


default search action
32nd ICML 2015: Lille, France
- Francis R. Bach, David M. Blei:

Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015. JMLR Workshop and Conference Proceedings 37, JMLR.org 2015 - Peilin Zhao, Tong Zhang:

Stochastic Optimization with Importance Sampling for Regularized Loss Minimization. 1-9 - Nihar B. Shah, Dengyong Zhou, Yuval Peres:

Approval Voting and Incentives in Crowdsourcing. 10-19 - Wacha Bounliphone, Arthur Gretton, Arthur Tenenhaus, Matthew B. Blaschko:

A low variance consistent test of relative dependency. 20-29 - Lu Bai, Luca Rossi, Zhihong Zhang, Edwin R. Hancock:

An Aligned Subtree Kernel for Weighted Graphs. 30-39 - Christos Boutsidis, Prabhanjan Kambadur, Alex Gittens:

Spectral Clustering via the Power Method - Provably. 40-48 - Ke Sun, Jun Wang, Alexandros Kalousis, Stéphane Marchand-Maillet:

Information Geometry and Minimum Description Length Networks. 49-58 - Jean-Baptiste Tristan, Joseph Tassarotti, Guy L. Steele Jr.:

Efficient Training of LDA on a GPU by Mean-for-Mode Estimation. 59-68 - Peilin Zhao, Jinwei Yang, Tong Zhang, Ping Li:

Adaptive Stochastic Alternating Direction Method of Multipliers. 69-77 - Alekh Agarwal, Léon Bottou:

A Lower Bound for the Optimization of Finite Sums. 78-86 - Dani Yogatama, Manaal Faruqui, Chris Dyer, Noah A. Smith:

Learning Word Representations with Hierarchical Sparse Coding. 87-96 - Mingsheng Long

, Yue Cao, Jianmin Wang
, Michael I. Jordan:
Learning Transferable Features with Deep Adaptation Networks. 97-105 - Takayuki Osogami:

Robust partially observable Markov decision process. 106-115 - Han Zhao, Mazen Melibari, Pascal Poupart:

On the Relationship between Sum-Product Networks and Bayesian Networks. 116-124 - Aditya Krishna Menon, Brendan van Rooyen, Cheng Soon Ong, Bob Williamson:

Learning from Corrupted Binary Labels via Class-Probability Estimation. 125-134 - Tianbao Yang, Lijun Zhang, Rong Jin, Shenghuo Zhu:

An Explicit Sampling Dependent Spectral Error Bound for Column Subset Selection. 135-143 - Ohad Shamir:

A Stochastic PCA and SVD Algorithm with an Exponential Convergence Rate. 144-152 - Doron Kukliansky, Ohad Shamir:

Attribute Efficient Linear Regression with Distribution-Dependent Sampling. 153-161 - Ethan Fetaya, Shimon Ullman:

Learning Local Invariant Mahalanobis Distances. 162-168 - Zhuang Ma, Yichao Lu, Dean P. Foster:

Finding Linear Structure in Large Datasets with Scalable Canonical Correlation Analysis. 169-178 - Nan Jiang, Alex Kulesza, Satinder Singh:

Abstraction Selection in Model-based Reinforcement Learning. 179-188 - Purushottam Kar, Harikrishna Narasimhan, Prateek Jain:

Surrogate Functions for Maximizing Precision at the Top. 189-198 - Harikrishna Narasimhan, Purushottam Kar, Prateek Jain:

Optimizing Non-decomposable Performance Measures: A Tale of Two Classes. 199-208 - Olivier Bachem, Mario Lucic, Andreas Krause:

Coresets for Nonparametric Estimation - the Case of DP-Means. 209-217 - Pratik Gajane, Tanguy Urvoy, Fabrice Clérot:

A Relative Exponential Weighing Algorithm for Adversarial Utility-based Dueling Bandits. 218-227 - Mohammad Taha Bahadori, David C. Kale, Yingying Fan, Yan Liu:

Functional Subspace Clustering with Application to Time Series. 228-237 - Rose Yu, Dehua Cheng, Yan Liu:

Accelerated Online Low Rank Tensor Learning for Multivariate Spatiotemporal Streams. 238-247 - Sean Jewell, Neil Spencer, Alexandre Bouchard-Côté:

Atomic Spatial Processes. 248-256 - Elad Hazan, Roi Livni, Yishay Mansour:

Classification with Low Rank and Missing Data. 257-266 - Oran Richman, Shie Mannor:

Dynamic Sensing: Better Classification under Acquisition Constraints. 267-275 - Pinghua Gong, Jieping Ye:

A Modified Orthant-Wise Limited Memory Quasi-Newton Method with Convergence Analysis. 276-284 - Naji Shajarisales, Dominik Janzing, Bernhard Schölkopf, Michel Besserve:

Telling cause from effect in deterministic linear dynamical systems. 285-294 - Kirthevasan Kandasamy, Jeff G. Schneider, Barnabás Póczos:

High Dimensional Bayesian Optimisation and Bandits via Additive Models. 295-304 - Tianbao Yang, Lijun Zhang, Rong Jin, Shenghuo Zhu:

Theory of Dual-sparse Regularized Randomized Reduction. 305-314 - Ambuj Tewari, Sougata Chaudhuri:

Generalization error bounds for learning to rank: Does the length of document lists matter? 315-323 - Toby Hocking, Guillem Rigaill, Guillaume Bourque:

PeakSeg: constrained optimal segmentation and supervised penalty learning for peak detection in count data. 324-332 - Olivier Fercoq, Alexandre Gramfort, Joseph Salmon:

Mind the duality gap: safer rules for the Lasso. 333-342 - Robert Nishihara, Laurent Lessard, Benjamin Recht, Andrew K. Packard, Michael I. Jordan:

A General Analysis of the Convergence of ADMM. 343-352 - Yuchen Zhang, Xiao Lin:

Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization. 353-361 - Yuchen Zhang, Xiao Lin:

DiSCO: Distributed Optimization for Self-Concordant Empirical Loss. 362-370 - Yuxin Chen, Changho Suh:

Spectral MLE: Top-K Rank Aggregation from Pairwise Comparisons. 371-380 - Stephen H. Bach, Bert Huang, Jordan L. Boyd-Graber, Lise Getoor:

Paired-Dual Learning for Fast Training of Latent Variable Hinge-Loss MRFs. 381-390 - Corinna Cortes, Vitaly Kuznetsov, Mehryar Mohri, Umar Syed:

Structural Maxent Models. 391-399 - Debarghya Ghoshdastidar, Ambedkar Dukkipati:

A Provable Generalized Tensor Spectral Method for Uniform Hypergraph Partitioning. 400-409 - Ben London, Bert Huang, Lise Getoor:

The Benefits of Learning with Strongly Convex Approximate Inference. 410-418 - Bo Xin, David P. Wipf:

Pushing the Limits of Affine Rank Minimization by Adapting Probabilistic PCA. 419-427 - Takanori Maehara, Akihiro Yabe, Ken-ichi Kawarabayashi:

Budget Allocation Problem with Multiple Advertisers: A Game Theoretic View. 428-437 - Katharina Blechschmidt, Joachim Giesen, Sören Laue:

Tracking Approximate Solutions of Parameterized Optimization Problems over Multi-Dimensional (Hyper-)Parameter Domains. 438-447 - Sergey Ioffe, Christian Szegedy:

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. 448-456 - Yuchen Zhang, Martin J. Wainwright, Michael I. Jordan:

Distributed Estimation of Generalized Matrix Rank: Efficient Algorithms and Lower Bounds. 457-465 - Dawen Liang, John W. Paisley:

Landmarking Manifolds with Gaussian Processes. 466-474 - Aonan Zhang, John W. Paisley:

Markov Mixed Membership Models. 475-483 - Wenzhuo Yang, Huan Xu:

A Unified Framework for Outlier-Robust PCA-like Algorithms. 484-493 - Wenzhuo Yang, Huan Xu:

Streaming Sparse Principal Component Analysis. 494-503 - Wenzhuo Yang, Huan Xu:

A Divide and Conquer Framework for Distributed Graph Clustering. 504-513 - Senjian An, Farid Boussaïd, Mohammed Bennamoun:

How Can Deep Rectifier Networks Achieve Linear Separability and Preserve Distances? 514-523 - K. Lakshmanan, Ronald Ortner, Daniil Ryabko:

Improved Regret Bounds for Undiscounted Continuous Reinforcement Learning. 524-532 - Michael Betancourt:

The Fundamental Incompatibility of Scalable Hamiltonian Monte Carlo and Naive Data Subsampling. 533-540 - Dan Garber, Elad Hazan:

Faster Rates for the Frank-Wolfe Method over Strongly-Convex Sets. 541-549 - Mrinal Kanti Das, Trapit Bansal, Chiranjib Bhattacharyya:

Ordered Stick-Breaking Prior for Sequential MCMC Inference of Bayesian Nonparametric Models. 550-559 - Dan Garber, Elad Hazan, Tengyu Ma:

Online Learning of Eigenvectors. 560-568 - Trong Nghia Hoang, Quang Minh Hoang, Bryan Kian Hsiang Low:

A Unifying Framework of Anytime Sparse Gaussian Process Regression Models with Stochastic Variational Inference for Big Data. 569-578 - Yufei Ding, Yue Zhao, Xipeng Shen, Madanlal Musuvathi, Todd Mytkowicz:

Yinyang K-Means: A Drop-In Replacement of the Classic K-Means with Consistent Speedup. 579-587 - Seppo Virtanen, Mark A. Girolami:

Ordinal Mixed Membership Models. 588-596 - Seunghoon Hong, Tackgeun You, Suha Kwak, Bohyung Han:

Online Tracking by Learning Discriminative Saliency Map with Convolutional Neural Network. 597-606 - Seth R. Flaxman, Andrew Gordon Wilson, Daniel B. Neill, Hannes Nickisch, Alexander J. Smola:

Fast Kronecker Inference in Gaussian Processes with non-Gaussian Likelihoods. 607-616 - Garvesh Raskutti, Michael W. Mahoney:

Statistical and Algorithmic Perspectives on Randomized Sketching for Ordinary Least-Squares. 617-625 - Nathaniel Korda, Prashanth L. A.:

On TD(0) with function approximation: Concentration bounds and a centered variant with exponential convergence. 626-634 - Roi Weiss, Boaz Nadler:

Learning Parametric-Output HMMs with Two Aliased States. 635-644 - Yarin Gal, Yutian Chen, Zoubin Ghahramani:

Latent Gaussian Processes for Distribution Estimation of Multivariate Categorical Data. 645-654 - Yarin Gal, Richard E. Turner:

Improving the Gaussian Process Sparse Spectrum Approximation by Representing Uncertainty in Frequency Inputs. 655-664 - Arun Rajkumar, Suprovat Ghoshal, Lek-Heng Lim, Shivani Agarwal:

Ranking from Stochastic Pairwise Preferences: Recovering Condorcet Winners and Tournament Solution Sets at the Top. 665-673 - Dominik Csiba, Zheng Qu, Peter Richtárik:

Stochastic Dual Coordinate Ascent with Adaptive Probabilities. 674-683 - Wesley Tansey, Oscar Hernan Madrid Padilla, Arun Sai Suggala, Pradeep Ravikumar:

Vector-Space Markov Random Fields via Exponential Families. 684-692 - Jonathan H. Huggins, Karthik Narasimhan, Ardavan Saeedi, Vikash Mansinghka:

JUMP-Means: Small-Variance Asymptotics for Markov Jump Processes. 693-701 - Shashanka Ubaru, Arya Mazumdar, Yousef Saad:

Low Rank Approximation using Error Correcting Coding Matrices. 702-710 - Assaf Hallak, François Schnitzler, Timothy A. Mann, Shie Mannor:

Off-policy Model-based Learning under Unknown Factored Dynamics. 711-719 - Zhiwu Huang, Ruiping Wang, Shiguang Shan, Xianqiu Li, Xilin Chen:

Log-Euclidean Metric Learning on Symmetric Positive Definite Manifold with Application to Image Set Classification. 720-729 - Melih Kandemir:

Asymmetric Transfer Learning with Deep Gaussian Processes. 730-738 - Rongda Zhu, Quanquan Gu:

Towards a Lower Sample Complexity for Robust One-bit Compressed Sensing. 739-747 - Stephan Gouws, Yoshua Bengio, Greg Corrado:

BilBOWA: Fast Bilingual Distributed Representations without Word Alignments. 748-756 - Jiangwen Sun, Jin Lu

, Tingyang Xu, Jinbo Bi:
Multi-view Sparse Co-clustering via Proximal Alternating Linearized Minimization. 757-766 - Branislav Kveton, Csaba Szepesvári, Zheng Wen, Azin Ashkan:

Cascading Bandits: Learning to Rank in the Cascade Model. 767-776 - James R. Foulds, Shachi H. Kumar, Lise Getoor:

Latent Topic Networks: A Versatile Probabilistic Programming Framework for Topic Models. 777-786 - Alina Ene, Huy L. Nguyen:

Random Coordinate Descent Methods for Minimizing Decomposable Submodular Functions. 787-795 - Karthik S. Narayan, Ali Punjani, Pieter Abbeel:

Alpha-Beta Divergences Discover Micro and Macro Structures in Data. 796-804 - Johannes Heinrich, Marc Lanctot, David Silver:

Fictitious Self-Play in Extensive-Form Games. 805-813 - Adith Swaminathan, Thorsten Joachims:

Counterfactual Risk Minimization: Learning from Logged Bandit Feedback. 814-823 - Walid Krichene, Maximilian Balandat, Claire J. Tomlin, Alexandre M. Bayen:

The Hedge Algorithm on a Continuum. 824-832 - David Belanger, Sham M. Kakade:

A Linear Dynamical System Model for Text. 833-842 - Nitish Srivastava, Elman Mansimov, Ruslan Salakhutdinov:

Unsupervised Learning of Video Representations using LSTMs. 843-852 - Tao Sun, Daniel Sheldon, Akshat Kumar:

Message Passing for Collective Graphical Models. 853-861 - Yining Wang, Jun Zhu:

DP-space: Bayesian Nonparametric Subspace Clustering with Small-variance Asymptotics. 862-870 - Xinran He, Theodoros Rekatsinas

, James R. Foulds, Lise Getoor, Yan Liu:
HawkesTopic: A Joint Model for Network Inference and Topic Modeling from Text-Based Cascades. 871-880 - Mathieu Germain, Karol Gregor, Iain Murray, Hugo Larochelle:

MADE: Masked Autoencoder for Distribution Estimation. 881-889 - Yuanbin Wu, Shiliang Sun:

An Online Learning Algorithm for Bilinear Models. 890-898 - Georgios Papachristoudis, John W. Fisher III:

Adaptive Belief Propagation. 899-907 - Insu Han, Dmitry Malioutov, Jinwoo Shin:

Large-scale log-determinant computation through stochastic Chebyshev expansions. 908-917 - Matt J. Kusner, Jacob R. Gardner, Roman Garnett, Kilian Q. Weinberger:

Differentially Private Bayesian Optimization. 918-927 - Chinmay Hegde, Piotr Indyk, Ludwig Schmidt:

A Nearly-Linear Time Framework for Graph-Structured Sparsity. 928-937 - Luo Luo, Yubo Xie, Zhihua Zhang, Wu-Jun Li:

Support Matrix Machines. 938-947 - Richard Nock, Giorgio Patrini, Arik Friedman:

Rademacher Observations, Private Data, and Boosting. 948-956 - Matt J. Kusner, Yu Sun, Nicholas I. Kolkin, Kilian Q. Weinberger:

From Word Embeddings To Document Distances. 957-966 - Matthew Taddy, Chun-Sheng Chen, Jun Yu, Mitch Wyle:

Bayesian and Empirical Bayesian Forests. 967-976 - Jean Pouget-Abadie, Thibaut Horel:

Inferring Graphs from Cascades: A Sparse Recovery Framework. 977-986 - Ching-Pei Lee, Dan Roth:

Distributed Box-Constrained Quadratic Optimization for Dual Linear SVM. 987-996 - Yanan Sui, Alkis Gotovos, Joel W. Burdick, Andreas Krause:

Safe Exploration for Optimization with Gaussian Processes. 997-1005 - Avrim Blum, Moritz Hardt:

The Ladder: A Reliable Leaderboard for Machine Learning Competitions. 1006-1014 - Maurizio Filippone, Raphael Engler:

Enabling scalable stochastic gradient-based inference for Gaussian processes by employing the Unbiased LInear System SolvEr (ULISSE). 1015-1024 - Roman Garnett, Shirley Ho, Jeff G. Schneider:

Finding Galaxies in the Shadows of Quasars with Gaussian Processes. 1025-1033 - Alon Cohen, Tamir Hazan:

Following the Perturbed Leader for Online Structured Learning. 1034-1042 - Jacob Steinhardt, Percy Liang:

Reified Context Models. 1043-1052 - Yasin Abbasi-Yadkori, Peter L. Bartlett, Xi Chen, Alan Malek:

Large-Scale Markov Decision Problems with KL Control Cost and its Application to Crowdsourcing. 1053-1062 - Jacob Steinhardt, Percy Liang:

Learning Fast-Mixing Models for Structured Prediction. 1063-1072 - Daniel Hernández-Lobato, José Miguel Hernández-Lobato, Zoubin Ghahramani:

A Probabilistic Model for Dirty Multi-task Feature Selection. 1073-1082 - Weiran Wang, Raman Arora, Karen Livescu, Jeff A. Bilmes:

On Deep Multi-View Representation Learning. 1083-1092 - Chris Piech, Jonathan Huang, Andy Nguyen, Mike Phulsuksombati, Mehran Sahami, Leonidas J. Guibas:

Learning Program Embeddings to Propagate Feedback on Student Code. 1093-1102 - Qiang Zhou, Qi Zhao:

Safe Subspace Screening for Nuclear Norm Regularized Least Squares Problems. 1103-1112 - Zheng Wen, Branislav Kveton, Azin Ashkan:

Efficient Learning in Large-Scale Combinatorial Semi-Bandits. 1113-1122 - Andre Manoel, Florent Krzakala

, Eric W. Tramel, Lenka Zdeborová:
Swept Approximate Message Passing for Sparse Estimation. 1123-1132 - Alexandra Carpentier, Michal Valko:

Simple regret for infinitely many armed bandits. 1133-1141 - Wei-Lun Chao, Justin Solomon, Dominik L. Michels, Fei Sha:

Exponential Integration for Hamiltonian Monte Carlo. 1142-1151 - Junpei Komiyama, Junya Honda, Hiroshi Nakagawa:

Optimal Regret Analysis of Thompson Sampling in Stochastic Multi-armed Bandit Problem with Multiple Plays. 1152-1161 - Mike Izbicki, Christian R. Shelton:

Faster cover trees. 1162-1170 - Tyler B. Johnson, Carlos Guestrin:

Blitz: A Principled Meta-Algorithm for Scaling Sparse Optimization. 1171-1179 - Yaroslav Ganin, Victor S. Lempitsky:

Unsupervised Domain Adaptation by Backpropagation. 1180-1189 - Yan-Fu Liu, Cheng-Yu Hsu, Shan-Hung Wu:

Non-Linear Cross-Domain Collaborative Filtering via Hyper-Structure Transfer. 1190-1198 - Hyunwoo J. Kim, Jia Xu, Baba C. Vemuri, Vikas Singh:

Manifold-valued Dirichlet Processes. 1199-1208 - Yu Wang, David P. Wipf, Qing Ling, Wei Chen, Ian J. Wassell:

Multi-Task Learning for Subspace Segmentation. 1209-1217 - Tim Salimans, Diederik P. Kingma, Max Welling:

Markov Chain Monte Carlo and Variational Inference: Bridging the Gap. 1218-1226 - Chunchen Liu, Lu Feng, Ryohei Fujimaki, Yusuke Muraoka:

Scalable Model Selection for Large-Scale Factorial Relational Models. 1227-1235 - Rafael da Ponte Barbosa, Alina Ene, Huy L. Nguyen, Justin Ward:

The Power of Randomization: Distributed Submodular Maximization on Massive Datasets. 1236-1244 - Ralf Eggeling, Mikko Koivisto, Ivo Grosse:

Dealing with small data: On the generalization of context trees. 1245-1253 - Xin Yuan, Ricardo Henao, Ephraim Tsalik, Raymond Langley, Lawrence Carin:

Non-Gaussian Discriminative Factor Models via the Max-Margin Rank-Likelihood. 1254-1263 - Taiji Suzuki:

Convergence rate of Bayesian tensor estimator and its minimax optimality. 1273-1282 - Yifan Wu, András György, Csaba Szepesvári:

On Identifying Good Options under Combinatorially Structured Feedback in Finite Noisy Environments. 1283-1291 - Christian A. Naesseth, Fredrik Lindsten, Thomas B. Schön:

Nested Sequential Monte Carlo Methods. 1292-1301 - Rishit Sheth, Yuyang Wang, Roni Khardon:

Sparse Variational Inference for Generalized GP Models. 1302-1311 - Tom Schaul, Daniel Horgan, Karol Gregor, David Silver:

Universal Value Function Approximators. 1312-1320 - Julien Pérolat, Bruno Scherrer, Bilal Piot, Olivier Pietquin:

Approximate Dynamic Programming for Two-Player Zero-Sum Markov Games. 1321-1329 - Dravyansh Sharma, Ashish Kapoor, Amit Deshpande:

On Greedy Maximization of Entropy. 1330-1338 - Yi Wang, Bin Li, Yang Wang, Fang Chen:

Metadata Dependent Mondrian Processes. 1339-1347 - Xiaojun Chang, Yi Yang, Eric P. Xing, Yaoliang Yu:

Complex Event Detection using Semantic Saliency and Nearly-Isotonic SVM. 1348-1357 - Kohei Hayashi, Shin-ichi Maeda, Ryohei Fujimaki:

Rebuilding Factorized Information Criterion: Asymptotically Accurate Marginal Likelihood. 1358-1366 - Woosang Lim, Minhwan Kim, Haesun Park, Kyomin Jung:

Double Nyström Method: An Efficient and Accurate Nyström Scheme for Large-Scale Data Sets. 1367-1375 - Peter Kairouz, Sewoong Oh, Pramod Viswanath:

The Composition Theorem for Differential Privacy. 1376-1385 - Marthinus Christoffel du Plessis, Gang Niu, Masashi Sugiyama:

Convex Formulation for Learning from Positive and Unlabeled Data. 1386-1394 - Atsushi Miyauchi, Yuni Iwamasa, Takuro Fukunaga, Naonori Kakimura:

Threshold Influence Model for Allocating Advertising Budgets. 1395-1404 - Amit Daniely, Alon Gonen, Shai Shalev-Shwartz:

Strongly Adaptive Online Learning. 1405-1411 - Miao Xu, Rong Jin, Zhi-Hua Zhou:

CUR Algorithm for Partially Observed Matrices. 1412-1421 - Yining Wang, Yu-Xiang Wang, Aarti Singh:

A Deterministic Analysis of Noisy Sparse Subspace Clustering for Dimensionality-reduced Data. 1422-1431 - Eric Sibony, Stéphan Clémençon, Jérémie Jakubowicz:

MRA-based Statistical Learning from Incomplete Rankings. 1432-1441 - Jonathan H. Huggins, Joshua B. Tenenbaum:

Risk and Regret of Hierarchical Bayesian Learners. 1442-1451 - David Lopez-Paz, Krikamol Muandet, Bernhard Schölkopf, Ilya O. Tolstikhin:

Towards a Learning Theory of Cause-Effect Inference. 1452-1461 - Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, Daan Wierstra:

DRAW: A Recurrent Neural Network For Image Generation. 1462-1471 - Ehsan Amid, Antti Ukkonen:

Multiview Triplet Embedding: Learning Attributes in Multiple Maps. 1472-1480 - Marc Peter Deisenroth, Jun Wei Ng:

Distributed Gaussian Processes. 1481-1490 - Gongguo Tang, Parikshit Shah:

Guaranteed Tensor Decomposition: A Moment Approach. 1491-1500 - Zirui Zhou, Qi Zhang, Anthony Man-Cho So:

\(\ell_{1, p}\)-Norm Regularization: Error Bounds and Convergence Rate Analysis of First-Order Methods. 1501-1510 - Qiuyi Han, Kevin S. Xu, Edoardo M. Airoldi:

Consistent estimation of dynamic and multi-layer block models. 1511-1520 - Manel Tagorti, Bruno Scherrer:

On the Rate of Convergence and Error Bounds for LSTD(\(\lambda\)). 1521-1529 - Danilo Jimenez Rezende, Shakir Mohamed:

Variational Inference with Normalizing Flows. 1530-1538 - Benn Macdonald, Catherine F. Higham, Dirk Husmeier:

Controversy in mechanistic modelling with Gaussian processes. 1539-1547 - Carlo Ciliberto, Youssef Mroueh, Tomaso A. Poggio, Lorenzo Rosasco:

Convex Learning of Multiple Tasks and their Structure. 1548-1557 - Margarita Osadchy, Tamir Hazan, Daniel Keren:

K-hyperplane Hinge-Minimax Classifier. 1558-1566 - Boris Lesner, Bruno Scherrer:

Non-Stationary Approximate Modified Policy Iteration. 1567-1575 - Mathieu Serrurier, Henri Prade:

Entropy evaluation based on confidence intervals of frequency estimates : Application to the learning of decision trees. 1576-1584 - Chong You, René Vidal:

Geometric Conditions for Subspace-Sparse Recovery. 1585-1593 - Amar Shah, David A. Knowles, Zoubin Ghahramani:

An Empirical Study of Stochastic Variational Inference Algorithms for the Beta Bernoulli Process. 1594-1603 - Xiaodan Zhu, Parinaz Sobhani, Hongyu Guo:

Long Short-Term Memory Over Recursive Structures. 1604-1612 - Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, Daan Wierstra:

Weight Uncertainty in Neural Network. 1613-1622 - Jiaqian Yu, Matthew B. Blaschko:

Learning Submodular Losses with the Lovasz Hinge. 1623-1631 - Julie Nutini, Mark Schmidt, Issam H. Laradji, Michael P. Friedlander, Hoyt A. Koepke:

Coordinate Descent Converges Faster with the Gauss-Southwell Rule Than Random Selection. 1632-1641 - Cong Leng, Jiaxiang Wu, Jian Cheng, Xi Zhang, Hanqing Lu:

Hashing for Distributed Data. 1642-1650 - Zhiting Hu, Qirong Ho, Avinava Dubey, Eric P. Xing:

Large-scale Distributed Dependent Nonparametric Trees. 1651-1659 - Balázs Szörényi, Róbert Busa-Fekete, Paul Weng, Eyke Hüllermeier:

Qualitative Multi-Armed Bandits: A Quantile-Based Approach. 1660-1668 - Li Xu, Jimmy S. J. Ren, Qiong Yan, Renjie Liao, Jiaya Jia:

Deep Edge-Aware Filters. 1669-1678 - Shiau Hong Lim, Yudong Chen, Huan Xu:

A Convex Optimization Framework for Bi-Clustering. 1679-1688 - Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert, Fabio Roli:

Is Feature Selection Secure against Training Data Poisoning? 1689-1698 - José Miguel Hernández-Lobato, Michael A. Gelbart, Matthew W. Hoffman, Ryan P. Adams, Zoubin Ghahramani:

Predictive Entropy Search for Bayesian Optimization with Unknown Constraints. 1699-1707 - Michaël Perrot, Amaury Habrard:

A Theoretical Analysis of Metric Hypothesis Transfer Learning. 1708-1717 - Yujia Li, Kevin Swersky, Richard S. Zemel:

Generative Moment Matching Networks. 1718-1727 - Megasthenis Asteris, Anastasios Kyrillidis, Alexandros G. Dimakis, Han-Gyol Yi, Bharath Chandrasekaran:

Stay on path: PCA along graph paths. 1728-1736 - Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, Pritish Narayanan:

Deep Learning with Limited Numerical Precision. 1737-1746 - Jie Wang, Jieping Ye:

Safe Screening for Multi-Task Feature Learning with Multiple Data Matrices. 1747-1756 - Taco Cohen, Max Welling:

Harmonic Exponential Families on Manifolds. 1757-1765 - Christopher Clark, Amos J. Storkey:

Training Deep Convolutional Neural Networks to Play Go. 1766-1774 - Andrew Gordon Wilson, Hannes Nickisch:

Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP). 1775-1784 - Liang-Chieh Chen, Alexander G. Schwing, Alan L. Yuille, Raquel Urtasun:

Learning Deep Structured Models. 1785-1794 - Haim Avron, Lior Horesh:

Community Detection Using Time-Dependent Personalized PageRank. 1795-1803 - Josip Djolonga, Andreas Krause:

Scalable Variational Inference in Log-supermodular Models. 1804-1813 - Chris M. Lloyd, Tom Gunter, Michael A. Osborne, Stephen J. Roberts:

Variational Inference for Gaussian Process Modulated Poisson Processes. 1814-1822 - Zhe Gan, Changyou Chen, Ricardo Henao, David E. Carlson, Lawrence Carin:

Scalable Deep Poisson Factor Analysis for Topic Modeling. 1823-1832 - Nico Görnitz, Mikio L. Braun, Marius Kloft:

Hidden Markov Anomaly Detection. 1833-1842 - Huitong Qiu, Sheng Xu, Fang Han, Han Liu, Brian Caffo:

Robust Estimation of Transition Matrices in High Dimensional Heavy-tailed Vector Autoregressive Processes. 1843-1851 - Harish G. Ramaswamy, Ambuj Tewari, Shivani Agarwal:

Convex Calibrated Surrogates for Hierarchical Classification. 1852-1860 - José Miguel Hernández-Lobato, Ryan P. Adams:

Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks. 1861-1869 - Christopher Berlind, Ruth Urner:

Active Nearest Neighbors in Changing Environments. 1870-1879 - Hanxiao Liu, Yiming Yang:

Bipartite Edge Prediction via Transductive Learning over Product Graphs. 1880-1888 - John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, Philipp Moritz:

Trust Region Policy Optimization. 1889-1897 - Mingming Gong, Kun Zhang, Bernhard Schölkopf, Dacheng Tao, Philipp Geiger:

Discovering Temporal Causal Relations from Subsampled Data. 1898-1906 - Dohyung Park, Joe Neeman, Jin Zhang, Sujay Sanghavi, Inderjit S. Dhillon:

Preference Completion: Large-scale Collaborative Ranking from Pairwise Comparisons. 1907-1916 - Philipp Geiger, Kun Zhang, Bernhard Schölkopf, Mingming Gong, Dominik Janzing:

Causal Inference by Identification of Vector Autoregressive Processes with Hidden Components. 1917-1925 - Behnam Neyshabur, Nathan Srebro:

On Symmetric and Asymmetric LSHs for Inner Product Search. 1926-1934 - Yunlong Jiao, Jean-Philippe Vert:

The Kendall and Mallows Kernels for Permutations. 1935-1944 - Purnima Rajan, Weidong Han, Raphael Sznitman, Peter I. Frazier, Bruno Jedynak:

Bayesian Multiple Target Localization. 1945-1953 - Kai Wei, Rishabh K. Iyer, Jeff A. Bilmes:

Submodularity in Data Subset Selection and Active Learning. 1954-1963 - Philip Bachman, Doina Precup:

Variational Generative Stochastic Networks with Collaborative Shaping. 1964-1972 - Chenxin Ma, Virginia Smith, Martin Jaggi, Michael I. Jordan, Peter Richtárik, Martin Takác:

Adding vs. Averaging in Distributed Primal-Dual Optimization. 1973-1982 - Feng Nan, Joseph Wang, Venkatesh Saligrama:

Feature-Budgeted Random Forest. 1983-1991 - Maxwell W. Libbrecht, Michael M. Hoffman, Jeff A. Bilmes, William Stafford Noble:

Entropic Graph-based Posterior Regularization. 1992-2001 - Tam Le, Marco Cuturi:

Unsupervised Riemannian Metric Learning for Histograms Using Aitchison Transformations. 2002-2011 - Or Zuk, Avishai Wagner:

Low-Rank Matrix Recovery from Row-and-Column Affine Measurements. 2012-2020 - Sébastien Giguère, Amélie Rolland, François Laviolette, Mario Marchand:

Algorithms for the Hard Pre-Image Problem of String Kernels and the General Problem of String Prediction. 2021-2029 - Wenzhao Lian, Ricardo Henao, Vinayak A. Rao, Joseph E. Lucas, Lawrence Carin:

A Multitask Point Process Predictive Model. 2030-2038 - Michael Zhu, Stefano Ermon:

A Hybrid Approach for Probabilistic Inference using Random Projections. 2039-2047 - Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville, Ruslan Salakhutdinov, Richard S. Zemel, Yoshua Bengio:

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. 2048-2057 - Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agarwal, Hal Daumé III, John Langford:

Learning to Search Better than Your Teacher. 2058-2066 - Junyoung Chung, Çaglar Gülçehre, Kyunghyun Cho, Yoshua Bengio:

Gated Feedback Recurrent Neural Networks. 2067-2075 - Erfan Soltanmohammadi, Mort Naraghi-Pour, Mihaela van der Schaar:

Context-based Unsupervised Data Fusion for Decision Making. 2076-2084 - Rémi Lebret, Pedro H. O. Pinheiro, Ronan Collobert:

Phrase-based Image Captioning. 2085-2094 - Jeffrey Regier, Andrew C. Miller, Jon McAuliffe, Ryan P. Adams, Matthew D. Hoffman, Dustin Lang, David Schlegel, Prabhat:

Celeste: Variational inference for a generative model of astronomical images. 2095-2103 - Adarsh Prasad, Harsh H. Pareek, Pradeep Ravikumar:

Distributional Rank Aggregation, and an Axiomatic Analysis. 2104-2112 - Dougal Maclaurin, David Duvenaud, Ryan P. Adams:

Gradient-based Hyperparameter Optimization through Reversible Learning. 2113-2122 - Miltiadis Allamanis, Daniel Tarlow, Andrew D. Gordon, Yi Wei:

Bimodal Modelling of Source Code and Natural Language. 2123-2132 - Manjesh Kumar Hanawal, Venkatesh Saligrama, Michal Valko, Rémi Munos:

Cheap Bandits. 2133-2142 - Frédéric Chazal, Brittany Terese Fasy, Fabrizio Lecci, Bertrand Michel, Alessandro Rinaldo, Larry A. Wasserman:

Subsampling Methods for Persistent Homology. 2143-2151 - Bernardino Romera-Paredes, Philip H. S. Torr:

An embarrassingly simple approach to zero-shot learning. 2152-2161 - Xinyang Yi, Constantine Caramanis, Eric Price:

Binary Embedding: Fundamental Limits and Fast Algorithm. 2162-2170 - Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram, Md. Mostofa Ali Patwary, Prabhat, Ryan P. Adams:

Scalable Bayesian Optimization Using Deep Neural Networks. 2171-2180 - Amir Globerson, Tim Roughgarden, David A. Sontag, Cafer Yildirim:

How Hard is Inference for Structured Prediction? 2181-2190 - Jason Pacheco, Erik B. Sudderth:

Proteins, Particles, and Pseudo-Max-Marginals: A Submodular Approach. 2200-2208 - Yacine Jernite, Alexander M. Rush

, David A. Sontag:
A Fast Variational Approach for Learning Markov Random Field Language Models. 2209-2217 - Bernhard Schölkopf, David W. Hogg, Dun Wang, Daniel Foreman-Mackey, Dominik Janzing, Carl-Johann Simon-Gabriel, Jonas Peters:

Removing systematic errors for exoplanet search via latent causes. 2218-2226 - Yves-Laurent Kom Samo, Stephen J. Roberts:

Scalable Nonparametric Bayesian Inference on Point Processes with Gaussian Processes. 2227-2236 - Kook Jin Ahn, Graham Cormode, Sudipto Guha, Andrew McGregor, Anthony Wirth:

Correlation Clustering in Data Streams. 2237-2246 - Qingming Tang, Siqi Sun, Jinbo Xu:

Learning Scale-Free Networks by Dynamic Node Specific Degree Prior. 2247-2255 - Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, Surya Ganguli:

Deep Unsupervised Learning using Nonequilibrium Thermodynamics. 2256-2265 - Andrew Trask, David Gilmore, Matthew Russell:

Modeling Order in Neural Word Embeddings at Scale. 2266-2275 - Hong Ge, Yutian Chen, Moquan Wan, Zoubin Ghahramani:

Distributed Inference for Dirichlet Process Mixture Models. 2276-2284 - Wenlin Chen, James T. Wilson, Stephen Tyree, Kilian Q. Weinberger, Yixin Chen:

Compressing Neural Networks with the Hashing Trick. 2285-2294 - Rong Ge, James Zou:

Intersecting Faces: Non-negative Matrix Factorization With New Guarantees. 2295-2303 - Roger B. Grosse, Ruslan Salakhutdinov:

Scaling up Natural Gradient by Sparsely Factorizing the Inverse Fisher Matrix. 2304-2313 - Harm Vanseijen, Richard S. Sutton:

A Deeper Look at Planning as Learning from Replay. 2314-2322 - Alina Beygelzimer, Satyen Kale, Haipeng Luo:

Optimal and Adaptive Algorithms for Online Boosting. 2323-2331 - Christopher De Sa, Christopher Ré, Kunle Olukotun:

Global Convergence of Stochastic Gradient Descent for Some Non-convex Matrix Problems. 2332-2341 - Rafal Józefowicz, Wojciech Zaremba, Ilya Sutskever:

An Empirical Exploration of Recurrent Network Architectures. 2342-2350 - Ju Sun, Qing Qu, John Wright:

Complete Dictionary Recovery Using Nonconvex Optimization. 2351-2360 - Haitham Bou-Ammar, Rasul Tutunov, Eric Eaton:

Safe Policy Search for Lifelong Reinforcement Learning with Sublinear Regret. 2361-2369 - Cho-Jui Hsieh, Hsiang-Fu Yu, Inderjit S. Dhillon:

PASSCoDe: Parallel ASynchronous Stochastic dual Co-ordinate Descent. 2370-2379 - Philip S. Thomas, Georgios Theocharous, Mohammad Ghavamzadeh:

High Confidence Policy Improvement. 2380-2388 - Zelda Mariet, Suvrit Sra:

Fixed-point algorithms for learning determinantal point processes. 2389-2397 - Harikrishna Narasimhan, Harish G. Ramaswamy, Aadirupa Saha, Shivani Agarwal:

Consistent Multiclass Algorithms for Complex Performance Measures. 2398-2407 - James Martens, Roger B. Grosse:

Optimizing Neural Networks with Kronecker-factored Approximate Curvature. 2408-2417 - Ian En-Hsu Yen, Xin Lin, Kai Zhong, Pradeep Ravikumar, Inderjit S. Dhillon:

A Convex Exemplar-based Approach to MAD-Bayes Dirichlet Process Mixture Models. 2418-2426 - Anh T. Pham, Raviv Raich, Xiaoli Z. Fern, Jesús Pérez Arriaga:

Multi-instance multi-label learning in the presence of novel class instances. 2427-2435 - Liva Ralaivola, Massih-Reza Amini:

Entropy-Based Concentration Inequalities for Dependent Variables. 2436-2444 - Cho-Jui Hsieh, Nagarajan Natarajan, Inderjit S. Dhillon:

PU Learning for Matrix Completion. 2445-2453 - Necdet S. Aybat, Zi Wang, Garud Iyengar:

An Asynchronous Distributed Proximal Gradient Method for Composite Convex Optimization. 2454-2462 - Congyuan Yang, Daniel P. Robinson, René Vidal:

Sparse Subspace Clustering with Missing Entries. 2463-2472 - Jinyan Guan, Kyle Simek, Ernesto Brau, Clayton T. Morrison, Emily Butler, Kobus Barnard:

Moderated and Drifting Linear Dynamical Systems. 2473-2482 - Taehoon Lee, Sungroh Yoon:

Boosted Categorical Restricted Boltzmann Machine for Computational Prediction of Splice Junctions. 2483-2492 - Yu-Xiang Wang, Stephen E. Fienberg, Alexander J. Smola:

Privacy for Free: Posterior Sampling and Stochastic Gradient Monte Carlo. 2493-2502 - Lucas Theis, Matthew D. Hoffman:

A trust-region method for stochastic variational inference with applications to streaming data. 2503-2511 - Kevin Winner, Garrett Bernstein, Daniel Sheldon:

Inference in a Partially Observed Queuing Model with Applications in Ecology. 2512-2520 - Ruitong Huang, András György, Csaba Szepesvári:

Deterministic Independent Component Analysis. 2521-2530 - Maxime Gasse, Alexandre Aussem, Haytham Elghazel:

On the Optimality of Multi-Label Classification under Subset Zero-One Loss for Distributions Satisfying the Composition Property. 2531-2539 - Roy Frostig, Rong Ge, Sham M. Kakade, Aaron Sidford:

Un-regularizing: approximate proximal point and faster stochastic algorithms for empirical risk minimization. 2540-2548 - Bin Gu, Charles X. Ling:

A New Generalized Error Path Algorithm for Model Selection. 2549-2558

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














