


Остановите войну!
for scientists:


default search action
Markus Püschel
Person information

- affiliation: ETH Zurich, Switzerland
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2022
- [j39]Mark Niklas Müller, Gleb Makarchuk
, Gagandeep Singh
, Markus Püschel, Martin T. Vechev:
PRIMA: general and precise neural network certification via scalable convex hull approximations. Proc. ACM Program. Lang. 6(POPL): 1-33 (2022) - [c117]Joao Rivera, Franz Franchetti, Markus Püschel:
A Compiler for Sound Floating-Point Computations using Affine Arithmetic. CGO 2022: 66-78 - [c116]Vedran Mihal, Bastian Seifert, Markus Püschel:
Porting Signal Processing from Undirected to Directed Graphs: Case Study Signal Denoising with Unrolling Networks. EUSIPCO 2022: 2076-2080 - [c115]Jakob Weissteiner, Chris Wendler, Sven Seuken, Benjamin Lubin, Markus Püschel:
Fourier Analysis-based Iterative Combinatorial Auctions. IJCAI 2022: 549-556 - [i22]Bastian Seifert, Chris Wendler, Markus Püschel:
Causal Fourier Analysis on Directed Acyclic Graphs and Posets. CoRR abs/2209.07970 (2022) - [i21]Tommaso Pegolotti, Bastian Seifert, Markus Püschel:
Fast Möbius and Zeta Transforms. CoRR abs/2211.13706 (2022) - 2021
- [j38]Markus Püschel
, Chris Wendler:
Discrete Signal Processing with Set Functions. IEEE Trans. Signal Process. 69: 1039-1053 (2021) - [j37]Bastian Seifert
, Markus Püschel
:
Digraph Signal Processing With Generalized Boundary Conditions. IEEE Trans. Signal Process. 69: 1422-1437 (2021) - [j36]Markus Püschel
, Bastian Seifert
, Chris Wendler:
Discrete Signal Processing on Meet/Join Lattices. IEEE Trans. Signal Process. 69: 3571-3584 (2021) - [c114]Chris Wendler, Andisheh Amrollahi, Bastian Seifert, Andreas Krause, Markus Püschel:
Learning Set Functions that are Sparse in Non-Orthogonal Fourier Bases. AAAI 2021: 10283-10292 - [c113]Joao Rivera, Franz Franchetti, Markus Püschel:
An Interval Compiler for Sound Floating-Point Computations. CGO 2021: 52-64 - [c112]Eliza Wszola, Martin Jaggi, Markus Püschel:
Faster Parallel Training of Word Embeddings. HiPC 2021: 31-41 - [c111]Bastian Seifert
, Chris Wendler, Markus Püschel:
Wiener Filter on Meet/Join Lattices. ICASSP 2021: 5355-5359 - [c110]Christoph Müller, François Serre, Gagandeep Singh, Markus Püschel, Martin T. Vechev:
Scaling Polyhedral Neural Network Verification on GPUs. MLSys 2021 - [i20]Mark Niklas Müller, Gleb Makarchuk, Gagandeep Singh, Markus Püschel, Martin T. Vechev:
Precise Multi-Neuron Abstractions for Neural Network Certification. CoRR abs/2103.03638 (2021) - 2020
- [j35]François Serre, Markus Püschel:
DSL-Based Hardware Generation with Scala: Example Fast Fourier Transforms and Sorting Networks. ACM Trans. Reconfigurable Technol. Syst. 13(1): 1:1-1:23 (2020) - [j34]Nezihe Merve Gürel
, Kaan Kara, Alen Stojanov, Tyler M. Smith, Thomas Lemmin, Dan Alistarh, Markus Püschel
, Ce Zhang:
Compressive Sensing Using Iterative Hard Thresholding With Low Precision Data Representation: Theory and Applications. IEEE Trans. Signal Process. 68: 4268-4282 (2020) - [c109]Soummya Kar, Markus Püschel, José M. F. Moura:
Finite-Time In-Network Computation of Linear Transforms. ACSSC 2020: 455-459 - [c108]Panagiotis Misiakos, Chris Wendler, Markus Püschel:
Diagonalizable Shift and Filters for Directed Graphs Based on the Jordan-Chevalley Decomposition. ICASSP 2020: 5635-5639 - [c107]Jingxuan He, Gagandeep Singh
, Markus Püschel, Martin T. Vechev:
Learning fast and precise numerical analysis. PLDI 2020: 1112-1127 - [i19]Markus Püschel, Chris Wendler:
Discrete Signal Processing with Set Functions. CoRR abs/2001.10290 (2020) - [i18]Bastian Seifert
, Markus Püschel:
Digraph Signal Processing with Generalized Boundary Conditions. CoRR abs/2005.09762 (2020) - [i17]Christoph Müller, Gagandeep Singh, Markus Püschel, Martin T. Vechev:
Neural Network Robustness Verification on GPUs. CoRR abs/2007.10868 (2020) - [i16]Jakob Weissteiner, Chris Wendler, Sven Seuken, Benjamin Lubin, Markus Püschel:
Fourier Analysis-based Iterative Combinatorial Auctions. CoRR abs/2009.10749 (2020) - [i15]Chris Wendler, Andisheh Amrollahi, Bastian Seifert
, Andreas Krause, Markus Püschel:
Learning Set Functions that are Sparse in Non-Orthogonal Fourier Bases. CoRR abs/2010.00439 (2020) - [i14]Markus Püschel, Bastian Seifert
, Chris Wendler:
Discrete Signal Processing on Meet/Join Lattices. CoRR abs/2012.04358 (2020)
2010 – 2019
- 2019
- [j33]Gagandeep Singh
, Timon Gehr, Markus Püschel, Martin T. Vechev:
An abstract domain for certifying neural networks. Proc. ACM Program. Lang. 3(POPL): 41:1-41:30 (2019) - [c106]François Serre, Markus Püschel:
DSL-Based Modular IP Core Generators: Example FFT and Related Structures. ARITH 2019: 190-191 - [c105]Chris Wendler, Markus Püschel:
Sampling Signals On Meet/Join Lattices. GlobalSIP 2019: 1-5 - [c104]Alen Stojanov, Tiark Rompf, Markus Püschel:
A stage-polymorphic IR for compiling MATLAB-style dynamic tensor expressions. GPCE 2019: 34-47 - [c103]Eliza Wszola, Celestine Mendler-Dünner, Martin Jaggi, Markus Püschel:
On Linear Learning with Manycore Processors. HiPC 2019: 184-194 - [c102]François Serre, Markus Püschel:
In Search of the Optimal Walsh-hadamard Transform for Streamed Parallel Processing. ICASSP 2019: 1532-1536 - [c101]Markus Püschel:
A Discrete Signal Processing Framework for Meet/join Lattices with Applications to Hypergraphs and Trees. ICASSP 2019: 5371-5375 - [c100]Gagandeep Singh
, Timon Gehr, Markus Püschel, Martin T. Vechev:
Boosting Robustness Certification of Neural Networks. ICLR (Poster) 2019 - [c99]Chris Wendler, Markus Püschel, Dan Alistarh:
Powerset Convolutional Neural Networks. NeurIPS 2019: 927-938 - [c98]Gagandeep Singh, Rupanshu Ganvir, Markus Püschel, Martin T. Vechev:
Beyond the Single Neuron Convex Barrier for Neural Network Certification. NeurIPS 2019: 15072-15083 - [i13]Eliza Wszola, Celestine Mendler-Dünner, Martin Jaggi, Markus Püschel:
On Linear Learning with Manycore Processors. CoRR abs/1905.00626 (2019) - [i12]Daniele G. Spampinato, Diego Fabregat-Traver, Markus Püschel, Paolo Bientinesi:
Program Generation for Linear Algebra Using Multiple Layers of DSLs. CoRR abs/1906.08613 (2019) - [i11]Chris Wendler, Dan Alistarh, Markus Püschel:
Powerset Convolutional Neural Networks. CoRR abs/1909.02253 (2019) - 2018
- [j32]Gagandeep Singh
, Markus Püschel, Martin T. Vechev:
A practical construction for decomposing numerical abstract domains. Proc. ACM Program. Lang. 2(POPL): 55:1-55:28 (2018) - [j31]Franz Franchetti
, Tze Meng Low, Doru-Thom Popovici, Richard Michael Veras, Daniele G. Spampinato
, Jeremy R. Johnson, Markus Püschel
, James C. Hoe
, José M. F. Moura
:
SPIRAL: Extreme Performance Portability. Proc. IEEE 106(11): 1935-1968 (2018) - [c97]Gagandeep Singh
, Markus Püschel, Martin T. Vechev:
Fast Numerical Program Analysis with Reinforcement Learning. CAV (1) 2018: 211-229 - [c96]Alen Stojanov, Ivaylo Toskov, Tiark Rompf, Markus Püschel:
SIMD intrinsics on managed language runtimes. CGO 2018: 2-15 - [c95]Daniele G. Spampinato
, Diego Fabregat-Traver, Paolo Bientinesi, Markus Püschel:
Program generation for small-scale linear algebra applications. CGO 2018: 327-339 - [c94]François Serre, Markus Püschel:
Memory-Efficient Fast Fourier Transform on Streaming Data by Fusing Permutations. FPGA 2018: 219-228 - [c93]François Serre, Markus Püschel:
A DSL-Based FFT Hardware Generator in Scala. FPL 2018: 315-322 - [c92]Markus Püschel:
A Discrete Signal Processing Framework for Set Functions. ICASSP 2018: 4359-4363 - [c91]Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, Martin T. Vechev:
Fast and Effective Robustness Certification. NeurIPS 2018: 10825-10836 - [c90]Alen Stojanov, Tyler Michael Smith, Dan Alistarh, Markus Püschel:
Fast Quantized Arithmetic on x86: Trading Compute for Data Movement. SiPS 2018: 349-354 - [i10]Daniele G. Spampinato, Diego Fabregat-Traver, Paolo Bientinesi, Markus Püschel:
Program Generation for Small-Scale Linear Algebra Applications. CoRR abs/1805.04775 (2018) - 2017
- [c89]François Serre, Markus Püschel:
Optimal Streamed Linear Permutations. ARITH 2017: 60-61 - [c88]Georg Ofenbeck, Tiark Rompf, Markus Püschel:
Staging for generic programming in space and time. GPCE 2017: 15-28 - [c87]Gagandeep Singh
, Markus Püschel, Martin T. Vechev:
Fast polyhedra abstract domain. POPL 2017: 46-59 - [i9]François Serre, Markus Püschel:
Characterizing and Enumerating Walsh-Hadamard Transform Algorithms. CoRR abs/1710.08029 (2017) - 2016
- [j30]Marcela Zuluaga, Andreas Krause, Markus Püschel:
e-PAL: An Active Learning Approach to the Multi-Objective Optimization Problem. J. Mach. Learn. Res. 17: 104:1-104:32 (2016) - [j29]Marcela Zuluaga, Peter A. Milder
, Markus Püschel:
Streaming Sorting Networks. ACM Trans. Design Autom. Electr. Syst. 21(4): 55:1-55:30 (2016) - [c86]Daniele G. Spampinato
, Markus Püschel:
A basic linear algebra compiler for structured matrices. CGO 2016: 117-127 - [c85]François Serre, Thomas Holenstein, Markus Püschel:
Optimal Circuits for Streamed Linear Permutations Using RAM. FPGA 2016: 215-223 - [c84]Markus Püschel:
Program generation for performance. ASE 2016: 1 - [c83]Georg Ofenbeck, Tiark Rompf, Markus Püschel:
RandIR: differential testing for embedded compilers. SCALA@SPLASH 2016: 21-30 - 2015
- [j28]João F. C. Mota
, João M. F. Xavier, Pedro M. Q. Aguiar
, Markus Püschel:
Distributed Optimization With Local Domains: Applications in MPC and Network Flows. IEEE Trans. Autom. Control. 60(7): 2004-2009 (2015) - [c82]Nikolaos Kyrtatas, Daniele G. Spampinato, Markus Püschel:
A basic linear algebra compiler for embedded processors. DATE 2015: 1054-1059 - [c81]Gagandeep Singh
, Markus Püschel, Martin T. Vechev:
Making numerical program analysis fast. PLDI 2015: 303-313 - [c80]Tiark Rompf, Kevin J. Brown, HyoukJoong Lee, Arvind K. Sujeeth, Manohar Jonnalagedda, Nada Amin, Georg Ofenbeck, Alen Stojanov, Yannis Klonatos, Mohammad Dashti, Christoph Koch, Markus Püschel, Kunle Olukotun:
Go Meta! A Case for Generative Programming and DSLs in Performance Critical Systems. SNAPL 2015: 238-261 - 2014
- [c79]Daniele G. Spampinato, Markus Püschel:
A Basic Linear Algebra Compiler. CGO 2014: 23 - [c78]Benjamin Hess, Thomas R. Gross, Markus Püschel:
Automatic locality-friendly interface extension of numerical functions. GPCE 2014: 83-92 - [c77]Victoria Caparrós Cabezas, Markus Püschel:
Extending the roofline model: Bottleneck analysis with microarchitectural constraints. IISWC 2014: 222-231 - [c76]Georg Ofenbeck, Ruedi Steinmann, Victoria Caparrós Cabezas, Daniele G. Spampinato
, Markus Püschel:
Applying the roofline model. ISPASS 2014: 76-85 - [c75]Alen Stojanov, Georg Ofenbeck, Tiark Rompf, Markus Püschel:
Abstracting Vector Architectures in Library Generators: Case Study Convolution Filters. ARRAY@PLDI 2014: 14-19 - [c74]Jörn Schumacher
, Markus Püschel:
High-performance sparse fast Fourier transforms. SiPS 2014: 13-18 - 2013
- [j27]João F. C. Mota
, João M. F. Xavier, Pedro M. Q. Aguiar
, Markus Püschel:
D-ADMM: A Communication-Efficient Distributed Algorithm for Separable Optimization. IEEE Trans. Signal Process. 61(10): 2718-2723 (2013) - [c73]João F. C. Mota
, João M. F. Xavier, Pedro M. Q. Aguiar, Markus Püschel:
A unified algorithmic approach to distributed optimization. GlobalSIP 2013: 607-610 - [c72]João F. C. Mota
, João M. F. Xavier, Pedro M. Q. Aguiar, Markus Püschel:
Distributed compressed sensing algorithms: Completing the puzzle. GlobalSIP 2013: 629 - [c71]Georg Ofenbeck, Tiark Rompf, Alen Stojanov, Martin Odersky, Markus Püschel:
Spiral in scala: towards the systematic construction of generators for performance libraries. GPCE 2013: 125-134 - [c70]Marcela Zuluaga, Guillaume Sergent, Andreas Krause, Markus Püschel:
Active Learning for Multi-Objective Optimization. ICML (1) 2013: 462-470 - [i8]João F. C. Mota, João M. F. Xavier, Pedro M. Q. Aguiar, Markus Püschel:
Distributed Optimization With Local Domains: Applications in MPC and Network Flows. CoRR abs/1305.1885 (2013) - 2012
- [j26]Peter A. Milder
, Franz Franchetti, James C. Hoe, Markus Püschel:
Computer Generation of Hardware for Linear Digital Signal Processing Transforms. ACM Trans. Design Autom. Electr. Syst. 17(2): 15:1-15:33 (2012) - [j25]Aliaksei Sandryhaila, Samir Saba, Markus Püschel, Jelena Kovacevic:
Efficient Compression of QRS Complexes Using Hermite Expansion. IEEE Trans. Signal Process. 60(2): 947-955 (2012) - [j24]João F. C. Mota
, João M. F. Xavier, Pedro M. Q. Aguiar
, Markus Püschel:
Distributed Basis Pursuit. IEEE Trans. Signal Process. 60(4): 1942-1956 (2012) - [j23]Aliaksei Sandryhaila, Jelena Kovacevic, Markus Püschel:
Algebraic Signal Processing Theory: 1-D Nearest Neighbor Models. IEEE Trans. Signal Process. 60(5): 2247-2259 (2012) - [c69]João F. C. Mota
, João M. F. Xavier, Pedro M. Q. Aguiar
, Markus Püschel:
Distributed ADMM for model predictive control and congestion control. CDC 2012: 5110-5115 - [c68]João F. C. Mota
, João M. F. Xavier, Pedro M. Q. Aguiar
, Markus Püschel:
ADMM for consensus on colored networks. CDC 2012: 5116-5121 - [c67]Marcela Zuluaga, Peter A. Milder
, Markus Püschel:
Computer generation of streaming sorting networks. DAC 2012: 1245-1253 - [c66]Robert Koutsoyannis, Peter A. Milder
, Christian R. Berger, Madeleine Glick, James C. Hoe, Markus Püschel:
Improving fixed-point accuracy of FFT cores in O-OFDM systems. ICASSP 2012: 1585-1588 - [c65]João F. C. Mota
, João M. F. Xavier, Pedro M. Q. Aguiar
, Markus Püschel:
D-ADMM: A distributed algorithm for compressed sensing and other separable optimization problems. ICASSP 2012: 2869-2872 - [c64]Marcela Zuluaga, Andreas Krause
, Peter A. Milder
, Markus Püschel:
"Smart" design space sampling to predict Pareto-optimal solutions. LCTES 2012: 119-128 - [c63]Markus Püschel:
Compiling math to fast code. PEPM 2012: 1-2 - 2011
- [j22]Aliaksei Sandryhaila, Jelena Kovacevic, Markus Püschel:
Algebraic Signal Processing Theory: Cooley-Tukey-Type Algorithms for Polynomial Transforms Based on Induction. SIAM J. Matrix Anal. Appl. 32(2): 364-384 (2011) - [c62]Aliaksei Sandryhaila, Jelena Kovacevic, Markus Püschel:
Compression of QRS complexes using Hermite expansion. ICASSP 2011: 581-584 - [c61]Christian R. Berger, Volodymyr Arbatov, Yevgen Voronenko, Franz Franchetti, Markus Püschel:
Real-time software implementation of an IEEE 802.11a baseband receiver on Intel multicore. ICASSP 2011: 1693-1696 - [c60]João F. C. Mota
, João M. F. Xavier, Pedro M. Q. Aguiar
, Markus Püschel:
Basis Pursuit in sensor networks. ICASSP 2011: 2916-2919 - [c59]Daniel S. McFarlin, Volodymyr Arbatov, Franz Franchetti, Markus Püschel:
Automatic SIMD vectorization of fast fourier transforms for the larrabee and AVX instruction sets. ICS 2011: 265-274 - [c58]Markus Püschel:
Automatic performance programming. Onward! 2011: 1-2 - [r2]Franz Franchetti, Markus Püschel:
FFT (Fast Fourier Transform). Encyclopedia of Parallel Computing 2011: 658-671 - [r1]Markus Püschel, Franz Franchetti, Yevgen Voronenko:
Spiral. Encyclopedia of Parallel Computing 2011: 1920-1933 - 2010
- [j21]Jelena Kovacevic, Markus Püschel:
Algebraic signal processing theory: sampling for infinite and finite 1-D space. IEEE Trans. Signal Process. 58(1): 242-257 (2010) - [j20]Aliaksei Sandryhaila, Amina Chebira, Christina Milo, Jelena Kovacevic, Markus Püschel:
Systematic construction of real lapped tight frame transforms. IEEE Trans. Signal Process. 58(5): 2556-2567 (2010) - [c57]Frédéric de Mesmay, Srinivas Chellappa, Franz Franchetti, Markus Püschel:
Computer Generation of Efficient Software Viterbi Decoders. HiPEAC 2010: 353-368 - [c56]Peter A. Milder
, Franz Franchetti, James C. Hoe, Markus Püschel:
Hardware implementation of the discrete fourier transform with non-power-of-two problem size. ICASSP 2010: 1546-1549 - [c55]Frédéric de Mesmay, Yevgen Voronenko, Markus Püschel:
Offline library adaptation using automatically generated heuristics. IPDPS 2010: 1-10 - [e1]Christoph W. Kessler, Welf Löwe, David A. Padua, Markus Püschel:
Program Composition and Optimization: Autotuning, Scheduling, Metaprogramming and Beyond, 09.05. - 12.05.2010. Dagstuhl Seminar Proceedings 10191, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany 2010 [contents] - [i7]Christoph W. Kessler, Welf Löwe, David A. Padua, Markus Püschel:
10191 Abstracts Collection - Program Composition and Optimization : Autotuning, Scheduling, Metaprogramming and Beyond. Program Composition and Optimization: Autotuning, Scheduling, Metaprogramming and Beyond 2010 - [i6]Christoph W. Kessler, Welf Löwe, David A. Padua, Markus Püschel:
10191 Executive Summary - Program Composition and Optimization : Autotuning, Scheduling, Metaprogramming and Beyond. Program Composition and Optimization: Autotuning, Scheduling, Metaprogramming and Beyond 2010 - [i5]Christoph W. Kessler, Welf Löwe, David A. Padua, Markus Püschel:
Program Composition and Optimization: An Introduction. Program Composition and Optimization: Autotuning, Scheduling, Metaprogramming and Beyond 2010 - [i4]Aliaksei Sandryhaila, Jelena Kovacevic, Markus Püschel:
Algebraic Signal Processing Theory: Cooley-Tukey Type Algorithms for Polynomial Transforms Based on Induction. CoRR abs/1008.2972 (2010) - [i3]João F. C. Mota, João M. F. Xavier, Pedro M. Q. Aguiar, Markus Püschel:
Distributed Basis Pursuit. CoRR abs/1009.1128 (2010)
2000 – 2009
- 2009
- [j19]Markus Püschel, Peter A. Milder
, James C. Hoe:
Permuting streaming data using RAMs. J. ACM 56(2): 10:1-10:34 (2009) - [j18]Franz Franchetti, Markus Püschel, Yevgen Voronenko, Srinivas Chellappa, José M. F. Moura:
Discrete fourier transform on multicore. IEEE Signal Process. Mag. 26(6): 90-102 (2009) - [j17]Yevgen Voronenko, Markus Püschel:
Algebraic Signal Processing Theory: Cooley-Tukey Type Algorithms for Real DFTs. IEEE Trans. Signal Process. 57(1): 205-222 (2009) - [c54]Basilio B. Fraguela
, Yevgen Voronenko, Markus Püschel:
Automatic Tuning of Discrete Fourier Transforms Driven by Analytical Modeling. PACT 2009: 271-280 - [c53]Yevgen Voronenko, Frédéric de Mesmay, Markus Püschel:
Computer Generation of General Size Linear Transform Libraries. CGO 2009: 102-113 - [c52]Peter A. Milder
, James C. Hoe, Markus Püschel:
Automatic generation of streaming datapaths for arbitrary fixed permutations. DATE 2009: 1118-1123 - [c51]Franz Franchetti, Frédéric de Mesmay, Daniel S. McFarlin, Markus Püschel:
Operator Language: A Program Generation Framework for Fast Kernels. DSL 2009: 385-409 - [c50]Franz Franchetti, Markus Püschel:
Generating high performance pruned FFT implementations. ICASSP 2009: 549-552 - [c49]Frédéric de Mesmay, Arpad Rimmel, Yevgen Voronenko, Markus Püschel:
Bandit-based optimization on graphs with application to library performance tuning. ICML 2009: 729-736 - [c48]Srinivas Chellappa, Franz Franchetti, Markus Püschel:
Computer generation of fast fourier transforms for the cell broadband engine. ICS 2009: 26-35 - [c47]Markus Püschel:
Automatic synthesis of high performance mathematical programs. ISSAC 2009: 5-6 - 2008
- [j16]Markus Püschel, Martin Rötteler:
Algebraic signal processing theory: Cooley-Tukey type algorithms on the 2-D hexagonal spatial lattice. Appl. Algebra Eng. Commun. Comput. 19(3): 259-292 (2008) - [j15]Markus Püschel, José M. F. Moura:
Algebraic Signal Processing Theory: Cooley-Tukey Type Algorithms for DCTs and DSTs. IEEE Trans. Signal Process. 56(4): 1502-1521 (2008) - [j14]