default search action
Pranjal Awasthi
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j10]Pranjal Awasthi, Corinna Cortes, Mehryar Mohri:
Best-effort adaptation. Ann. Math. Artif. Intell. 92(2): 393-438 (2024) - [c73]Pranjal Awasthi, Satyen Kale, Ankit Pensia:
Semi-supervised Group DRO: Combating Sparsity with Unlabeled Data. ALT 2024: 125-160 - [c72]Pranjal Awasthi, Nishanth Dikkala, Pritish Kamath, Raghu Meka:
Learning Neural Networks with Sparse Activations. COLT 2024: 406-425 - [c71]Pranjal Awasthi, Corinna Cortes, Yishay Mansour, Mehryar Mohri:
A Theory of Learning with Competing Objectives and User Feedback. ISAIM 2024: 10-49 - [i65]Hanna Mazzawi, Pranjal Awasthi, Xavi Gonzalvo, Srikumar Ramalingam:
Simulated Overparameterization. CoRR abs/2402.05033 (2024) - [i64]Maximilian Böther, Abraham Sebastian, Pranjal Awasthi, Ana Klimovic, Srikumar Ramalingam:
On Distributed Larger-Than-Memory Subset Selection With Pairwise Submodular Functions. CoRR abs/2402.16442 (2024) - [i63]Naman Agarwal, Pranjal Awasthi, Satyen Kale, Eric Zhao:
Stacking as Accelerated Gradient Descent. CoRR abs/2403.04978 (2024) - [i62]Hanseul Cho, Jaeyoung Cha, Pranjal Awasthi, Srinadh Bhojanapalli, Anupam Gupta, Chulhee Yun:
Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers. CoRR abs/2405.20671 (2024) - [i61]Bernd Bohnet, Kevin Swersky, Rosanne Liu, Pranjal Awasthi, Azade Nova, Javier Snaider, Hanie Sedghi, Aaron T. Parisi, Michael Collins, Angeliki Lazaridou, Orhan Firat, Noah Fiedel:
Long-Span Question-Answering: Automatic Question Generation and QA-System Ranking via Side-by-Side Evaluation. CoRR abs/2406.00179 (2024) - [i60]Mehran Kazemi, Nishanth Dikkala, Ankit Anand, Petar Devic, Ishita Dasgupta, Fangyu Liu, Bahare Fatemi, Pranjal Awasthi, Dee Guo, Sreenivas Gollapudi, Ahmed Qureshi:
ReMI: A Dataset for Reasoning with Multiple Images. CoRR abs/2406.09175 (2024) - [i59]Pranjal Awasthi, Nishanth Dikkala, Pritish Kamath, Raghu Meka:
Learning Neural Networks with Sparse Activations. CoRR abs/2406.17989 (2024) - 2023
- [j9]Jordana J. George, Jie (Kevin) Yan, Dorothy E. Leidner, Pranjal Awasthi:
Does Engaging in Data Philanthropy Impact Business Value? Inf. Syst. Manag. 40(2): 112-126 (2023) - [c70]Pranjal Awasthi, Corinna Cortes, Christopher Mohri:
Theory and Algorithm for Batch Distribution Drift Problems. AISTATS 2023: 9826-9851 - [c69]Pranjal Awasthi, Anqi Mao, Mehryar Mohri, Yutao Zhong:
Theoretically Grounded Loss Functions and Algorithms for Adversarial Robustness. AISTATS 2023: 10077-10094 - [c68]Pranjal Awasthi, Nika Haghtalab, Eric Zhao:
Open Problem: The Sample Complexity of Multi-Distribution Learning for VC Classes. COLT 2023: 5943-5949 - [c67]Pranjal Awasthi, Christopher Jung, Jamie Morgenstern:
Distributionally Robust Data Join. FORC 2023: 10:1-10:15 - [c66]Pranjal Awasthi, Alex Tang, Aravindan Vijayaraghavan:
Agnostic Learning of General ReLU Activation Using Gradient Descent. ICLR 2023 - [i58]Pranjal Awasthi, Kush Bhatia, Sreenivas Gollapudi, Kostas Kollias:
Congested Bandits: Optimal Routing via Short-term Resets. CoRR abs/2301.09251 (2023) - [i57]Pranjal Awasthi, Corinna Cortes, Mehryar Mohri:
Best-Effort Adaptation. CoRR abs/2305.05816 (2023) - [i56]Pranjal Awasthi, Nika Haghtalab, Eric Zhao:
The Sample Complexity of Multi-Distribution Learning for VC Classes. CoRR abs/2307.12135 (2023) - [i55]Pranjal Awasthi, Anupam Gupta:
Improving Length-Generalization in Transformers via Task Hinting. CoRR abs/2310.00726 (2023) - [i54]Srikumar Ramalingam, Pranjal Awasthi, Sanjiv Kumar:
A Weighted K-Center Algorithm for Data Subset Selection. CoRR abs/2312.10602 (2023) - 2022
- [c65]Pranjal Awasthi, Abhimanyu Das, Sreenivas Gollapudi:
Beyond GNNs: An Efficient Architecture for Graph Problems. AAAI 2022: 6019-6027 - [c64]Pranjal Awasthi, Sivaraman Balakrishnan, Aravindan Vijayaraghavan:
Understanding Simultaneous Train and Test Robustness. ALT 2022: 34-69 - [c63]Patrick O'Reilly, Pranjal Awasthi, Aravindan Vijayaraghavan, Bryan Pardo:
Effective and Inconspicuous Over-the-Air Adversarial Examples with Adaptive Filtering. ICASSP 2022: 6607-6611 - [c62]Pranjal Awasthi, Abhimanyu Das, Rajat Sen, Ananda Theertha Suresh:
On the benefits of maximum likelihood estimation for Regression and Forecasting. ICLR 2022 - [c61]Jacob D. Abernethy, Pranjal Awasthi, Matthäus Kleindessner, Jamie Morgenstern, Chris Russell, Jie Zhang:
Active Sampling for Min-Max Fairness. ICML 2022: 53-65 - [c60]Saba Ahmadi, Pranjal Awasthi, Samir Khuller, Matthäus Kleindessner, Jamie Morgenstern, Pattara Sukprasert, Ali Vakilian:
Individual Preference Stability for Clustering. ICML 2022: 197-246 - [c59]Pranjal Awasthi, Kush Bhatia, Sreenivas Gollapudi, Kostas Kollias:
Congested Bandits: Optimal Routing via Short-term Resets. ICML 2022: 1078-1100 - [c58]Pranjal Awasthi, Nishanth Dikkala, Pritish Kamath:
Do More Negative Samples Necessarily Hurt In Contrastive Learning? ICML 2022: 1101-1116 - [c57]Pranjal Awasthi, Anqi Mao, Mehryar Mohri, Yutao Zhong:
H-Consistency Bounds for Surrogate Loss Minimizers. ICML 2022: 1117-1174 - [c56]Ziwei Ji, Kwangjun Ahn, Pranjal Awasthi, Satyen Kale, Stefani Karp:
Agnostic Learnability of Halfspaces via Logistic Loss. ICML 2022: 10068-10103 - [c55]Pranjal Awasthi, Abhimanyu Das, Weihao Kong, Rajat Sen:
Trimmed Maximum Likelihood Estimation for Robust Generalized Linear Model. NeurIPS 2022 - [c54]Pranjal Awasthi, Anqi Mao, Mehryar Mohri, Yutao Zhong:
Multi-Class $H$-Consistency Bounds. NeurIPS 2022 - [c53]Joan Puigcerver, Rodolphe Jenatton, Carlos Riquelme, Pranjal Awasthi, Srinadh Bhojanapalli:
On the Adversarial Robustness of Mixture of Experts. NeurIPS 2022 - [c52]Nived Rajaraman, Devvrit, Pranjal Awasthi:
Semi-supervised Active Linear Regression. NeurIPS 2022 - [i53]Ziwei Ji, Kwangjun Ahn, Pranjal Awasthi, Satyen Kale, Stefani Karp:
Agnostic Learnability of Halfspaces via Logistic Loss. CoRR abs/2201.13419 (2022) - [i52]Pranjal Awasthi, Christopher Jung, Jamie Morgenstern:
