


default search action
10th SDM 2010: Columbus, Ohio, USA
- Proceedings of the SIAM International Conference on Data Mining, SDM 2010, April 29 - May 1, 2010, Columbus, Ohio, USA. SIAM 2010, ISBN 978-0-89871-703-7

Session S1: Text Mining
- Syed Fawad Hussain

, Gilles Bisson:
Text Categorization Using Word Similarities Based on Higher Order Co-occurrences. 1-12 - Fuzhen Zhuang, Ping Luo, Hui Xiong, Qing He, Yuhong Xiong, Zhongzhi Shi:

Exploiting Associations between Word Clusters and Document Classes for Cross-Domain Text Categorization. 13-24 - Pavel P. Kuksa, Yanjun Qi:

Semi-supervised Bio-named Entity Recognition with Word-Codebook Learning. 25-36 - Muhammad Asiful Islam, Faisal Ahmed, Yevgen Borodin, Jalal Mahmud, I. V. Ramakrishnan:

Improving Accessibility of Transaction-centric Web Objects. 37-48
Session S2: Privacy and Trust
- Niko Vuokko, Evimaria Terzi:

Reconstructing Randomized Social Networks. 49-59 - Leting Wu, Xiaowei Ying, Xintao Wu

:
Reconstruction from Randomized Graph via Low Rank Approximation. 60-71 - Viet-An Nguyen, Ee-Peng Lim

, Hwee-Hoon Tan
, Jing Jiang, Aixin Sun
:
Do You Trust to Get Trust? A Study of Trust Reciprocity Behaviors and Reciprocal Trust Prediction. 72-83 - Yabo Xu, Ke Wang, Ada Wai-Chee Fu, Raymond Chi-Wing Wong:

Publishing Skewed Sensitive Microdata. 84-93
Session S3: Clustering
- Ian Davidson, S. S. Ravi, Leonid Shamis:

A SAT-based Framework for Efficient Constrained Clustering. 94-105 - Wen-Yun Yang, James T. Kwok, Bao-Liang Lu:

Spectral and Semidefinite Relaxation of the CLUHSIC Algorithm. 106-117 - Xuan-Hong Dang, James Bailey:

Generation of Alternative Clusterings Using the CAMI Approach. 118-129 - Greg Hamerly

:
Making k-means Even Faster. 130-140
Session S4: Pattern Mining
- Pritam Chanda, Jianmei Yang, Aidong Zhang, Murali Ramanathan:

On Mining Statistically Significant Attribute Association Information. 141-152 - Kleanthis-Nikolaos Kontonasios, Tijl De Bie:

An Information-Theoretic Approach to Finding Informative Noisy Tiles in Binary Databases. 153-164 - Claudio Lucchese, Salvatore Orlando, Raffaele Perego

:
Mining Top-K Patterns from Binary Datasets in Presence of Noise. 165-176 - Mario Boley, Thomas Gärtner

, Henrik Grosskreutz:
Formal Concept Sampling for Counting and Threshold-Free Local Pattern Mining. 177-188
Session S5: Recommendation
- Beau Piccart, Jan Struyf, Hendrik Blockeel:

Alleviating the Sparsity Problem in Collaborative Filtering by Using an Adapted Distance and a Graph-Based Method. 189-198 - Quanquan Gu, Jie Zhou, Chris H. Q. Ding:

Collaborative Filtering: Weighted Nonnegative Matrix Factorization Incorporating User and Item Graphs. 199-210 - Liang Xiong, Xi Chen, Tzu-Kuo Huang, Jeff G. Schneider, Jaime G. Carbonell:

Temporal Collaborative Filtering with Bayesian Probabilistic Tensor Factorization. 211-222 - Hanhuai Shan, Arindam Banerjee:

Residual Bayesian Co-clustering for Matrix Approximation. 223-234
Session S6: Support Vector Machines
- Guangxia Li, Steven C. H. Hoi, Kuiyu Chang:

Two-View Transductive Support Vector Machines. 235-244 - Hua Ouyang, Alexander G. Gray:

Fast Stochastic Frank-Wolfe Algorithms for Nonlinear SVMs. 245-256 - Stefano Lodi, Ricardo Ñanculef

, Claudio Sartori:
Single-Pass Distributed Learning of Multi-class SVMs Using Core-Sets. 257-268 - Xiaoxu Han:

Nonnegative Principal Component Analysis for Proteomic Tumor Profiles. 269-280
Session S7: Supervised Learning
- Fei Wang, Ping Li:

Efficient Nonnegative Matrix Factorization with Random Projections. 281-292 - Tao Li, Vikas Sindhwani, Chris H. Q. Ding, Yi Zhang:

Bridging Domains with Words: Opinion Analysis with Matrix Tri-factorizations. 293-302 - Shin Matsushima, Nobuyuki Shimizu, Kazuhiro Yoshida, Takashi Ninomiya, Hiroshi Nakagawa:

Exact Passive-Aggressive Algorithm for Multiclass Classification Using Support Class. 303-314
Session S8: Spatial-Temporal Pattern Mining
- Fabian Mörchen, Dmitriy Fradkin:

Robust Mining of Time Intervals with Semi-interval Partial Order Patterns. 315-326 - Pradeep Mohan, Shashi Shekhar, James A. Shine, James P. Rogers:

Cascading Spatio-temporal Pattern Discovery: A Summary of Results. 327-338 - Shin-ichi Minato, Takeaki Uno:

Frequentness-Transition Queries for Distinctive Pattern Mining from Time-Segmented Databases. 339-349 - Niko Vuokko:

Consecutive Ones Property and Spectral Ordering. 350-360
Session S9: Uncertainty in Data Mining
- Jiazhen He, Yang Zhang, Xue Li

, Yong Wang:
Naive Bayes Classifier for Positive Unlabeled Learning with Uncertainty. 361-372 - Charu C. Aggarwal:

On Multidimensional Sharpening of Uncertain Data. 373-384 - Stephan Günnemann, Hardy Kremer, Thomas Seidl

:
Subspace Clustering for Uncertain Data. 385-396 - Daan Fierens:

On the Use of Combining Rules in Relational Probability Trees. 397-408
Session S10: Clustering and Outlier Detection
- Brian Delaney, Andrew S. Fast, William M. Campbell, Clifford J. Weinstein, David D. Jensen:

The Application of Statistical Relational Learning to a Database of Criminal and Terrorist Activity. 409-417 - Yu-Ru Lin, Jimeng Sun

, Nan Cao, Shixia Liu:
ContexTour: Contextual Contour Analysis on Dynamic Multi-relational Clustering. 418-429 - Ou Wu, Jun Gao, Weiming Hu, Bing Li, Mingliang Zhu:

Identifying Multi-instance Outliers. 430-441 - Kelvin Sim, Ardian Kristanto Poernomo, Vivekanand Gopalkrishnan:

Mining Actionable Subspace Clusters in Sequential Data. 442-453
Session S11: Graph Mining
- Kristen LeFevre, Evimaria Terzi:

GraSS: Graph Structure Summarization. 454-465 - Akihiro Inokuchi, Takashi Washio:

Mining Frequent Graph Sequence Patterns Induced by Vertices. 466-477 - Charu C. Aggarwal, Yuchen Zhao, Philip S. Yu:

On Clustering Graph Streams. 478-489 - Sourav Mukherjee, Tim Oates:

Inferring Probability Distributions of Graph Size and Node Degree from Stochastic Graph Grammars. 490-501
Session S12: Feature Learning and Prediction
- Jaegul Choo, Chandan K. Reddy, Hanseung Lee

, Haesun Park:
p-ISOMAP: An Efficient Parametric Update for ISOMAP for Visual Analytics. 502-513 - Marie desJardins, James MacGlashan, Kiri L. Wagstaff

:
Confidence-Based Feature Acquisition to Minimize Training and Test Costs. 514-524 - Jingrui He, Jaime G. Carbonell:

Co-selection of Features and Instances for Unsupervised Rare Category Analysis. 525-536 - Abhimanyu Lad, Yiming Yang:

Active Ordering of Interactive Prediction Tasks. 537-547 - U Kang, Charalampos E. Tsourakakis

, Ana Paula Appel, Christos Faloutsos
, Jure Leskovec:
Radius Plots for Mining Tera-byte Scale Graphs: Algorithms, Patterns, and Observations. 548-558
Session S13: Mining Large Graphs
- Jérôme Kunegis, Stephan Schmidt, Andreas Lommatzsch, Jürgen Lerner, Ernesto William De Luca, Sahin Albayrak

:
Spectral Analysis of Signed Graphs for Clustering, Prediction and Visualization. 559-570 - Pei Li, Hongyan Liu, Jeffrey Xu Yu, Jun He, Xiaoyong Du:

Fast Single-Pair SimRank Computation. 571-582 - TaeHyun Hwang, Rui Kuang:

A Heterogeneous Label Propagation Algorithm for Disease Gene Discovery. 583-594 - Masashi Sugiyama, Satoshi Hara, Paul von Bünau, Taiji Suzuki, Takafumi Kanamori, Motoaki Kawanabe:

Direct Density Ratio Estimation with Dimensionality Reduction. 595-606
Session S14: Feature Selection
- Charu C. Aggarwal:

The Generalized Dimensionality Reduction Problem. 607-618 - Mahdokht Masaeli, Yan Yan, Ying Cui, Glenn Fung, Jennifer G. Dy:

Convex Principal Feature Selection. 619-628 - Wei Fan, Erheng Zhong, Jing Peng, Olivier Verscheure, Kun Zhang, Jiangtao Ren, Rong Yan, Qiang Yang:

Generalized and Heuristic-Free Feature Construction for Improved Accuracy. 629-640
Session S15: Time Series
- Alireza Vahdatpour, Majid Sarrafzadeh:

Unsupervised Discovery of Abnormal Activity Occurrences in Multi-dimensional Time Series, with Applications in Wearable Systems. 641-652 - Zubin Abraham, Pang-Ning Tan

:
An Integrated Framework for Simultaneous Classification and Regression of Time-Series Data. 653-664 - Nuno Filipe Castro, Paulo J. Azevedo

:
Multiresolution Motif Discovery in Time Series. 665-676 - Milos Radovanovic

, Alexandros Nanopoulos, Mirjana Ivanovic
:
Time-Series Classification in Many Intrinsic Dimensions. 677-688
Session S16: Tensors
- Charalampos E. Tsourakakis

:
MACH: Fast Randomized Tensor Decompositions. 689-700 - Evrim Acar, Daniel M. Dunlavy

, Tamara G. Kolda
, Morten Mørup
:
Scalable Tensor Factorizations with Missing Data. 701-712 - Michael J. O'Hara:

On Low-Rank Updates to the Singular Value and Tucker Decompositions. 713-719
Session S17: Social Network Mining
- Zhen Wen, Ching-Yung Lin:

Towards Finding Valuable Topics. 720-731 - Yossi Richter, Elad Yom-Tov

, Noam Slonim:
Predicting Customer Churn in Mobile Networks through Analysis of Social Groups. 732-741 - Tianbao Yang, Yun Chi, Shenghuo Zhu, Yihong Gong, Rong Jin:

Directed Network Community Detection: A Popularity and Productivity Link Model. 742-753 - Keith Henderson, Tina Eliassi-Rad, Spiros Papadimitriou, Christos Faloutsos

:
HCDF: A Hybrid Community Discovery Framework. 754-765
Session S18: Classification
- Wei Liu, Sanjay Chawla, David A. Cieslak, Nitesh V. Chawla

:
A Robust Decision Tree Algorithm for Imbalanced Data Sets. 766-777 - Xiatian Zhang, Quan Yuan, Shiwan Zhao

, Wei Fan, Wentao Zheng, Zhong Wang:
Multi-label Classification without the Multi-label Cost. 778-789 - Rong She, Jeffrey Shih-Chieh Chu, Ke Wang, Nansheng Chen:

Fast and Accurate Gene Prediction by Decision Tree Classification. 790-801 - Charu C. Aggarwal, Philip S. Yu:

On Classification of High-Cardinality Data Streams. 802-813
Session S19: Classification and Applications
- Xiaoxiao Shi

, Qi Liu, Wei Fan, Qiang Yang, Philip S. Yu:
Predictive Modeling with Heterogeneous Sources. 814-825 - Pinar Donmez, Jaime G. Carbonell, Jeff G. Schneider:

A Probabilistic Framework to Learn from Multiple Annotators with Time-Varying Accuracy. 826-837 - Zheng Zhao, Jiangxin Wang, Shashvata Sharma, Nitin Agarwal, Huan Liu, Yung Chang:

An Integrative Approach to Indentifying Biologically Relevant Genes. 838-849 - Bilson J. L. Campana, Eamonn J. Keogh:

A Compression Based Distance Measure for Texture. 850-861
Session S20: Machine Learning
- Yunpeng Cai, Yijun Sun, Yubo Cheng, Jian Li, Steve Goodison:

Fast Implementation of ℓ1Regularized Learning Algorithms Using Gradient Descent Methods. 862-871 - Yi Zhang, Jeff G. Schneider, Artur Dubrawski:

Learning Compressible Models. 872-881 - Malik Magdon-Ismail, Konstantin Mertsalov:

A Permutation Approach to Validation. 882-893 - Zhenyu Lu, Xindong Wu, Josh C. Bongard:

Adaptive Informative Sampling for Active Learning. 894-905
Session S21: Potpourri
- Markus Ojala, Gemma C. Garriga, Aristides Gionis, Heikki Mannila:

Evaluating Query Result Significance in Databases via Randomizations. 906-917 - Nan Li, Yinghui Yang, Xifeng Yan:

Cross-Selling Optimization for Customized Promotion. 918-929 - Nitin Jindal, Bing Liu:

A Generalized Tree Matching Algorithm Considering Nested Lists for Web Data Extraction. 930-941 - Faris Alqadah, Raj Bhatnagar, Anil G. Jegga

:
Mining Maximally Banded Matrices in Binary Data. 942-953

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














