
Ann Nowé
Person information
- affiliation: Vrije Universiteit Brussel, Artificial Intelligence Lab, Belgium
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2020
- [j56]Roxana Radulescu
, Patrick Mannion
, Diederik M. Roijers
, Ann Nowé:
Multi-objective multi-agent decision making: a utility-based analysis and survey. Auton. Agents Multi Agent Syst. 34(1): 10 (2020) - [j55]Eugenio Bargiacchi, Diederik M. Roijers, Ann Nowé:
AI-Toolbox: A C++ library for Reinforcement Learning and Planning (with Python Bindings). J. Mach. Learn. Res. 21: 102:1-102:12 (2020) - [j54]Roxana Radulescu
, Patrick Mannion
, Yijie Zhang, Diederik M. Roijers, Ann Nowé:
A utility-based analysis of equilibria in multi-objective normal-form games. Knowl. Eng. Rev. 35: e32 (2020) - [j53]Gabriel de Oliveira Ramos
, Bruno C. da Silva, Roxana Radulescu
, Ana L. C. Bazzan, Ann Nowé:
Toll-based reinforcement learning for efficient equilibria in route choice. Knowl. Eng. Rev. 35: e8 (2020) - [j52]Yannick De Bock
, Andres Auquilla, Ann Nowé, Joost R. Duflou:
Nonparametric user activity modelling and prediction. User Model. User Adapt. Interact. 30(5): 803-831 (2020) - [c181]Gabriel de Oliveira Ramos, Roxana Radulescu, Ann Nowé, Anderson R. Tavares:
Toll-Based Learning for Minimising Congestion under Heterogeneous Preferences. AAMAS 2020: 1098-1106 - [c180]Timothy Verstraeten, Eugenio Bargiacchi, Pieter J. K. Libin, Diederik M. Roijers, Ann Nowé:
Thompson Sampling for Factored Multi-Agent Bandits. AAMAS 2020: 2029-2031 - [c179]Yijie Zhang, Roxana Radulescu, Patrick Mannion, Diederik M. Roijers, Ann Nowé:
Opponent Modelling for Reinforcement Learning in Multi-Objective Normal Form Games. AAMAS 2020: 2080-2082 - [c178]Roxana Radulescu, Patrick Mannion, Diederik M. Roijers, Ann Nowé:
Multi-Objective Multi-Agent Decision Making: A Utility-based Analysis and Survey. AAMAS 2020: 2158-2160 - [c177]Timothy Verstraeten, Pieter J. K. Libin, Ann Nowé:
Fleet Control Using Coregionalized Gaussian Process Policy Iteration. ECAI 2020: 1571-1578 - [c176]Isel Grau
, Dipankar Sengupta
, María Matilde García Lorenzo, Ann Nowé:
An Interpretable Semi-supervised Classifier using Rough Sets for Amended Self-labeling. FUZZ-IEEE 2020: 1-8 - [c175]Axel Abels
, Tom Lenaerts
, Vito Trianni
, Ann Nowé:
Collective Decision-Making as a Contextual Multi-armed Bandit Problem. ICCCI 2020: 113-124 - [c174]Axel Abels
, Tom Lenaerts
, Vito Trianni
, Ann Nowé:
How Expert Confidence Can Improve Collective Decision-Making in Contextual Multi-Armed Bandit Problems. ICCCI 2020: 125-138 - [c173]Yailen Martínez Jiménez
, Jessica Coto Palacio
, Ann Nowé
:
Multi-Agent Reinforcement Learning Tool for Job Shop Scheduling Problems. OLA 2020: 3-12 - [c172]Pieter J. K. Libin, Arno Moonens, Timothy Verstraeten, Fabian Perez-Sanjines, Niel Hens, Philippe Lemey, Ann Nowé:
Deep Reinforcement Learning for Large-Scale Epidemic Control. ECML/PKDD (5) 2020: 155-170 - [c171]Diederik M. Roijers, Luisa M. Zintgraf, Pieter Libin, Mathieu Reymond, Eugenio Bargiacchi, Ann Nowé:
Interactive Multi-objective Reinforcement Learning in Multi-armed Bandits with Gaussian Process Utility Models. ECML/PKDD (3) 2020: 463-478 - [i24]Eugenio Bargiacchi, Timothy Verstraeten, Diederik M. Roijers, Ann Nowé:
Model-based Multi-Agent Reinforcement Learning with Cooperative Prioritized Sweeping. CoRR abs/2001.07527 (2020) - [i23]Roxana Radulescu, Patrick Mannion, Yijie Zhang, Diederik M. Roijers, Ann Nowé:
A utility-based analysis of equilibria in multi-objective normal form games. CoRR abs/2001.08177 (2020) - [i22]Isel Grau, Dipankar Sengupta, María Matilde García Lorenzo, Ann Nowé:
An interpretable semi-supervised classifier using two different strategies for amended self-labeling. CoRR abs/2001.09502 (2020) - [i21]Pieter Libin, Arno Moonens, Timothy Verstraeten, Fabian Perez-Sanjines, Niel Hens, Philippe Lemey, Ann Nowé:
Deep reinforcement learning for large-scale epidemic control. CoRR abs/2003.13676 (2020) - [i20]Roxana Radulescu, Timothy Verstraeten, Yijie Zhang, Patrick Mannion, Diederik M. Roijers, Ann Nowé:
Opponent Learning Awareness and Modelling in Multi-Objective Normal Form Games. CoRR abs/2011.07290 (2020)
2010 – 2019
- 2019
- [j51]Oliver Roesler
, Ann Nowé:
Action learning and grounding in simulated human-robot interactions. Knowl. Eng. Rev. 34: e13 (2019) - [j50]Joris De Winter, Albert De Beir, Ilias El Makrini, Greet Van de Perre, Ann Nowé, Bram Vanderborght
:
Accelerating Interactive Reinforcement Learning by Human Advice for an Assembly Task by a Cobot. Robotics 8(4): 104 (2019) - [c170]Youri Coppens, Eugenio Bargiacchi, Ann Nowé:
A Virtual Maze Game to Explain Reinforcement Learning. BNAIC/BENELEARN 2019 - [c169]Jannick Hemelhof, Mihail Mihaylov, Ann Nowé:
Improving Zero-Intelligence Plus for Call Markets. BNAIC/BENELEARN 2019 - [c168]Pieter Libin, Nassim Versbraegen, Ana B. Abecasis, Perpetua Gomes, Tom Lenaerts, Ann Nowé:
Towards a Phylogenetic Measure to Quantify HIV Incidence. BNAIC/BENELEARN 2019 - [c167]Pieter Libin, Nassim Versbraegen, Ana B. Abecasis, Perpetua Gomes, Tom Lenaerts, Ann Nowé:
Towards a Phylogenetic Measure to Quantify HIV Incidence. BNAIC/BENELEARN (Selected Papers) 2019: 34-50 - [c166]Pieter Libin, Timothy Verstraeten, Diederik M. Roijers, Wenjia Wang, Kristof Theys, Ann Nowé:
Thompson Sampling for m-top Exploration. BNAIC/BENELEARN 2019 - [c165]Regis Loeb, Timothy Verstraeten, Ann Nowé, Ann Dooms:
Privacy Preserving Reinforcement Learning over Distributed Datasets. BNAIC/BENELEARN 2019 - [c164]Jessica Coto Palacio, Yailen Martínez Jiménez, Ann Nowé:
Multi-Agent Reinforcement Learning Tool for Job Shop Scheduling Problems. BNAIC/BENELEARN 2019 - [c163]Hélène Plisnier, Denis Steckelmacher, Diederik M. Roijers, Ann Nowé:
Transfer Reinforcement Learning across Environment Dynamics with Multiple Advisors. BNAIC/BENELEARN 2019 - [c162]Oliver Roesler, Ann Nowé:
Action Learning and Grounding in Simulated Human-Robot Interactions. BNAIC/BENELEARN 2019 - [c161]Willem Röpke, Roxana Radulescu, Kyriakos Efthymiadis, Ann Nowé:
Training a Speech-to-Text Model for Dutch on the Corpus Gesproken Nederlands. BNAIC/BENELEARN 2019 - [c160]Willem Röpke, Roxana Radulescu, Kyriakos Efthymiadis, Ann Nowé:
DuStt - A Speech-to-Text Engine for Dutch. BNAIC/BENELEARN 2019 - [c159]Denis Steckelmacher, Hélène Plisnier, Ann Nowé:
A Motorized Wheelchair that Learns to Make its Way through a Crowd. BNAIC/BENELEARN 2019 - [c158]Denis Steckelmacher, Hélène Plisnier, Diederik M. Roijers, Ann Nowé:
Sample-Efficient Model-Free Reinforcement Learning with Off-Policy Critics. BNAIC/BENELEARN 2019 - [c157]Timothy Verstraeten, Ann Nowé, Jan Helsen:
Failure Avoidance for Wind Turbines through Fleetwide Control. BNAIC/BENELEARN 2019 - [c156]Felipe Gomez Marulanda, Pieter Libin, Timothy Verstraeten, Ann Nowé:
Deep hybrid approach for 3D plane segmentation. ESANN 2019 - [c155]Beatriz M. Méndez-Hernández
, Erick D. Rodríguez Bazan
, Yailen Martínez Jiménez
, Pieter Libin
, Ann Nowé
:
A Multi-objective Reinforcement Learning Algorithm for JSSP. ICANN (1) 2019: 567-584 - [c154]Axel Abels
, Diederik M. Roijers, Tom Lenaerts, Ann Nowé, Denis Steckelmacher:
Dynamic Weights in Multi-Objective Deep Reinforcement Learning. ICML 2019: 11-20 - [c153]Anna Harutyunyan, Peter Vrancx, Philippe Hamel, Ann Nowé, Doina Precup:
Per-Decision Option Discounting. ICML 2019: 2644-2652 - [c152]Pieter Libin, Timothy Verstraeten, Diederik M. Roijers, Wenjia Wang, Kristof Theys, Ann Nowé:
Bayesian Anytime m-top Exploration. ICTAI 2019: 1422-1428 - [c151]Richar Sosa, Alejandro Alfonso, Gonzalo Nápoles, Rafael Bello, Koen Vanhoof, Ann Nowé:
Synaptic Learning of Long-Term Cognitive Networks with Inputs. IJCNN 2019: 1-8 - [c150]Denis Steckelmacher, Hélène Plisnier, Diederik M. Roijers
, Ann Nowé:
Sample-Efficient Model-Free Reinforcement Learning with Off-Policy Critics. ECML/PKDD (3) 2019: 19-34 - [c149]Angel Luis Scull Pupo, Jens Nicolay
, Kyriakos Efthymiadis, Ann Nowé
, Coen De Roover
, Elisa Gonzalez Boix
:
GUARDIAML: Machine Learning-Assisted Dynamic Information Flow Control. SANER 2019: 624-628 - [i19]Hélène Plisnier
, Denis Steckelmacher, Diederik M. Roijers, Ann Nowé:
The Actor-Advisor: Policy Gradient With Off-Policy Advice. CoRR abs/1902.02556 (2019) - [i18]Denis Steckelmacher
, Hélène Plisnier, Diederik M. Roijers, Ann Nowé:
Sample-Efficient Model-Free Reinforcement Learning with Off-Policy Critics. CoRR abs/1903.04193 (2019) - [i17]Timothy Verstraeten, Ann Nowé, Jonathan Keller, Yi Guo, Shuangwen Sheng, Jan Helsen:
Fleetwide data-enabled reliability improvement of wind turbines. CoRR abs/1903.11518 (2019) - [i16]Hélène Plisnier
, Denis Steckelmacher, Diederik M. Roijers, Ann Nowé:
Transfer Learning Across Simulated Robots With Different Sensors. CoRR abs/1907.07958 (2019) - [i15]Roxana Radulescu, Patrick Mannion, Diederik M. Roijers, Ann Nowé:
Multi-Objective Multi-Agent Decision Making: A Utility-based Analysis and Survey. CoRR abs/1909.02964 (2019) - [i14]Felipe Gomez Marulanda, Pieter Libin, Timothy Verstraeten, Ann Nowé:
IPC-Net: 3D point-cloud segmentation using deep inter-point convolutional layers. CoRR abs/1909.13726 (2019) - [i13]Timothy Verstraeten, Eugenio Bargiacchi, Pieter J. K. Libin, Diederik M. Roijers, Ann Nowé:
Thompson Sampling for Factored Multi-Agent Bandits. CoRR abs/1911.10120 (2019) - [i12]Timothy Verstraeten, Pieter J. K. Libin, Ann Nowé:
Fleet Control using Coregionalized Gaussian Process Policy Iteration. CoRR abs/1911.10121 (2019) - 2018
- [j49]Yaima Filiberto Cabrera, Rafael Bello Pérez, Ann Nowé:
A New Method For Personnel Selection Based On Ranking Aggregation Using A Reinforcement Learning Approach. Computación y Sistemas 22(2) (2018) - [j48]Sofie De Clercq, Steven Schockaert
, Ann Nowé, Martine De Cock:
Modelling incomplete information in Boolean games using possibilistic logic. Int. J. Approx. Reason. 93: 1-23 (2018) - [j47]Huong Thi Thu Vu
, Felipe Gomez Marulanda
, Pierre Cherelle, Dirk Lefeber
, Ann Nowé
, Bram Vanderborght
:
ED-FNN: A New Deep Learning Algorithm to Detect Percentage of the Gait Cycle for Powered Prostheses. Sensors 18(7): 2389 (2018) - [c148]Anna Harutyunyan, Peter Vrancx, Pierre-Luc Bacon, Doina Precup, Ann Nowé:
Learning With Options That Terminate Off-Policy. AAAI 2018: 3173-3182 - [c147]Denis Steckelmacher, Diederik M. Roijers, Anna Harutyunyan, Peter Vrancx, Hélène Plisnier, Ann Nowé:
Reinforcement Learning in POMDPs With Memoryless Options and Option-Observation Initiation Sets. AAAI 2018: 4099-4106 - [c146]Dennis J. N. J. Soemers, Tim Brys, Kurt Driessens, Mark H. M. Winands, Ann Nowé:
Adapting to Concept Drift in Credit Card Transaction Data Streams Using Contextual Bandits and Decision Trees. AAAI 2018: 7831-7836 - [c145]Lázaro Lugo, Marilyn Bello, Ann Nowé
, Rafael Bello:
A Solution for the Team Selection Problem Using ACO. ANTS Conference 2018: 325-332 - [c144]Luisa M. Zintgraf, Diederik M. Roijers, Sjoerd Linders, Catholijn M. Jonker, Ann Nowé:
Ordered Preference Elicitation Strategies for Supporting Multi-Objective Decision Making. AAMAS 2018: 1477-1485 - [c143]Roxana Radulescu, Manon Legrand, Kyriakos Efthymiadis, Diederik M. Roijers
, Ann Nowé:
Deep Multi-agent Reinforcement Learning in a Homogeneous Open Population. BNCAI 2018: 90-105 - [c142]Eugenio Bargiacchi, Timothy Verstraeten, Diederik M. Roijers, Ann Nowé, Hado van Hasselt:
Learning to Coordinate with Coordination Graphs in Repeated Single-Stage Multi-Agent Decision Problems. ICML 2018: 491-499 - [c141]Felipe Gomez Marulanda, Pieter Libin, Timothy Verstraeten
, Ann Nowé
:
IPC-Net: 3D Point-Cloud Segmentation Using Deep Inter-Point Convolutional Layers. ICTAI 2018: 293-301 - [c140]Beatriz M. Méndez-Hernández, Jessica Coto Palacio, Yailen Martínez Jiménez, Ann Nowé
, Erick D. Rodríguez Bazan:
A Reinforcement Learning Approach for the Report Scheduling Process Under Multiple Constraints. IWAIPR 2018: 228-235 - [c139]Pieter J. K. Libin, Timothy Verstraeten, Diederik M. Roijers
, Jelena Grujic, Kristof Theys, Philippe Lemey, Ann Nowé:
Bayesian Best-Arm Identification for Selecting Influenza Mitigation Strategies. ECML/PKDD (3) 2018: 456-471 - [c138]Christophe Patyn, Thijs Peirelinck
, Geert Deconinck
, Ann Nowé
:
Intelligent Electric Water Heater Control with Varying State Information. SmartGridComm 2018: 1-6 - [i11]Luisa M. Zintgraf, Diederik M. Roijers, Sjoerd Linders, Catholijn M. Jonker, Ann Nowé:
Ordered Preference Elicitation Strategies for Supporting Multi-Objective Decision Making. CoRR abs/1802.07606 (2018) - [i10]Hélène Plisnier, Denis Steckelmacher, Tim Brys, Diederik M. Roijers, Ann Nowé:
Directed Policy Gradient for Safe Reinforcement Learning with Human Advice. CoRR abs/1808.04096 (2018) - [i9]Axel Abels, Diederik M. Roijers, Tom Lenaerts, Ann Nowé, Denis Steckelmacher:
Dynamic Weights in Multi-Objective Deep Reinforcement Learning. CoRR abs/1809.07803 (2018) - 2017
- [j46]Sofie De Clercq, Kim Bauters, Steven Schockaert
, Mihail Mihaylov, Ann Nowé
, Martine De Cock:
Exact and heuristic methods for solving Boolean games. Auton. Agents Multi Agent Syst. 31(1): 66-106 (2017) - [j45]Pieter Libin
, Ewout Vanden Eynden, Francesca Incardona, Ann Nowé
, Antonia Bezenchek, EucoHIV Study Group, Anders Sönnerborg, Anne-Mieke Vandamme
, Kristof Theys, Guy Baele
:
PhyloGeoTool: interactively exploring large phylogenies in an epidemiological context. Bioinform. 33(24): 3993-3995 (2017) - [j44]Diego S. Comas, Gustavo J. Meschino
, Ann Nowé, Virginia L. Ballarin
:
Discovering knowledge from data clustering using automatically-defined interval type-2 fuzzy predicates. Expert Syst. Appl. 68: 136-150 (2017) - [j43]Tim Brys, Anna Harutyunyan, Peter Vrancx, Ann Nowé
, Matthew E. Taylor:
Multi-objectivization and ensembles of shapings in reinforcement learning. Neurocomputing 263: 48-59 (2017) - [j42]Aleksander Byrski
, Ewelina Swiderska, Jakub Lasisz, Marek Kisiel-Dorohinicki, Tom Lenaerts
, Dana Samson, Bipin Indurkhya, Ann Nowé
:
Socio-cognitively inspired ant colony optimization. J. Comput. Sci. 21: 397-406 (2017) - [c137]Elias Fernández Domingos, Juan-Carlos Burguillo, Ann Nowé, Tom Lenaerts:
Coordinating Human and Agent Behavior in Collective-Risk Scenarios. AAAI 2017: 4919-4920 - [c136]Diederik M. Roijers, Luisa M. Zintgraf, Ann Nowé
:
Interactive Thompson Sampling for Multi-objective Multi-armed Bandits. ADT 2017: 18-34 - [c135]Pieter Libin
, Timothy Verstraeten
, Kristof Theys
, Diederik M. Roijers
, Peter Vrancx
, Ann Nowé
:
Efficient Evaluation of Influenza Mitigation Strategies Using Preventive Bandits. AAMAS Workshops (Visionary Papers) 2017: 67-85 - [c134]Roxana Radulescu, Peter Vrancx, Ann Nowé:
Analysing Congestion Problems in Multi-agent Reinforcement Learning. AAMAS 2017: 1705-1707 - [c133]Leticia Arco
, Gladys Casas, Ann Nowé
:
Clustering methodology for smart metering data based on local and global features. IML 2017: 65:1-65:13 - [c132]Steven Adriaensen, Filip Moons
, Ann Nowé:
An Importance Sampling Approach to the Estimation of Algorithm Performance in Automated Algorithm Design. LION 2017: 3-17 - [i8]Roxana Radulescu, Peter Vrancx, Ann Nowé:
Analysing Congestion Problems in Multi-agent Reinforcement Learning. CoRR abs/1702.08736 (2017) - [i7]Denis Steckelmacher
, Diederik M. Roijers, Anna Harutyunyan, Peter Vrancx, Ann Nowé:
Reinforcement Learning in POMDPs with Memoryless Options and Option-Observation Initiation Sets. CoRR abs/1708.06551 (2017) - [i6]Anna Harutyunyan, Peter Vrancx, Pierre-Luc Bacon, Doina Precup, Ann Nowé:
Learning with Options that Terminate Off-Policy. CoRR abs/1711.03817 (2017) - [i5]Pieter Libin, Timothy Verstraeten, Diederik M. Roijers, Jelena Grujic, Kristof Theys, Philippe Lemey, Ann Nowé:
Bayesian Best-Arm Identification for Selecting Influenza Mitigation Strategies. CoRR abs/1711.06299 (2017) - 2016
- [j41]Marilyn Bello-García, Rafael Bello, María Matilde García Lorenzo, Ann Nowé:
Personnel Selection in a Competitive Environment. Computación y Sistemas 20(2) (2016) - [j40]Dewan Md. Farid, M. Abdulla Al Mamun, Bernard Manderick, Ann Nowé:
An adaptive rule-based classifier for mining big biological data. Expert Syst. Appl. 64: 305-316 (2016) - [j39]Yann-Michaël De Hauwere, Sam Devlin
, Daniel Kudenko, Ann Nowé:
Context-sensitive reward shaping for sparse interaction multi-agent systems. Knowl. Eng. Rev. 31(1): 59-76 (2016) - [j38]Abdel Rodríguez, Peter Vrancx, Ricardo Grau, Ann Nowé
:
A reinforcement learning approach to coordinate exploration with limited communication in continuous action games. Knowl. Eng. Rev. 31(1): 77-95 (2016) - [j37]Kevin Tanghe, Anna Harutyunyan, Erwin Aertbeliën
, Friedl De Groote
, Joris De Schutter, Peter Vrancx, Ann Nowé
:
Predicting Seat-Off and Detecting Start-of-Assistance Events for Assisting Sit-to-Stand With an Exoskeleton. IEEE Robotics Autom. Lett. 1(2): 792-799 (2016) - [j36]Sofie De Clercq, Steven Schockaert, Martine De Cock, Ann Nowé
:
Solving stable matching problems using answer set programming. Theory Pract. Log. Program. 16(3): 247-268 (2016) - [c131]Vitalio Alfonso Reguera, Erik Ortiz Guerra, Carlos Manuel García Algora, Ann Nowé, Kris Steenhaut:
On the upper bound for the time to rendezvous in multi-hop cognitive radio networks. CAMAD 2016: 31-36 - [c130]Steven Adriaensen, Ann Nowé
:
Case study: An analysis of accidental complexity in a state-of-the-art hyper-heuristic for HyFlex. CEC 2016: 1485-1492 - [c129]Sofie De Clercq, Steven Schockaert, Ann Nowé, Martine De Cock:
Formalizing Commitment-Based Deals in Boolean Games. ECAI 2016: 329-337 - [c128]Ewelina Swiderska, Jakub Lasisz, Aleksander Byrski
, Tom Lenaerts
, Dana Samson, Bipin Indurkhya, Ann Nowé
, Marek Kisiel-Dorohinicki:
Measuring Diversity of Socio-Cognitively Inspired ACO Search. EvoApplications (1) 2016: 393-408 - [c127]Iwan Bugajski, Piotr Listkiewicz, Aleksander Byrski
, Marek Kisiel-Dorohinicki, Wojciech Korczynski, Tom Lenaerts
, Dana Samson, Bipin Indurkhya, Ann Nowé:
Enhancing Particle Swarm Optimization with Socio-cognitive Inspirations. ICCS 2016: 804-813 - [c126]Steven Adriaensen, Ann Nowé:
Towards a White Box Approach to Automated Algorithm Design. IJCAI 2016: 554-560 - [c125]Andres Auquilla, Yannick De Bock
, Ann Nowé, Joost R. Duflou
:
Combining Occupancy User Profiles in a Multi-user Environment: An Academic Office Case Study. Intelligent Environments 2016: 186-189 - [c124]Mihail Mihaylov, Iván S. Razo-Zapata
, Roxana Radulescu
, Sergio Jurado, Narcís Avellana, Ann Nowé
:
Smart Grid Demonstration Platform for Renewable Energy Exchange. PAAMS 2016: 277-280 - [c123]Carlos Manuel García Algora, Ernesto Prieto Lopez, Vitalio Alfonso Reguera, Ann Nowé
, Kris Steenhaut
:
Poster: Comparative study of EM-MAC and TSCH/orchestra for IoT. SCVT 2016: 1-6 - [c122]Iván S. Razo-Zapata
, Mihail Mihaylov, Ann Nowé:
Analysing the Impact of Storage and Load Shifting on Grey Energy Demand Reduction. SMARTGREENS/VEHITS (Selected Papers) 2016: 27-48 - [c121]Iván S. Razo-Zapata, Mihail Mihaylov, Ann Nowé
:
Integration of Load Shifting and Storage to Reduce Gray Energy Demand. SMARTGREENS 2016: 154-165 - [c120]Ann Nowé, Tim Brys:
A Gentle Introduction to Reinforcement Learning. SUM 2016: 18-32 - 2015
- [j35]Kieu-Ha Phung
, Bart Lemmens
, Marnix Goossens, Ann Nowé
, Lan Tran, Kris Steenhaut
:
Schedule-based multi-channel communication in wireless sensor networks: A complete design and performance evaluation. Ad Hoc Networks 26: 88-102 (2015) - [j34]Peter Vrancx, Pasquale Gurzi, Abdel Rodríguez, Kris Steenhaut
, Ann Nowé
:
A Reinforcement Learning Approach for Interdomain Routing with Link Prices. ACM Trans. Auton. Adapt. Syst. 10(1): 5:1-5:26 (2015) - [c119]Anna Harutyunyan, Sam Devlin, Peter Vrancx, Ann Nowé:
Expressing Arbitrary Reward Functions as Potential-Based Advice. AAAI 2015: 2652-2658 - [c118]Tim Brys, Anna Harutyunyan, Matthew E. Taylor, Ann Nowé:
Policy Transfer using Reward Shaping. AAMAS 2015: 181-188 - [c117]Anna Harutyunyan, Tim Brys, Peter Vrancx, Ann Nowé:
Multi-Scale Reward Shaping via an Off-Policy Ensemble. AAMAS 2015: 1641-1642 - [c116]Anna Harutyunyan, Tim Brys, Peter Vrancx, Ann Nowé:
Shaping Mario with Human Advice. AAMAS 2015: 1913-1914 - [c115]Mihail Mihaylov, Sergio Jurado, Narcís Avellana, Iván S. Razo-Zapata, Kristof Van Moffaert, Leticia Arco, Maite Bezunartea, Isel Grau, Adrian Cañadas, Ann Nowé:
SCANERGY: a Scalable and Modular System for Energy Trading Between Prosumers. AAMAS 2015: 1917-1918 - [c114]Steven Adriaensen, Gabriela Ochoa
, Ann Nowé:
A benchmark set extension and comparative study for the HyFlex framework. CEC 2015: 784-791 - [c113]Kristof Van Moffaert, Tim Brys, Ann Nowé:
Risk-sensitivity through multi-objective reinforcement learning. CEC 2015: 1746-1753 - [c112]S. Rodrigues, Rodrigo Teixeira Pinto, Pavol Bauer, Tim Brys, Ann Nowé:
Online Distributed Voltage Control of an offshore MTdc network using reinforcement learning. CEC 2015: 1769-1775 - [c111]Sofie De Clercq, Steven Schockaert, Ann Nowé, Martine De Cock:
Multilateral Negotiation in Boolean Games with Incomplete Information Using Generalized Possibilistic Logic. IJCAI 2015: 2890-2896 - [c110]Tim Brys, Anna Harutyunyan, Halit Bener Suay, Sonia Chernova, Matthew E. Taylor, Ann Nowé:
Reinforcement Learning from Demonstration through Shaping. IJCAI 2015: 3352-3358 - [c109]Ivomar Brito Soares, Yann-Michaël De Hauwere, Kris Januarius, Tim Brys, Thierry Salvant, Ann Nowé
:
Departure MANagement with a Reinforcement Learning Approach: Respecting CFMU Slots. ITSC 2015: 1169-1176 - [c108]Kevin Van Vaerenbergh, Yann-Michaël De Hauwere, Bruno Depraetere, Kristof Van Moffaert, Ann Nowé:
A Policy Gradient with Parameter-Based Exploration Approach for Zone-Heating. SSCI 2015: 556-563 - [i4]Anna Harutyunyan, Tim Brys, Peter Vrancx, Ann Nowé:
Off-Policy Reward Shaping with Ensembles. CoRR abs/1502.03248 (2015) - [i3]Sofie De Clercq, Steven Schockaert, Martine De Cock, Ann Nowé:
Solving stable matching problems using answer set programming. CoRR abs/1512.05247 (2015) - 2014
- [j33]Mihail Mihaylov, Karl Tuyls
, Ann Nowé:
A decentralized approach for convention emergence in multi-agent systems. Auton. Agents Multi Agent Syst. 28(5): 749-778 (2014) - [j32]Nashat Abughalieh, Kris Steenhaut
, Ann Nowé
, Alagan Anpalagan
:
Turbo codes for multi-hop wireless sensor networks with decode-and-forward mechanism. EURASIP J. Wirel. Commun. Netw. 2014: 204 (2014) - [j31]Kristof Van Moffaert, Ann Nowé:
Multi-objective reinforcement learning using sets of pareto dominating policies. J. Mach. Learn. Res. 15(1): 3483-3512 (2014) - [c107]