Distributionally Robust Data Join. CoRR abs/2202.05797 (2022) - [i51]Pranjal Awasthi, Nishanth Dikkala, Pritish Kamath:
Do More Negative Samples Necessarily Hurt in Contrastive Learning? CoRR abs/2205.01789 (2022) - [i50]Pranjal Awasthi, Anqi Mao, Mehryar Mohri, Yutao Zhong:
H-Consistency Estimation Error of Surrogate Loss Minimizers. CoRR abs/2205.08017 (2022) - [i49]Weihao Kong, Rajat Sen, Pranjal Awasthi, Abhimanyu Das:
Trimmed Maximum Likelihood Estimation for Robust Learning in Generalized Linear Models. CoRR abs/2206.04777 (2022) - [i48]Saba Ahmadi, Pranjal Awasthi, Samir Khuller, Matthäus Kleindessner, Jamie Morgenstern, Pattara Sukprasert, Ali Vakilian:
Individual Preference Stability for Clustering. CoRR abs/2207.03600 (2022) - [i47]Pranjal Awasthi, Alex Tang, Aravindan Vijayaraghavan:
Agnostic Learning of General ReLU Activation Using Gradient Descent. CoRR abs/2208.02711 (2022) - [i46]Joan Puigcerver, Rodolphe Jenatton, Carlos Riquelme, Pranjal Awasthi, Srinadh Bhojanapalli:
On the Adversarial Robustness of Mixture of Experts. CoRR abs/2210.10253 (2022) - 2021
- [c51]Flavien Prost, Pranjal Awasthi, Nick Blumm, Aditee Kumthekar, Trevor Potter, Li Wei, Xuezhi Wang, Ed H. Chi, Jilin Chen, Alex Beutel:
Measuring Model Fairness under Noisy Covariates: A Theoretical Perspective. AIES 2021: 873-883 - [c50]Naman Agarwal, Pranjal Awasthi, Satyen Kale:
A Deep Conditioning Treatment of Neural Networks. ALT 2021: 249-305 - [c49]Pranjal Awasthi, Vaggos Chatziafratis, Xue Chen, Aravindan Vijayaraghavan:
Adversarially Robust Low Dimensional Representations. COLT 2021: 237-325 - [c48]Pranjal Awasthi, George Yu, Chun-Sung Ferng, Andrew Tomkins, Da-Cheng Juan:
Adversarial Robustness Across Representation Spaces. CVPR 2021: 7608-7616 - [c47]Pranjal Awasthi, Alex Beutel, Matthäus Kleindessner, Jamie Morgenstern, Xuezhi Wang:
Evaluating Fairness of Machine Learning Models Under Uncertain and Incomplete Information. FAccT 2021: 206-214 - [c46]Pranjal Awasthi, Natalie Frank, Mehryar Mohri:
On the Existence of The Adversarial Bayes Classifier. NeurIPS 2021: 2978-2990 - [c45]Zhilei Wang, Pranjal Awasthi, Christoph Dann, Ayush Sekhari, Claudio Gentile:
Neural Active Learning with Performance Guarantees. NeurIPS 2021: 7510-7521 - [c44]Pranjal Awasthi, Natalie Frank, Anqi Mao, Mehryar Mohri, Yutao Zhong:
Calibration and Consistency of Adversarial Surrogate Losses. NeurIPS 2021: 9804-9815 - [c43]Pranjal Awasthi, Alex Tang, Aravindan Vijayaraghavan:
Efficient Algorithms for Learning Depth-2 Neural Networks with General ReLU Activations. NeurIPS 2021: 13485-13496 - [c42]Pranjal Awasthi, Abhimanyu Das, Sreenivas Gollapudi:
A Convergence Analysis of Gradient Descent on Graph Neural Networks. NeurIPS 2021: 20385-20397 - [i45]Pranjal Awasthi, Alex Beutel, Matthäus Kleindessner, Jamie Morgenstern, Xuezhi Wang:
Evaluating Fairness of Machine Learning Models Under Uncertain and Incomplete Information. CoRR abs/2102.08410 (2021) - [i44]Jacob D. Abernethy, Pranjal Awasthi, Satyen Kale:
A Multiclass Boosting Framework for Achieving Fast and Provable Adversarial Robustness. CoRR abs/2103.01276 (2021) - [i43]Pranjal Awasthi, Natalie Frank, Anqi Mao, Mehryar Mohri, Yutao Zhong:
Calibration and Consistency of Adversarial Surrogate Losses. CoRR abs/2104.09658 (2021) - [i42]Pranjal Awasthi, Anqi Mao, Mehryar Mohri, Yutao Zhong:
A Finer Calibration Analysis for Adversarial Robustness. CoRR abs/2105.01550 (2021) - [i41]Flavien Prost, Pranjal Awasthi, Nick Blumm, Aditee Kumthekar, Trevor Potter, Li Wei, Xuezhi Wang, Ed H. Chi, Jilin Chen, Alex Beutel:
Measuring Model Fairness under Noisy Covariates: A Theoretical Perspective. CoRR abs/2105.09985 (2021) - [i40]Pranjal Awasthi, Christoph Dann, Claudio Gentile, Ayush Sekhari, Zhilei Wang:
Neural Active Learning with Performance Guarantees. CoRR abs/2106.03243 (2021) - [i39]Devvrit, Nived Rajaraman, Pranjal Awasthi:
Semi-supervised Active Regression. CoRR abs/2106.06676 (2021) - [i38]Pranjal Awasthi, Abhimanyu Das, Rajat Sen, Ananda Theertha Suresh:
On the benefits of maximum likelihood estimation for Regression and Forecasting. CoRR abs/2106.10370 (2021) - [i37]Pranjal Awasthi, Alex Tang, Aravindan Vijayaraghavan:
Efficient Algorithms for Learning Depth-2 Neural Networks with General ReLU Activations. CoRR abs/2107.10209 (2021) - [i36]Pranjal Awasthi, Natalie S. Frank, Mehryar Mohri:
On the Existence of the Adversarial Bayes Classifier (Extended Version). CoRR abs/2112.01694 (2021) - 2020
- [j8]Pranjal Awasthi, Bahman Kalantari, Yikai Zhang:
Robust vertex enumeration for convex hulls in high dimensions. Ann. Oper. Res. 295(1): 37-73 (2020) - [c41]Pranjal Awasthi, Matthäus Kleindessner, Jamie Morgenstern:
Equalized odds postprocessing under imperfect group information. AISTATS 2020: 1770-1780 - [c40]Pranjal Awasthi, Jordana J. George:
A case for Data Democratization. AMCIS 2020 - [c39]Pranjal Awasthi, Xue Chen, Aravindan Vijayaraghavan:
Estimating Principal Components under Adversarial Perturbations. COLT 2020: 323-362 - [c38]Pranjal Awasthi, Jordana J. George:
The Impact of Data Philanthropy on Global Health When Mediated Through Digital Epidemiology. ICIS 2020 - [c37]Pranjal Awasthi, Natalie Frank, Mehryar Mohri:
Adversarial Learning Guarantees for Linear Hypotheses and Neural Networks. ICML 2020: 431-441 - [c36]Pranjal Awasthi, Himanshu Jain, Ankit Singh Rawat, Aravindan Vijayaraghavan:
Adversarial robustness via robust low rank representations. NeurIPS 2020 - [c35]Pranjal Awasthi, Satyen Kale, Stefani Karp, Mehryar Mohri:
PAC-Bayes Learning Bounds for Sample-Dependent Priors. NeurIPS 2020 - [c34]Chicheng Zhang, Jie Shen, Pranjal Awasthi:
Efficient active learning of sparse halfspaces with arbitrary bounded noise. NeurIPS 2020 - [i35]Naman Agarwal, Pranjal Awasthi, Satyen Kale:
A Deep Conditioning Treatment of Neural Networks. CoRR abs/2002.01523 (2020) - [i34]Chicheng Zhang, Jie Shen, Pranjal Awasthi:
Efficient active learning of sparse halfspaces with arbitrary bounded noise. CoRR abs/2002.04840 (2020) - [i33]Pranjal Awasthi, Natalie Frank, Mehryar Mohri:
Adversarial Learning Guarantees for Linear Hypotheses and Neural Networks. CoRR abs/2004.13617 (2020) - [i32]Pranjal Awasthi, Xue Chen, Aravindan Vijayaraghavan:
Estimating Principal Components under Adversarial Perturbations. CoRR abs/2006.00602 (2020) - [i31]Matthäus Kleindessner, Pranjal Awasthi, Jamie Morgenstern:
A Notion of Individual Fairness for Clustering. CoRR abs/2006.04960 (2020) - [i30]Jacob D. Abernethy, Pranjal Awasthi, Matthäus Kleindessner, Jamie Morgenstern, Jie Zhang:
Adaptive Sampling to Reduce Disparate Performance. CoRR abs/2006.06879 (2020) - [i29]Pranjal Awasthi, Himanshu Jain, Ankit Singh Rawat, Aravindan Vijayaraghavan:
Adversarial robustness via robust low rank representations. CoRR abs/2007.06555 (2020) - [i28]Pranjal Awasthi, Natalie Frank, Mehryar Mohri:
On the Rademacher Complexity of Linear Hypothesis Sets. CoRR abs/2007.11045 (2020) - [i27]Pranjal Awasthi, Corinna Cortes, Yishay Mansour, Mehryar Mohri:
Beyond Individual and Group Fairness. CoRR abs/2008.09490 (2020) - [i26]Pranjal Awasthi, George Yu, Chun-Sung Ferng, Andrew Tomkins, Da-Cheng Juan:
Adversarial Robustness Across Representation Spaces. CoRR abs/2012.00802 (2020)
2010 – 2019
- 2019
- [j7]Pranjal Awasthi, Vineet Goyal, Brian Y. Lu:
On the adaptivity gap in two-stage robust linear optimization under uncertain packing constraints. Math. Program. 173(1-2): 313-352 (2019) - [c33]Jie Shen, Pranjal Awasthi, Ping Li:
Robust Matrix Completion from Quantized Observations. AISTATS 2019: 397-407 - [c32]Haris Angelidakis, Pranjal Awasthi, Avrim Blum, Vaggos Chatziafratis, Chen Dan:
Bilu-Linial Stability, Certified Algorithms and the Independent Set Problem. ESA 2019: 7:1-7:16 - [c31]Pranjal Awasthi, Ainesh Bakshi, Maria-Florina Balcan, Colin White, David P. Woodruff:
Robust Communication-Optimal Distributed Clustering Algorithms. ICALP 2019: 18:1-18:16 - [c30]Matthäus Kleindessner, Pranjal Awasthi, Jamie Morgenstern:
Fair k-Center Clustering for Data Summarization. ICML 2019: 3448-3457 - [c29]Matthäus Kleindessner, Samira Samadi, Pranjal Awasthi, Jamie Morgenstern:
Guarantees for Spectral Clustering with Fairness Constraints. ICML 2019: 3458-3467 - [c28]Pranjal Awasthi, Abhratanu Dutta, Aravindan Vijayaraghavan:
On Robustness to Adversarial Examples and Polynomial Optimization. NeurIPS 2019: 13737-13747 - [i25]Matthäus Kleindessner, Pranjal Awasthi, Jamie Morgenstern:
Fair k-Center Clustering for Data Summarization. CoRR abs/1901.08628 (2019) - [i24]Matthäus Kleindessner, Samira Samadi, Pranjal Awasthi, Jamie Morgenstern:
Guarantees for Spectral Clustering with Fairness Constraints. CoRR abs/1901.08668 (2019) - [i23]Pranjal Awasthi, Matthäus Kleindessner, Jamie Morgenstern:
Effectiveness of Equalized Odds for Fair Classification under Imperfect Group Information. CoRR abs/1906.03284 (2019) - [i22]Pranjal Awasthi, Abhratanu Dutta, Aravindan Vijayaraghavan:
On Robustness to Adversarial Examples and Polynomial Optimization. CoRR abs/1911.04681 (2019) - [i21]Pranjal Awasthi, Vaggos Chatziafratis, Xue Chen, Aravindan Vijayaraghavan:
Adversarially Robust Low Dimensional Representations. CoRR abs/1911.13268 (2019) - 2018
- [c27]Pranjal Awasthi, Bahman Kalantari, Yikai Zhang:
Robust Vertex Enumeration for Convex Hulls in High Dimensions. AISTATS 2018: 1387-1396 - [c26]Pranjal Awasthi, Aravindan Vijayaraghavan:
Towards Learning Sparsely Used Dictionaries with Arbitrary Supports. FOCS 2018: 283-296 - [c25]Pranjal Awasthi, Aravindan Vijayaraghavan:
Clustering Semi-Random Mixtures of Gaussians. ICML 2018: 294-303 - [c24]Matthäus Kleindessner, Pranjal Awasthi:
Crowdsourcing with Arbitrary Adversaries. ICML 2018: 2713-2722 - [i20]Pranjal Awasthi, Bahman Kalantari, Yikai Zhang:
Robust Vertex Enumeration for Convex Hulls in High Dimensions. CoRR abs/1802.01515 (2018) - [i19]Pranjal Awasthi, Aravindan Vijayaraghavan:
Towards Learning Sparsely Used Dictionaries with Arbitrary Supports. CoRR abs/1804.08603 (2018) - [i18]Haris Angelidakis, Pranjal Awasthi, Avrim Blum, Vaggos Chatziafratis, Chen Dan:
Bilu-Linial stability, certified algorithms and the Independent Set problem. CoRR abs/1810.08414 (2018) - 2017
- [j6]Pranjal Awasthi, Maria-Florina Balcan, Philip M. Long:
The Power of Localization for Efficiently Learning Linear Separators with Noise. J. ACM 63(6): 50:1-50:27 (2017) - [j5]Pranjal Awasthi, Maria-Florina Balcan, Konstantin Voevodski:
Local algorithms for interactive clustering. J. Mach. Learn. Res. 18: 3:1-3:35 (2017) - [c23]Pranjal Awasthi, Avrim Blum, Nika Haghtalab, Yishay Mansour:
Efficient PAC Learning from the Crowd. COLT 2017: 127-150 - [i17]Pranjal Awasthi, Maria-Florina Balcan, Colin White:
General and Robust Communication-Efficient Algorithms for Distributed Clustering. CoRR abs/1703.00830 (2017) - [i16]Pranjal Awasthi, Avrim Blum, Nika Haghtalab, Yishay Mansour:
Efficient PAC Learning from the Crowd. CoRR abs/1703.07432 (2017) - [i15]Pranjal Awasthi, Aravindan Vijayaraghavan:
Clustering Semi-Random Mixtures of Gaussians. CoRR abs/1711.08841 (2017) - 2016
- [j4]Pranjal Awasthi, Madhav Jha, Marco Molinaro, Sofya Raskhodnikova:
Testing Lipschitz Functions on Hypergrid Domains. Algorithmica 74(3): 1055-1081 (2016) - [c22]Pranjal Awasthi, Maria-Florina Balcan, Nika Haghtalab, Hongyang Zhang:
Learning and 1-bit Compressed Sensing under Asymmetric Noise. COLT 2016: 152-192 - [c21]Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy, Ali Kemal Sinop:
Spectral Embedding of k-Cliques, Graph Partitioning and k-Means. ITCS 2016: 301-310 - [r1]Pranjal Awasthi:
Clustering Under Stability Assumptions. Encyclopedia of Algorithms 2016: 331-335 - 2015
- [c20]Pranjal Awasthi, Moses Charikar, Kevin A. Lai, Andrej Risteski:
Label optimal regret bounds for online local learning. COLT 2015: 150-166 - [c19]Pranjal Awasthi, Maria-Florina Balcan, Nika Haghtalab, Ruth Urner:
Efficient Learning of Linear Separators under Bounded Noise. COLT 2015: 167-190 - [c18]Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy, Ali Kemal Sinop:
The Hardness of Approximation of Euclidean k-Means. SoCG 2015: 754-767 - [c17]Pranjal Awasthi, Afonso S. Bandeira, Moses Charikar, Ravishankar Krishnaswamy, Soledad Villar, Rachel A. Ward:
Relax, No Need to Round: Integrality of Clustering Formulations. ITCS 2015: 191-200 - [c16]Pranjal Awasthi, Andrej Risteski:
On some provably correct cases of variational inference for topic models. NIPS 2015: 2098-2106 - [i14]Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy, Ali Kemal Sinop:
The Hardness of Approximation of Euclidean k-means. CoRR abs/1502.03316 (2015) - [i13]Pranjal Awasthi, Moses Charikar, Kevin A. Lai, Andrej Risteski:
Label optimal regret bounds for online local learning. CoRR abs/1503.02193 (2015) - [i12]Pranjal Awasthi, Maria-Florina Balcan, Nika Haghtalab, Ruth Urner:
Efficient Learning of Linear Separators under Bounded Noise. CoRR abs/1503.03594 (2015) - [i11]Pranjal Awasthi, Andrej Risteski:
On some provably correct cases of variational inference for topic models. CoRR abs/1503.06567 (2015) - 2014
- [j3]Pranjal Awasthi, Madhav Jha, Marco Molinaro, Sofya Raskhodnikova:
Limitations of Local Filters of Lipschitz and Monotone Functions. ACM Trans. Comput. Theory 7(1): 2:1-2:16 (2014) - [c15]Pranjal Awasthi, Maria-Florina Balcan, Konstantin Voevodski:
Local algorithms for interactive clustering. ICML 2014: 550-558 - [c14]Pranjal Awasthi, Avrim Blum, Or Sheffet, Aravindan Vijayaraghavan:
Learning Mixtures of Ranking Models. NIPS 2014: 2609-2617 - [c13]Pranjal Awasthi, Maria-Florina Balcan, Philip M. Long:
The power of localization for efficiently learning linear separators with noise. STOC 2014: 449-458 - [i10]Pranjal Awasthi, Afonso S. Bandeira, Moses Charikar, Ravishankar Krishnaswamy, Soledad Villar, Rachel A. Ward:
Relax, no need to round: integrality of clustering formulations. CoRR abs/1408.4045 (2014) - [i9]Pranjal Awasthi, Avrim Blum, Or Sheffet, Aravindan Vijayaraghavan:
Learning Mixtures of Ranking Models. CoRR abs/1410.8750 (2014) - 2013
- [b1]Pranjal Awasthi:
Approximation Algorithms and New Models for Clustering and Learning. Carnegie Mellon University, USA, 2013 - [c12]Pranjal Awasthi, Vitaly Feldman, Varun Kanade:
Learning Using Local Membership Queries. COLT 2013: 398-431 - [i8]Pranjal Awasthi, Maria-Florina Balcan, Philip M. Long:
The Power of Localization for Efficiently Learning Linear Separators with Malicious Noise. CoRR abs/1307.8371 (2013) - [i7]Pranjal Awasthi, Maria-Florina Balcan, Konstantin Voevodski:
Local algorithms for interactive clustering. CoRR abs/1312.6724 (2013) - 2012
- [j2]Pranjal Awasthi, Avrim Blum, Or Sheffet:
Center-based clustering under perturbation stability. Inf. Process. Lett. 112(1-2): 49-54 (2012) - [c11]Pranjal Awasthi, Avrim Blum, Jamie Morgenstern, Or Sheffet:
Additive Approximation for Near-Perfect Phylogeny Construction. APPROX-RANDOM 2012: 25-36 - [c10]Pranjal Awasthi, Or Sheffet:
Improved Spectral-Norm Bounds for Clustering. APPROX-RANDOM 2012: 37-49 - [c9]Pranjal Awasthi, Madhav Jha, Marco Molinaro, Sofya Raskhodnikova:
Limitations of Local Filters of Lipschitz and Monotone Functions. APPROX-RANDOM 2012: 374-386 - [c8]Pranjal Awasthi, Madhav Jha, Marco Molinaro, Sofya Raskhodnikova:
Testing Lipschitz Functions on Hypergrid Domains. APPROX-RANDOM 2012: 387-398 - [i6]Pranjal Awasthi, Or Sheffet:
Improved Spectral-Norm Bounds for Clustering. CoRR abs/1206.3204 (2012) - [i5]Pranjal Awasthi, Avrim Blum, Jamie Morgenstern, Or Sheffet:
Additive Approximation for Near-Perfect Phylogeny Construction. CoRR abs/1206.3334 (2012) - [i4]Pranjal Awasthi, Varun Kanade:
Learning using Local Membership Queries under Smooth Distributions. CoRR abs/1211.0996 (2012) - [i3]Pranjal Awasthi, Madhav Jha, Marco Molinaro, Sofya Raskhodnikova:
Limitations of Local Filters of Lipschitz and Monotone Functions. Electron. Colloquium Comput. Complex. TR12 (2012) - [i2]Pranjal Awasthi, Madhav Jha, Marco Molinaro, Sofya Raskhodnikova:
Testing Lipschitz Functions on Hypergrid Domains. Electron. Colloquium Comput. Complex. TR12 (2012) - 2011
- [j1]Venkatesan T. Chakaravarthy, Vinayaka Pandit, Sambuddha Roy, Pranjal Awasthi, Mukesh K. Mohania:
Decision trees for entity identification: Approximation algorithms and hardness results. ACM Trans. Algorithms 7(2): 15:1-15:22 (2011) - 2010
- [c7]Pranjal Awasthi, Avrim Blum, Or Sheffet:
Improved Guarantees for Agnostic Learning of Disjunctions. COLT 2010: 359-367 - [c6]Pranjal Awasthi, Avrim Blum, Or Sheffet:
Stability Yields a PTAS for k-Median and k-Means Clustering. FOCS 2010: 309-318 - [c5]Pranjal Awasthi, Reza Bosagh Zadeh:
Supervised Clustering. NIPS 2010: 91-99 - [c4]Pranjal Awasthi, Maria-Florina Balcan, Avrim Blum, Or Sheffet, Santosh S. Vempala:
On Nash-Equilibria of Approximation-Stable Games. SAGT 2010: 78-89 - [i1]Pranjal Awasthi, Avrim Blum, Or Sheffet:
Center-based Clustering under Perturbation Stability. CoRR abs/1009.3594 (2010)
2000 – 2009
- 2009
- [c3]Pranjal Awasthi, Tuomas Sandholm:
Online Stochastic Optimization in the Large: Application to Kidney Exchange. IJCAI 2009: 405-411 - 2007
- [c2]Pranjal Awasthi, Aakanksha Gagrani, Balaraman Ravindran:
Image Modeling Using Tree Structured Conditional Random Fields. IJCAI 2007: 2060-2065 - [c1]Venkatesan T. Chakaravarthy, Vinayaka Pandit, Sambuddha Roy, Pranjal Awasthi, Mukesh K. Mohania:
Decision trees for entity identification: approximation algorithms and hardness results. PODS 2007: 53-62
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:21 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint