


default search action
François Lanusse
Person information
- affiliation (PhD 2015): Paris-Saclay University, AIM Lab, Paris, France
- affiliation: Carnegie Mellon University, McWilliams Center for Cosmology, Pittsburgh, PA, USA
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
[i22]François Rozet, Ruben Ohana, Michael McCabe, Gilles Louppe, François Lanusse, Shirley Ho:
Lost in Latent Space: An Empirical Study of Latent Diffusion Models for Physics Emulation. CoRR abs/2507.02608 (2025)
[i21]Jeff Shen
, François Lanusse, Liam Holden Parker, Ollie Liu, Tom Hehir, Leopoldo Sarra, Lucas Meyer, Micah Bowles, Sebastian Wagner-Carena, Helen Qu, Siavash Golkar, Alberto Bietti, Hatim Bourfoune, Nathan Cassereau, Pierre Cornette, Keiya Hirashima
, Géraud Krawezik, Ruben Ohana, Nicholas Lourie, Michael McCabe, Rudy Morel, Payel Mukhopadhyay, Mariel Pettee, Bruno Régaldo-Saint Blancard, Kyunghyun Cho, Miles D. Cranmer, Shirley Ho:
Universal Spectral Tokenization via Self-Supervised Panchromatic Representation Learning. CoRR abs/2510.17959 (2025)
[i20]Arne Thomsen
, Tilman Tröster, François Lanusse:
Hybrid Physical-Neural Simulator for Fast Cosmological Hydrodynamics. CoRR abs/2510.26593 (2025)
[i19]Michael McCabe, Payel Mukhopadhyay, Tanya Marwah, Bruno Régaldo-Saint Blancard, François Rozet, Cristiana Diaconu, Lucas Meyer, Kaze W. K. Wong, Hadi Sotoudeh, Alberto Bietti, Irina Espejo, Rio Fear, Siavash Golkar, Tom Hehir, Keiya Hirashima, Géraud Krawezik, François Lanusse, Rudy Morel, Ruben Ohana, Liam Holden Parker, Mariel Pettee, Jeff Shen, Kyunghyun Cho, Miles D. Cranmer, Shirley Ho:
Walrus: A Cross-Domain Foundation Model for Continuum Dynamics. CoRR abs/2511.15684 (2025)
[i18]Rudy Morel, Francesco Pio Ramunno, Jeff Shen, Alberto Bietti, Kyunghyun Cho, Miles D. Cranmer, Siavash Golkar, Olexandr Gugnin, Géraud Krawezik, Tanya Marwah, Michael McCabe, Lucas Meyer, Payel Mukhopadhyay, Ruben Ohana, Liam Holden Parker, Helen Qu, François Rozet, K. D. Leka, François Lanusse, David Fouhey, Shirley Ho:
Predicting partially observable dynamical systems via diffusion models with a multiscale inference scheme. CoRR abs/2511.19390 (2025)- 2024
[c7]Yesukhei Jagvaral, François Lanusse, Rachel Mandelbaum:
Unified Framework for Diffusion Generative Models in SO(3): Applications in Computer Vision and Astrophysics. AAAI 2024: 12754-12762
[c6]Eirini Angeloudi, Jeroen Audenaert, Micah Bowles, Benjamin M. Boyd, David Chemaly, Brian Cherinka, Ioana Ciuca, Miles D. Cranmer, Aaron Do, Matthew Grayling, Erin E. Hayes, Tom Hehir, Shirley Ho, Marc Huertas-Company, Kartheik Iyer, Maja Jablonska, François Lanusse, Henry Leung, Kaisey Mandel, Rafael Martínez-Galarza, Peter Melchior, Lucas Meyer, Liam Holden Parker, Helen Qu, Jeff Shen, Michael J. Smith, Connor Stone, Mike Walmsley, John F. Wu:
The Multimodal Universe: Enabling Large-Scale Machine Learning with 100 TB of Astronomical Scientific Data. NeurIPS 2024
[c5]Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Holden Parker, Ruben Ohana, Miles D. Cranmer, Alberto Bietti, Michael Eickenberg, Siavash Golkar, Géraud Krawezik, François Lanusse, Mariel Pettee, Tiberiu Tesileanu, Kyunghyun Cho, Shirley Ho:
Multiple Physics Pretraining for Spatiotemporal Surrogate Models. NeurIPS 2024
[c4]François Rozet, Gérôme Andry, François Lanusse, Gilles Louppe:
Learning Diffusion Priors from Observations by Expectation Maximization. NeurIPS 2024
[i17]François Rozet, Gérôme Andry, François Lanusse, Gilles Louppe:
Learning Diffusion Priors from Observations by Expectation Maximization. CoRR abs/2405.13712 (2024)
[i16]Yesukhei Jagvaral, François Lanusse, Rachel Mandelbaum:
Geometric deep learning for galaxy-halo connection: a case study for galaxy intrinsic alignments. CoRR abs/2409.18761 (2024)- 2023
[i15]Siavash Golkar, Mariel Pettee, Michael Eickenberg, Alberto Bietti, Miles D. Cranmer
, Géraud Krawezik, François Lanusse, Michael McCabe, Ruben Ohana, Liam Holden Parker, Bruno Régaldo-Saint Blancard, Tiberiu Tesileanu, Kyunghyun Cho, Shirley Ho
:
xVal: A Continuous Number Encoding for Large Language Models. CoRR abs/2310.02989 (2023)
[i14]Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Holden Parker, Ruben Ohana, Miles D. Cranmer
, Alberto Bietti, Michael Eickenberg, Siavash Golkar, Géraud Krawezik, François Lanusse, Mariel Pettee, Tiberiu Tesileanu, Kyunghyun Cho, Shirley Ho
:
Multiple Physics Pretraining for Physical Surrogate Models. CoRR abs/2310.02994 (2023)
[i13]François Lanusse, Liam Holden Parker, Siavash Golkar, Miles D. Cranmer
, Alberto Bietti, Michael Eickenberg, Géraud Krawezik, Michael McCabe, Ruben Ohana, Mariel Pettee, Bruno Régaldo-Saint Blancard, Tiberiu Tesileanu, Kyunghyun Cho, Shirley Ho
:
AstroCLIP: Cross-Modal Pre-Training for Astronomical Foundation Models. CoRR abs/2310.03024 (2023)
[i12]Yesukhei Jagvaral, François Lanusse, Rachel Mandelbaum:
Unified framework for diffusion generative models in SO(3): applications in computer vision and astrophysics. CoRR abs/2312.11707 (2023)- 2022
[i11]Benjamin Remy, François Lanusse, Niall Jeffrey
, Jia Liu, Jean-Luc Starck, Ken Osato
, Tim Schrabback
:
Probabilistic Mass Mapping with Neural Score Estimation. CoRR abs/2201.05561 (2022)
[i10]Denise Lanzieri, François Lanusse
, Jean-Luc Starck:
Hybrid Physical-Neural ODEs for Fast N-body Simulations. CoRR abs/2207.05509 (2022)- 2021
[j1]Chirag Modi
, François Lanusse
, Uros Seljak:
FlowPM: Distributed TensorFlow implementation of the FastPM cosmological N-body solver. Astron. Comput. 37: 100505 (2021)
[c3]Wooseok Ha, Chandan Singh, François Lanusse, Srigokul Upadhyayula, Bin Yu:
Adaptive wavelet distillation from neural networks through interpretations. NeurIPS 2021: 20669-20682
[i9]Keming Zhang, Joshua S. Bloom
, B. Scott Gaudi, François Lanusse
, Casey Lam, Jessica Lu
:
Real-Time Likelihood-Free Inference of Roman Binary Microlensing Events with Amortized Neural Posterior Estimation. CoRR abs/2102.05673 (2021)
[i8]Wooseok Ha, Chandan Singh, François Lanusse, Eli Song, Song Dang, Kangmin He, Srigokul Upadhyayula, Bin Yu:
Adaptive wavelet distillation from neural networks through interpretations. CoRR abs/2107.09145 (2021)- 2020
[i7]Chandan Singh
, Wooseok Ha, François Lanusse, Vanessa Böhm
, Jia Liu, Bin Yu:
Transformation Importance with Applications to Cosmology. CoRR abs/2003.01926 (2020)
[i6]Tom Charnock, Laurence Perreault Levasseur
, François Lanusse:
Bayesian Neural Networks. CoRR abs/2006.01490 (2020)
[i5]Keming Zhang, Joshua S. Bloom, B. Scott Gaudi, François Lanusse, Casey Lam, Jessica Lu
:
Automating Inference of Binary Microlensing Events with Neural Density Estimation. CoRR abs/2010.04156 (2020)
[i4]Zaccharie Ramzi, Benjamin Remy, François Lanusse, Jean-Luc Starck, Philippe Ciuciu:
Denoising Score-Matching for Uncertainty Quantification in Inverse Problems. CoRR abs/2011.08698 (2020)
2010 – 2019
- 2019
[i3]Vanessa Böhm
, François Lanusse, Uros Seljak:
Uncertainty Quantification with Generative Models. CoRR abs/1910.10046 (2019)
[i2]François Lanusse, Peter Melchior, Fred Moolekamp:
Hybrid Physical-Deep Learning Model for Astronomical Inverse Problems. CoRR abs/1912.03980 (2019)- 2018
[c2]Konstantinos E. Themelis, François Lanusse
, Niall Jeffrey
, Austin Peel, Jean-Luc Starck, Filipe B. Abdalla:
Modelling Data with both Sparsity and a Gaussian Random Field: Application to Dark Matter Mass Mapping in Cosmology. EUSIPCO 2018: 376-379- 2017
[c1]Siamak Ravanbakhsh, François Lanusse, Rachel Mandelbaum, Jeff G. Schneider, Barnabás Póczos:
Enabling Dark Energy Science with Deep Generative Models of Galaxy Images. AAAI 2017: 1488-1494- 2016
[i1]Siamak Ravanbakhsh, François Lanusse, Rachel Mandelbaum, Jeff G. Schneider, Barnabás Póczos:
Enabling Dark Energy Science with Deep Generative Models of Galaxy Images. CoRR abs/1609.05796 (2016)- 2015
[b1]François Lanusse:
Sparse reconstruction of the dark matter mass map from weak gravitational lensing. (Reconstruction parcimonieuse de la carte de masse de matière noire par effet de lentille gravitationnelle). University of Paris-Saclay, France, 2015
Coauthor Index

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from
to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the
of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from
,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from
and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from
.
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2026-01-16 01:21 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID







