018) - 2017
- [j57]Quanming Yao, James T. Kwok:
Efficient Learning with a Family of Nonconvex Regularizers by Redistributing Nonconvexity. J. Mach. Learn. Res. 18: 179:1-179:52 (2017) - [j56]Elham J. Barezi, James T. Kwok, Hamid R. Rabiee:
Multi-Label learning in the independent label sub-spaces. Pattern Recognit. Lett. 97: 8-12 (2017) - [j55]Wenwu He, James Tin-Yau Kwok, Ji Zhu, Yang Liu:
A Note on the Unification of Adaptive Online Learning. IEEE Trans. Neural Networks Learn. Syst. 28(5): 1178-1191 (2017) - [c108]Xiawei Guo, Quanming Yao, James Tin-Yau Kwok:
Efficient Sparse Low-Rank Tensor Completion Using the Frank-Wolfe Algorithm. AAAI 2017: 1948-1954 - [c107]Huan Zhao, Quanming Yao, James T. Kwok, Dik Lun Lee:
Collaborative Filtering with Social Local Models. ICDM 2017: 645-654 - [c106]Lu Hou, Quanming Yao, James T. Kwok:
Loss-aware Binarization of Deep Networks. ICLR (Poster) 2017 - [c105]Shuai Zheng, James T. Kwok:
Follow the Moving Leader in Deep Learning. ICML 2017: 4110-4119 - [c104]Quanming Yao, James T. Kwok, Fei Gao, Wei Chen, Tie-Yan Liu:
Efficient Inexact Proximal Gradient Algorithm for Nonconvex Problems. IJCAI 2017: 3308-3314 - [c103]Yaqing Wang, James T. Kwok, Quanming Yao, Lionel M. Ni:
Zero-shot learning with a partial set of observed attributes. IJCNN 2017: 3777-3784 - [i15]Quanming Yao, James T. Kwok:
Accelerated and Inexact Soft-Impute for Large-Scale Matrix and Tensor Completion. CoRR abs/1703.05487 (2017) - [i14]Yue Zhu, James T. Kwok, Zhi-Hua Zhou:
Multi-Label Learning with Global and Local Label Correlation. CoRR abs/1704.01415 (2017) - [i13]Yaqing Wang, Quanming Yao, James T. Kwok, Lionel M. Ni:
Online Convolutional Sparse Coding. CoRR abs/1706.06972 (2017) - [i12]Quanming Yao, James T. Kwok, Taifeng Wang, Tie-Yan Liu:
Large-Scale Low-Rank Matrix Learning with Nonconvex Regularizers. CoRR abs/1708.00146 (2017) - 2016
- [j54]Jinho Kim, James T. Kwok, Kazutoshi Sumiya, Byoung-Tak Zhang:
Special issue: First International Conference on Big Data and Smart Computing (BigComp2014). Data Knowl. Eng. 104: 15-16 (2016) - [c102]Lu Hou, James T. Kwok, Jacek M. Zurada:
Efficient Learning of Timeseries Shapelets. AAAI 2016: 1209-1215 - [c101]Yu-Feng Li, James T. Kwok, Zhi-Hua Zhou:
Towards Safe Semi-Supervised Learning for Multivariate Performance Measures. AAAI 2016: 1816-1822 - [c100]Ruiliang Zhang, Shuai Zheng, James T. Kwok:
Asynchronous Distributed Semi-Stochastic Gradient Optimization. AAAI 2016: 2323-2329 - [c99]Shuai Zheng, Ruiliang Zhang, James T. Kwok:
Fast Nonsmooth Regularized Risk Minimization with Continuation. AAAI 2016: 2393-2399 - [c98]Quanming Yao, James T. Kwok:
Efficient Learning with a Family of Nonconvex Regularizers by Redistributing Nonconvexity. ICML 2016: 2645-2654 - [c97]Quanming Yao, James T. Kwok:
Greedy Learning of Generalized Low-Rank Models. IJCAI 2016: 2294-2300 - [c96]Shuai Zheng, James T. Kwok:
Fast-and-Light Stochastic ADMM. IJCAI 2016: 2407-2613 - [c95]Xiawei Guo, James T. Kwok:
Aggregating Crowdsourced Ordinal Labels via Bayesian Clustering. ECML/PKDD (1) 2016: 426-442 - [i11]Shuai Zheng, Ruiliang Zhang, James Tin-Yau Kwok:
Fast Nonsmooth Regularized Risk Minimization with Continuation. CoRR abs/1602.07844 (2016) - [i10]Shuai Zheng, James T. Kwok:
Fast-and-Light Stochastic ADMM. CoRR abs/1604.07070 (2016) - [i9]Quanming Yao, James T. Kwok:
Efficient Learning with a Family of Nonconvex Regularizers by Redistributing Nonconvexity. CoRR abs/1606.03841 (2016) - [i8]Quanming Yao, James T. Kwok:
Learning of Generalized Low-Rank Models: A Greedy Approach. CoRR abs/1607.08012 (2016) - [i7]Quanming Yao, James T. Kwok:
Fast Learning with Nonconvex L1-2 Regularization. CoRR abs/1610.09461 (2016) - [i6]Lu Hou, Quanming Yao, James T. Kwok:
Loss-aware Binarization of Deep Networks. CoRR abs/1611.01600 (2016) - 2015
- [j53]Wei Bi, James T. Kwok:
Bayes-Optimal Hierarchical Multilabel Classification. IEEE Trans. Knowl. Data Eng. 27(11): 2907-2918 (2015) - [j52]Mu Li, Wei Bi, James T. Kwok, Bao-Liang Lu:
Large-Scale Nyström Kernel Matrix Approximation Using Randomized SVD. IEEE Trans. Neural Networks Learn. Syst. 26(1): 152-164 (2015) - [j51]Kai Zhang, Liang Lan, James T. Kwok, Slobodan Vucetic, Bahram Parvin:
Scaling Up Graph-Based Semisupervised Learning via Prototype Vector Machines. IEEE Trans. Neural Networks Learn. Syst. 26(3): 444-457 (2015) - [j50]En-Liang Hu, James T. Kwok:
Scalable Nonparametric Low-Rank Kernel Learning Using Block Coordinate Descent. IEEE Trans. Neural Networks Learn. Syst. 26(9): 1927-1938 (2015) - [c94]Quanming Yao, James T. Kwok:
Colorization by Patch-Based Local Low-Rank Matrix Completion. AAAI 2015: 1959-1965 - [c93]Quanming Yao, James T. Kwok, Wenliang Zhong:
Fast Low-Rank Matrix Learning with Nonconvex Regularization. ICDM 2015: 539-548 - [c92]Quanming Yao, James T. Kwok:
Accelerated Inexact Soft-Impute for Fast Large-Scale Matrix Completion. IJCAI 2015: 4002-4008 - [c91]Yihai Huang, James T. Kwok:
Collaborative filtering via co-factorization of individuals and groups. IJCNN 2015: 1-8 - [c90]Kai Fan, Ziteng Wang, Jeffrey M. Beck, James T. Kwok, Katherine A. Heller:
Fast Second Order Stochastic Backpropagation for Variational Inference. NIPS 2015: 1387-1395 - [p1]James Tin-Yau Kwok, Zhi-Hua Zhou, Lei Xu:
Machine Learning. Handbook of Computational Intelligence 2015: 495-522 - [i5]Ruiliang Zhang, Shuai Zheng, James T. Kwok:
Fast Distributed Asynchronous SGD with Variance Reduction. CoRR abs/1508.01633 (2015) - [i4]Quanming Yao, James Tin-Yau Kwok, Wenliang Zhong:
Fast Low-Rank Matrix Learning with Nonconvex Regularization. CoRR abs/1512.00984 (2015) - 2014
- [j49]James T. Kwok, Liqing Zhang, Hongtao Lu:
Selected papers from the 2011 International Conference on Neural Information Processing (ICONIP 2011). Neurocomputing 129: 1-2 (2014) - [j48]Wenwu He, James T. Kwok:
Simple randomized algorithms for online learning with kernels. Neural Networks 60: 17-24 (2014) - [j47]Wei Bi, James T. Kwok:
Mandatory Leaf Node Prediction in Hierarchical Multilabel Classification. IEEE Trans. Neural Networks Learn. Syst. 25(12): 2275-2287 (2014) - [c89]Shuai Zheng, James T. Kwok:
Accurate Integration of Aerosol Predictions by Smoothing on a Manifold. AAAI 2014: 1376-1383 - [c88]Wei Bi, James T. Kwok:
Multilabel Classification with Label Correlations and Missing Labels. AAAI 2014: 1680-1686 - [c87]Wenliang Zhong, James T. Kwok:
Gradient Descent with Proximal Average for Nonconvex and Composite Regularization. AAAI 2014: 2206-2212 - [c86]Wenliang Zhong, James Tin-Yau Kwok:
Accelerated Stochastic Gradient Method for Composite Regularization. AISTATS 2014: 1086-1094 - [c85]Wenliang Zhong, James Tin-Yau Kwok:
Fast Stochastic Alternating Direction Method of Multipliers. ICML 2014: 46-54 - [c84]Ruiliang Zhang, James T. Kwok:
Asynchronous Distributed ADMM for Consensus Optimization. ICML 2014: 1701-1709 - [c83]Wei Bi, Liwei Wang, James T. Kwok, Zhuowen Tu:
Learning to Predict from Crowdsourced Data. UAI 2014: 82-91 - 2013
- [j46]Yu-Feng Li, Ivor W. Tsang, James T. Kwok, Zhi-Hua Zhou:
Convex and scalable weakly labeled SVMs. J. Mach. Learn. Res. 14(1): 2151-2188 (2013) - [c82]James T. Kwok:
Learning from High-Dimensional Data in Multitask/Multilabel Classification. ACPR 2013: 16-17 - [c81]Leon Wenliang Zhong, James T. Kwok:
Efficient Learning for Models with DAG-Structured Parameter Constraints. ICDM 2013: 897-906 - [c80]Kai Zhang, Vincent Wenchen Zheng, Qiaojun Wang, James Tin-Yau Kwok, Qiang Yang, Ivan Marsic:
Covariate Shift in Hilbert Space: A Solution via Sorrogate Kernels. ICML (3) 2013: 388-395 - [c79]Wei Bi, James Tin-Yau Kwok:
Efficient Multi-label Classification with Many Labels. ICML (3) 2013: 405-413 - [c78]En-Liang Hu, James T. Kwok:
Flexible Nonparametric Kernel Learning with Different Loss Functions. ICONIP (2) 2013: 116-123 - [c77]En-Liang Hu, James T. Kwok:
Efficient Kernel Learning from Side Information Using ADMM. IJCAI 2013: 1408-1414 - [c76]Wenliang Zhong, James T. Kwok:
Accurate Probability Calibration for Multiple Classifiers. IJCAI 2013: 1939-1945 - [i3]Yu-Feng Li, Ivor W. Tsang, James T. Kwok, Zhi-Hua Zhou:
Convex and Scalable Weakly Labeled SVMs. CoRR abs/1303.1271 (2013) - [i2]Leon Wenliang Zhong, James T. Kwok:
Fast Stochastic Alternating Direction Method of Multipliers. CoRR abs/1308.3558 (2013) - 2012
- [j45]Liqing Zhang, James Tin-Yau Kwok, Changshui Zhang:
A brief introduction to the special issue for ISNN2010. Neurocomputing 76(1): 1 (2012) - [j44]Jianhua Zhao, Philip L. H. Yu, James T. Kwok:
Bilinear Probabilistic Principal Component Analysis. IEEE Trans. Neural Networks Learn. Syst. 23(3): 492-503 (2012) - [j43]Leon Wenliang Zhong, James T. Kwok:
Efficient Sparse Modeling With Automatic Feature Grouping. IEEE Trans. Neural Networks Learn. Syst. 23(9): 1436-1447 (2012) - [c75]Wei Bi, James T. Kwok:
Hierarchical Multilabel Classification with Minimum Bayes Risk. ICDM 2012: 101-110 - [c74]Wenliang Zhong, James Tin-Yau Kwok:
Convex Multitask Learning with Flexible Task Clusters. ICML 2012 - [c73]Wei Bi, James T. Kwok:
Mandatory Leaf Node Prediction in Hierarchical Multilabel Classification. NIPS 2012: 153-161 - [i1]Wenliang Zhong, James Tin-Yau Kwok:
Convex Multitask Learning with Flexible Task Clusters. CoRR abs/1206.4601 (2012) - 2011
- [j42]Wen-Yun Yang, Bao-Liang Lu, James T. Kwok:
Incorporating cellular sorting structure for better prediction of protein subcellular locations. J. Exp. Theor. Artif. Intell. 23(1): 79-95 (2011) - [j41]Sinno Jialin Pan
, Ivor W. Tsang
, James T. Kwok, Qiang Yang:
Domain Adaptation via Transfer Component Analysis. IEEE Trans. Neural Networks 22(2): 199-210 (2011) - [j40]Shutao Li, Mingkui Tan, Ivor W. Tsang
, James Tin-Yau Kwok:
A Hybrid PSO-BFGS Strategy for Global Optimization of Multimodal Functions. IEEE Trans. Syst. Man Cybern. Part B 41(4): 1003-1014 (2011) - [c72]Mu Li, Xiao-Chen Lian, James T. Kwok, Bao-Liang Lu:
Time and space efficient spectral clustering via column sampling. CVPR 2011: 2297-2304 - [c71]Wenliang Zhong, James T. Kwok:
Efficient Sparse Modeling with Automatic Feature Grouping. ICML 2011: 9-16 - [c70]Wei Bi, James T. Kwok:
MultiLabel Classification on Tree- and DAG-Structured Hierarchies. ICML 2011: 17-24 - [c69]Weike Pan, James T. Kwok:
Structured clustering with automatic kernel adaptation. IJCNN 2011: 1322-1327 - [e7]Bao-Liang Lu, Liqing Zhang, James T. Kwok:
Neural Information Processing - 18th International Conference, ICONIP 2011, Shanghai, China, November 13-17, 2011, Proceedings, Part I. Lecture Notes in Computer Science 7062, Springer 2011, ISBN 978-3-642-24954-9 [contents] - [e6]Bao-Liang Lu, Liqing Zhang, James T. Kwok:
Neural Information Processing - 18th International Conference, ICONIP 2011, Shanghai, China, November 13-17, 2011, Proceedings, Part II. Lecture Notes in Computer Science 7063, Springer 2011, ISBN 978-3-642-24957-0 [contents] - [e5]Bao-Liang Lu, Liqing Zhang, James T. Kwok:
Neural Information Processing - 18th International Conference, ICONIP 2011, Shanghai, China, November 13-17, 2011, Proceedings, Part III. Lecture Notes in Computer Science 7064, Springer 2011, ISBN 978-3-642-24964-8 [contents] - 2010
- [j39]Ming Zhao, Shutao Li, James Tin-Yau Kwok:
Text detection in images using sparse representation with discriminative dictionaries. Image Vis. Comput. 28(12): 1590-1599 (2010) - [j38]Yan-xia Jin, Kai Zhang, James T. Kwok, Han-chang Zhou:
Fast and accurate kernel density approximation using a divide-and-conquer approach. J. Zhejiang Univ. Sci. C 11(9): 677-689 (2010) - [j37]