


Остановите войну!
for scientists:
James Cheng
Person information

Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2022
- [j44]Pengfei Zuo, Qihui Zhou, Jiazhao Sun, Liu Yang, Shuangwu Zhang, Yu Hua, James Cheng, Rongfeng He, Huabing Yan:
RACE: One-sided RDMA-conscious Extendible Hashing. ACM Trans. Storage 18(2): 11:1-11:29 (2022) - [j43]Yidi Wu, Kaihao Ma, Xiao Yan
, Zhi Liu, Zhenkun Cai, Yuzhen Huang, James Cheng, Han Yuan, Fan Yu:
Elastic Deep Learning in Multi-Tenant GPU Clusters. IEEE Trans. Parallel Distributed Syst. 33(1): 144-158 (2022) - [j42]Zhenkun Cai
, Xiao Yan
, Kaihao Ma, Yidi Wu, Yuzhen Huang, James Cheng, Teng Su, Fan Yu:
TensorOpt: Exploring the Tradeoffs in Distributed DNN Training With Auto-Parallelism. IEEE Trans. Parallel Distributed Syst. 33(8): 1967-1981 (2022) - [c89]Kaiwen Zhou, Lai Tian, Anthony Man-Cho So, James Cheng:
Practical Schemes for Finding Near-Stationary Points of Convex Finite-Sums. AISTATS 2022: 3684-3708 - [i50]Yongqiang Chen, Yonggang Zhang, Han Yang, Kaili Ma, Binghui Xie, Tongliang Liu, Bo Han, James Cheng:
Invariance Principle Meets Out-of-Distribution Generalization on Graphs. CoRR abs/2202.05441 (2022) - [i49]Yongqiang Chen, Han Yang, Yonggang Zhang, Kaili Ma, Tongliang Liu, Bo Han, James Cheng:
Understanding and Improving Graph Injection Attack by Promoting Unnoticeability. CoRR abs/2202.08057 (2022) - [i48]Binghui Xie, Chenhan Jin, Kaiwen Zhou, James Cheng, Wei Meng:
An Adaptive Incremental Gradient Method With Support for Non-Euclidean Norms. CoRR abs/2205.02273 (2022) - 2021
- [j41]Guimu Guo
, Hongzhi Chen
, Da Yan
, James Cheng, Jake Y. Chen, Zechen Chong:
Scalable De Novo Genome Assembly Using a Pregel-Like Graph-Parallel System. IEEE ACM Trans. Comput. Biol. Bioinform. 18(2): 731-744 (2021) - [j40]Yunjian Zhao, Zhi Liu, Yidi Wu, Guanxian Jiang, James Cheng, Kunlong Liu, Xiao Yan:
Timestamped State Sharing for Stream Analytics. IEEE Trans. Parallel Distributed Syst. 32(11): 2691-2704 (2021) - [c88]Han Yang, Kaili Ma, James Cheng:
Rethinking Graph Regularization for Graph Neural Networks. AAAI 2021: 4573-4581 - [c87]Barakeel Fanseu Kamhoua, Lin Zhang, Kaili Ma, James Cheng, Bo Li, Bo Han:
HyperGraph Convolution Based Attributed HyperGraph Clustering. CIKM 2021: 453-463 - [c86]Zhenkun Cai, Xiao Yan, Yidi Wu, Kaihao Ma, James Cheng, Fan Yu:
DGCL: an efficient communication library for distributed GNN training. EuroSys 2021: 130-144 - [c85]Yidi Wu, Kaihao Ma, Zhenkun Cai, Tatiana Jin, Boyang Li, Chengguang Zheng, James Cheng, Fan Yu:
Seastar: vertex-centric programming for graph neural networks. EuroSys 2021: 359-375 - [c84]Han Yang, Xiao Yan, Xinyan Dai, Yongqiang Chen, James Cheng:
Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs. IJCNN 2021: 1-8 - [c83]Yidi Wu, Yuntao Gui, Tatiana Jin, James Cheng, Xiao Yan, Peiqi Yin, Yufei Cai, Bo Tang, Fan Yu:
Vertex-Centric Visual Programming for Graph Neural Networks. SIGMOD Conference 2021: 2803-2807 - [c82]Yihui Feng, Zhi Liu, Yunjian Zhao, Tatiana Jin, Yidi Wu, Yang Zhang, James Cheng, Chao Li, Tao Guan:
Scaling Large Production Clusters with Partitioned Synchronization. USENIX Annual Technical Conference 2021: 81-97 - [i47]Kaili Ma, Haochen Yang, Han Yang, Tatiana Jin, Pengfei Chen, Yongqiang Chen, Barakeel Fanseu Kamhoua, James Cheng:
Improving Graph Representation Learning by Contrastive Regularization. CoRR abs/2101.11525 (2021) - [i46]Hongzhi Chen, Changji Li, Chenguang Zheng, Chenghuan Huang, Juncheng Fang, James Cheng, Jian Zhang:
G-Tran: Making Distributed Graph Transactions Fast. CoRR abs/2105.04449 (2021) - [i45]Kaiwen Zhou, Lai Tian, Anthony Man-Cho So, James Cheng:
Practical Schemes for Finding Near-Stationary Points of Convex Finite-Sums. CoRR abs/2105.12062 (2021) - [i44]Ruize Gao, Feng Liu, Kaiwen Zhou, Gang Niu, Bo Han, James Cheng:
Local Reweighting for Adversarial Training. CoRR abs/2106.15776 (2021) - [i43]Kaiwen Zhou, Anthony Man-Cho So, James Cheng:
Accelerating Perturbed Stochastic Iterates in Asynchronous Lock-Free Optimization. CoRR abs/2109.15292 (2021) - 2020
- [j39]James Cheng, Starr Hoffman
:
Librarians and Administrators on Academic Library Impact Research: Characteristics and Perspectives. Coll. Res. Libr. 81(3) (2020) - [j38]Fanhua Shang
, Kaiwen Zhou, Hongying Liu
, James Cheng, Ivor W. Tsang
, Lijun Zhang
, Dacheng Tao
, Licheng Jiao
:
VR-SGD: A Simple Stochastic Variance Reduction Method for Machine Learning. IEEE Trans. Knowl. Data Eng. 32(1): 188-202 (2020) - [c81]Xinyan Dai, Xiao Yan, Kelvin Kai Wing Ng, Jiu Liu, James Cheng:
Norm-Explicit Quantization: Improving Vector Quantization for Maximum Inner Product Search. AAAI 2020: 51-58 - [c80]Jie Liu, Xiao Yan, Xinyan Dai, Zhirong Li, James Cheng, Ming-Chang Yang:
Understanding and Improving Proximity Graph Based Maximum Inner Product Search. AAAI 2020: 139-146 - [c79]Yitong Meng, Xinyan Dai, Xiao Yan, James Cheng, Weiwen Liu, Jun Guo
, Benben Liao, Guangyong Chen:
PMD: An Optimal Transportation-Based User Distance for Recommender Systems. ECIR (2) 2020: 272-280 - [c78]Tatiana Jin, Zhenkun Cai, Boyang Li, Chengguang Zheng, Guanxian Jiang, James Cheng:
Improving resource utilization by timely fine-grained scheduling. EuroSys 2020: 20:1-20:16 - [c77]Yifan Hou
, Jian Zhang, James Cheng, Kaili Ma, Richard T. B. Ma, Hongzhi Chen, Ming-Chang Yang:
Measuring and Improving the Use of Graph Information in Graph Neural Networks. ICLR 2020 - [c76]Qinghua Ding, Kaiwen Zhou, James Cheng:
Tight Convergence Rate of Gradient Descent for Eigenvalue Computation. IJCAI 2020: 3276-3282 - [c75]Kaiwen Zhou, Anthony Man-Cho So, James Cheng:
Boosting First-Order Methods by Shifting Objective: New Schemes with Faster Worst-Case Rates. NeurIPS 2020 - [c74]Xinyan Dai, Xiao Yan, Kaiwen Zhou, Yuxuan Wang, Han Yang, James Cheng:
Convolutional Embedding for Edit Distance. SIGIR 2020: 599-608 - [c73]Hongzhi Chen, Bowen Wu, Shiyuan Deng, Chenghuan Huang, Changji Li, Yichao Li, James Cheng:
High Performance Distributed OLAP on Property Graphs with Grasper. SIGMOD Conference 2020: 2705-2708 - [c72]Kaiwen Zhou, Yanghua Jin, Qinghua Ding, James Cheng:
Amortized Nesterov's Momentum: A Robust Momentum and Its Application to Deep Learning. UAI 2020: 211-220 - [c71]Yitong Meng, Xiao Yan, Weiwen Liu, Huanhuan Wu, James Cheng:
Wasserstein Collaborative Filtering for Item Cold-start Recommendation. UMAP 2020: 318-322 - [i42]Xinyan Dai, Xiao Yan, Kaiwen Zhou, Yuxuan Wang, Han Yang, James Cheng:
Edit Distance Embedding using Convolutional Neural Networks. CoRR abs/2001.11692 (2020) - [i41]Han Yang, Xiao Yan, Xinyan Dai, James Cheng:
Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs. CoRR abs/2002.07518 (2020) - [i40]Zhenkun Cai, Kaihao Ma, Xiao Yan, Yidi Wu, Yuzhen Huang, James Cheng, Teng Su, Fan Yu:
TensorOpt: Exploring the Tradeoffs in Distributed DNN Training with Auto-Parallelism. CoRR abs/2004.10856 (2020) - [i39]Kaiwen Zhou, Anthony Man-Cho So, James Cheng:
Boosting First-order Methods by Shifting Objective: New Schemes with Faster Worst Case Rates. CoRR abs/2005.12061 (2020) - [i38]Guoji Fu, Yifan Hou
, Jian Zhang, Kaili Ma, Barakeel Fanseu Kamhoua, James Cheng:
Understanding Graph Neural Networks from Graph Signal Denoising Perspectives. CoRR abs/2006.04386 (2020) - [i37]Haibo Xiu, Xiao Yan, Xiaoqiang Wang, James Cheng, Lei Cao:
Hierarchical Graph Matching Network for Graph Similarity Computation. CoRR abs/2006.16551 (2020) - [i36]Han Yang, Kaili Ma, James Cheng:
Rethinking Graph Regularization For Graph Neural Networks. CoRR abs/2009.02027 (2020) - [i35]Yitong Meng, Jie Liu, Xiao Yan, James Cheng:
The item selection problem for user cold-start recommendation. CoRR abs/2010.14013 (2020)
2010 – 2019
- 2019
- [j37]Yuzhen Huang, Yingjie Shi, Zheng Zhong, Yihui Feng, James Cheng, Jiwei Li, Haochuan Fan, Chao Li, Tao Guan, Jingren Zhou:
Yugong: Geo-Distributed Data and Job Placement at Scale. Proc. VLDB Endow. 12(12): 2155-2169 (2019) - [c70]Kaiwen Zhou, Qinghua Ding, Fanhua Shang, James Cheng, Danli Li, Zhi-Quan Luo:
Direct Acceleration of SAGA using Sampled Negative Momentum. AISTATS 2019: 1602-1610 - [c69]Shiyuan Deng, Xiao Yan, Kelvin Kai Wing Ng, Chenyu Jiang, James Cheng:
Pyramid: A General Framework for Distributed Similarity Search on Large-scale Datasets. IEEE BigData 2019: 1066-1071 - [c68]Hongzhi Chen, Changji Li, Juncheng Fang, Chenghuan Huang, James Cheng, Jian Zhang, Yifan Hou
, Xiao Yan:
Grasper: A High Performance Distributed System for OLAP on Property Graphs. SoCC 2019: 87-100 - [c67]Da Yan, James Cheng, Hongzhi Chen, Cheng Long, Purushotham V. Bangalore:
Lightweight Fault Tolerance in Pregel-Like Systems. ICPP 2019: 69:1-69:10 - [c66]Yifan Hou
, Hongzhi Chen, Changji Li, James Cheng, Ming-Chang Yang:
A Representation Learning Framework for Property Graphs. KDD 2019: 65-73 - [c65]Hongzhi Chen, Xiaoxi Wang, Chenghuan Huang, Juncheng Fang, Yifan Hou
, Changji Li, James Cheng:
Large Scale Graph Mining with G-Miner. SIGMOD Conference 2019: 1881-1884 - [c64]Yuzhen Huang, Xiao Yan, Guanxian Jiang, Tatiana Jin, James Cheng, An Xu, Zhanhao Liu, Shuo Tu:
Tangram: Bridging Immutable and Mutable Abstractions for Distributed Data Analytics. USENIX Annual Technical Conference 2019: 191-206 - [i34]Shiyuan Deng, Xiao Yan, Kelvin Kai Wing Ng, Chenyu Jiang, James Cheng:
Pyramid: A General Framework for Distributed Similarity Search. CoRR abs/1906.10602 (2019) - [i33]Yidi Wu, Kaihao Ma, Xiao Yan, Zhi Liu, James Cheng:
Elastic deep learning in multi-tenant GPU cluster. CoRR abs/1909.11985 (2019) - [i32]Jie Liu, Xiao Yan, Xinyan Dai, Zhirong Li, James Cheng, Ming-Chang Yang:
Understanding and Improving Proximity Graph based Maximum Inner Product Search. CoRR abs/1909.13459 (2019) - [i31]Xinyan Dai, Xiao Yan, Kelvin Kai Wing Ng, Jie Liu, James Cheng:
Norm-Explicit Quantization: Improving Vector Quantization for Maximum Inner Product Search. CoRR abs/1911.04654 (2019) - [i30]Xinyan Dai, Xiao Yan, Kaiwen Zhou, Han Yang, Kelvin Kai Wing Ng, James Cheng, Yu Fan:
Hyper-Sphere Quantization: Communication-Efficient SGD for Federated Learning. CoRR abs/1911.04655 (2019) - 2018
- [j36]Fanhua Shang
, James Cheng, Yuanyuan Liu
, Zhi-Quan Luo, Zhouchen Lin
:
Bilinear Factor Matrix Norm Minimization for Robust PCA: Algorithms and Applications. IEEE Trans. Pattern Anal. Mach. Intell. 40(9): 2066-2080 (2018) - [j35]Yuzhen Huang, Tatiana Jin, Yidi Wu, Zhenkun Cai, Xiao Yan, Fan Yang, Jinfeng Li, Yuying Guo, James Cheng:
FlexPS: Flexible Parallelism Control in Parameter Server Architecture. Proc. VLDB Endow. 11(5): 566-579 (2018) - [j34]Fanhua Shang
, Yuanyuan Liu, James Cheng, Da Yan
:
Fuzzy Double Trace Norm Minimization for Recommendation Systems. IEEE Trans. Fuzzy Syst. 26(4): 2039-2049 (2018) - [j33]Da Yan
, Yuzhen Huang, Miao Liu
, Hongzhi Chen, James Cheng, Huanhuan Wu
, Chengcui Zhang:
GraphD: Distributed Vertex-Centric Graph Processing Beyond the Memory Limit. IEEE Trans. Parallel Distributed Syst. 29(1): 99-114 (2018) - [c63]Fanhua Shang, Licheng Jiao, Kaiwen Zhou, James Cheng, Yan Ren, Yufei Jin:
ASVRG: Accelerated Proximal SVRG. ACML 2018: 815-830 - [c62]Fanhua Shang, Yuanyuan Liu, Kaiwen Zhou, James Cheng, Kelvin Kai Wing Ng, Yuichi Yoshida:
Guaranteed Sufficient Decrease for Stochastic Variance Reduced Gradient Optimization. AISTATS 2018: 1027-1036 - [c61]Hongzhi Chen, Miao Liu
, Yunjian Zhao, Xiao Yan, Da Yan, James Cheng:
G-Miner: an efficient task-oriented graph mining system. EuroSys 2018: 32:1-32:12 - [c60]Da Yan, Hongzhi Chen, James Cheng, Zhenkun Cai, Bin Shao:
Scalable De Novo Genome Assembly Using Pregel. ICDE 2018: 1216-1219 - [c59]Kaiwen Zhou, Fanhua Shang, James Cheng:
A Simple Stochastic Variance Reduced Algorithm with Fast Convergence Rates. ICML 2018: 5975-5984 - [c58]Xiao Yan, Jinfeng Li, Xinyan Dai, Hongzhi Chen, James Cheng:
Norm-Ranging LSH for Maximum Inner Product Search. NeurIPS 2018: 2956-2965 - [c57]Jinfeng Li, Xiao Yan, Jian Zhang, An Xu, James Cheng, Jie Liu, Kelvin Kai Wing Ng, Ti-Chung Cheng:
A General and Efficient Querying Method for Learning to Hash. SIGMOD Conference 2018: 1333-1347 - [i29]Da Yan, Hongzhi Chen, James Cheng, Zhenkun Cai, Bin Shao:
Scalable De Novo Genome Assembly Using Pregel. CoRR abs/1801.04453 (2018) - [i28]Fanhua Shang, Kaiwen Zhou, James Cheng, Ivor W. Tsang, Lijun Zhang, Dacheng Tao:
VR-SGD: A Simple Stochastic Variance Reduction Method for Machine Learning. CoRR abs/1802.09932 (2018) - [i27]Fanhua Shang, Yuanyuan Liu, Kaiwen Zhou, James Cheng, Kelvin Kai Wing Ng, Yuichi Yoshida:
Guaranteed Sufficient Decrease for Stochastic Variance Reduced Gradient Optimization. CoRR abs/1802.09933 (2018) - [i26]Fanhua Shang, Yuanyuan Liu, James Cheng:
Tractable and Scalable Schatten Quasi-Norm Approximations for Rank Minimization. CoRR abs/1803.00420 (2018) - [i25]Kaiwen Zhou, Fanhua Shang, James Cheng:
A Simple Stochastic Variance Reduced Algorithm with Fast Convergence Rates. CoRR abs/1806.11027 (2018) - [i24]Xiao Yan, Jinfeng Li, Xinyan Dai, Hongzhi Chen, James Cheng:
Norm-Ranging LSH for Maximum Inner Product Search. CoRR abs/1809.08782 (2018) - [i23]Fanhua Shang, Licheng Jiao, Kaiwen Zhou, James Cheng, Yan Ren, Yufei Jin:
ASVRG: Accelerated Proximal SVRG. CoRR abs/1810.03105 (2018) - [i22]Fanhua Shang, James Cheng, Yuanyuan Liu, Zhi-Quan Luo, Zhouchen Lin:
Bilinear Factor Matrix Norm Minimization for Robust PCA: Algorithms and Applications. CoRR abs/1810.05186 (2018) - [i21]Xiao Yan, Xinyan Dai, Jie Liu, Kaiwen Zhou, James Cheng:
Norm-Range Partition: A Univiseral Catalyst for LSH based Maximum Inner Product Search (MIPS). CoRR abs/1810.09104 (2018) - 2017
- [b1]Da Yan, Yuanyuan Tian, James Cheng:
Systems for Big Graph Analytics. Springer Briefs in Computer Science, Springer 2017, ISBN 978-3-319-58216-0, pp. 1-92 - [j32]Zhiqiang Xu, James Cheng, Xiaokui Xiao
, Ryohei Fujimaki, Yusuke Muraoka:
Efficient nonparametric and asymptotic Bayesian model selection methods for attributed graph clustering. Knowl. Inf. Syst. 53(1): 239-268 (2017) - [j31]Fan Yang, Fanhua Shang, Yuzhen Huang, James Cheng, Jinfeng Li, Yunjian Zhao, Ruihao Zhao:
LFTF: A Framework for Efficient Tensor Analytics at Scale. Proc. VLDB Endow. 10(7): 745-756 (2017) - [c56]Yuanyuan Liu, Fanhua Shang, James Cheng:
Accelerated Variance Reduced Stochastic ADMM. AAAI 2017: 2287-2293 - [c55]Qizhen Zhang, Hongzhi Chen, Da Yan, James Cheng, Boon Thau Loo, Purushotham V. Bangalore:
Architectural implications on the performance and cost of graph analytics systems. SoCC 2017: 40-51 - [c54]Huanhuan Wu, Yunjian Zhao, James Cheng, Da Yan:
Efficient Processing of Growing Temporal Graphs. DASFAA (2) 2017: 387-403 - [c53]Yuanyuan Liu, Fanhua Shang, James Cheng, Hong Cheng, Licheng Jiao:
Accelerated First-order Methods for Geodesically Convex Optimization on Riemannian Manifolds. NIPS 2017: 4868-4877 - [c52]Jinfeng Li, James Cheng, Fan Yang, Yuzhen Huang, Yunjian Zhao, Xiao Yan, Ruihao Zhao:
LoSHa: A General Framework for Scalable Locality Sensitive Hashing. SIGIR 2017: 635-644 - [c51]Fan Yang, Yuzhen Huang, Yunjian Zhao, Jinfeng Li, Guanxian Jiang, James Cheng:
The Best of Both Worlds: Big Data Programming with Both Productivity and Performance. SIGMOD Conference 2017: 1619-1622 - [i20]Fanhua Shang, Yuanyuan Liu, James Cheng, Kelvin Kai Wing Ng, Yuichi Yoshida:
Variance Reduced Stochastic Gradient Descent with Sufficient Decrease. CoRR abs/1703.06807 (2017) - [i19]Fanhua Shang, Yuanyuan Liu, James Cheng, Jiacheng Zhuo:
Fast Stochastic Variance Reduced Gradient Method with Momentum Acceleration for Machine Learning. CoRR abs/1703.07948 (2017) - [i18]Yuanyuan Liu, Fanhua Shang, James Cheng:
Accelerated Variance Reduced Stochastic ADMM. CoRR abs/1707.03190 (2017) - [i17]Da Yan, Hongzhi Chen, James Cheng, M. Tamer Özsu, Qizhen Zhang, John C. S. Lui:
G-thinker: Big Graph Mining Made Easier and Faster. CoRR abs/1709.03110 (2017) - 2016
- [j30]Fan Yang, Jinfeng Li, James Cheng:
Husky: Towards a More Efficient and Expressive Distributed Computing Framework. Proc. VLDB Endow. 9(5): 420-431 (2016) - [j29]Da Yan, James Cheng, M. Tamer Özsu, Fan Yang, Yi Lu, John C. S. Lui, Qizhen Zhang, Wilfred Ng:
A General-Purpose Query-Centric Framework for Querying Big Graphs. Proc. VLDB Endow. 9(7): 564-575 (2016) - [j28]Huanhuan Wu, James Cheng, Yiping Ke
, Silu Huang, Yuzhen Huang, Hejun Wu:
Efficient Algorithms for Temporal Path Computation. IEEE Trans. Knowl. Data Eng. 28(11): 2927-2942 (2016) - [j27]Yuanyuan Liu
, Fanhua Shang, Wei Fan, James Cheng, Hong Cheng:
Generalized Higher Order Orthogonal Iteration for Tensor Learning and Decomposition. IEEE Trans. Neural Networks Learn. Syst. 27(12): 2551-2563 (2016) - [j26]Yanyan Xu, James Cheng, Ada Wai-Chee Fu:
Distributed Maximal Clique Computation and Management. IEEE Trans. Serv. Comput. 9(1): 110-122 (2016) - [c50]Fanhua Shang, Yuanyuan Liu, James Cheng:
Scalable Algorithms for Tractable Schatten Quasi-Norm Minimization. AAAI 2016: 2016-2022 - [c49]Fanhua Shang, Yuanyuan Liu, James Cheng:
Tractable and Scalable Schatten Quasi-Norm Approximations for Rank Minimization. AISTATS 2016: 620-629 - [c48]Cheng Chen, Hejun Wu, Dyce Jing Zhao, Da Yan, James Cheng:
SGraph: A Distributed Streaming System for Processing Big Graphs. BigCom 2016: 285-294 - [c47]Jinfeng Li, James Cheng, Yunjian Zhao, Fan Yang, Yuzhen Huang, Haipeng Chen, Ruihao Zhao:
A comparison of general-purpose distributed systems for data processing. IEEE BigData 2016: 378-383 - [c46]Huanhuan Wu, Yuzhen Huang, James Cheng, Jinfeng Li, Yiping Ke
:
Reachability and time-based path queries in temporal graphs. ICDE 2016: 145-156 - [c45]Yi Yang, Da Yan, Huanhuan Wu, James Cheng, Shuigeng Zhou, John C. S. Lui:
Diversified Temporal Subgraph Pattern Mining. KDD 2016: 1965-1974 - [c44]Qizhen Zhang, Da Yan, James Cheng:
Quegel: A General-Purpose System for Querying Big Graphs. SIGMOD Conference 2016: 2189-2192 - [c43]Da Yan, Yingyi Bu, Yuanyuan Tian, Amol Deshpande, James Cheng:
Big Graph Analytics Systems. SIGMOD Conference 2016: 2241-2243 - [c42]Luyang Wang, Pallab Bhattacharya, Yao-Min Chen, Shrinivas Joshi, James Cheng:
End-to-End Java Security Performance Enhancements for Oracle SPARC Servers. ICPE 2016: 159-166 - [i16]Da Yan, Yuzhen Huang, James Cheng, Huanhuan Wu:
Efficient Processing of Very Large Graphs in a Small Cluster. CoRR abs/1601.05590 (2016) - [i15]Huanhuan Wu, Yuzhen Huang, James Cheng, Jinfeng Li, Yiping Ke:
Efficient Processing of Reachability and Time-Based Path Queries in a Temporal Graph. CoRR abs/1601.05909 (2016) - [i14]Da Yan, James Cheng, Fan Yang:
Lightweight Fault Tolerance in Large-Scale Distributed Graph Processing. CoRR abs/1601.06496 (2016) - [i13]Da Yan, James Cheng, M. Tamer Özsu, Fan Yang, Yi Lu, John C. S. Lui, Qizhen Zhang, Wilfred Ng:
Quegel: A General-Purpose Query-Centric Framework for Querying Big Graphs. CoRR abs/1601.06497 (2016) - [i12]Fanhua Shang, Yuanyuan Liu, James Cheng:
Unified Scalable Equivalent Formulations for Schatten Quasi-Norms. CoRR abs/1606.00668 (2016) - [i11]Fanhua Shang, Yuanyuan Liu, James Cheng:
Scalable Algorithms for Tractable Schatten Quasi-Norm Minimization. CoRR abs/1606.01245 (2016) - 2015
- [j25]Fanhua Shang, Yuanyuan Liu, Hanghang Tong
, James Cheng, Hong Cheng:
Robust bilinear factorization with missing and grossly corrupted observations. Inf. Sci. 307: 53-72 (2015) - [j24]Wenting Liu, Guangxia Li, James Cheng:
Fast PageRank approximation by adaptive sampling. Knowl. Inf. Syst. 42(1): 127-146 (2015) - [j23]Da Yan, James Cheng, Zhou Zhao, Wilfred Ng:
Efficient location-based search of trajectories with location importance. Knowl. Inf. Syst. 45(1): 215-245 (2015) - [j22]Yuanyuan Liu
, Fanhua Shang, Licheng Jiao, James Cheng, Hong Cheng:
Trace Norm Regularized CANDECOMP/PARAFAC Decomposition With Missing Data. IEEE Trans. Cybern. 45(11): 2437-2448 (2015) - [c41]Huanhuan Wu, James Cheng, Yi Lu, Yiping Ke
, Yuzhen Huang, Da Yan, Hejun Wu:
Core decomposition in large temporal graphs. IEEE BigData 2015: 649-658 - [c40]Da Yan, James Cheng, Yi Lu, Wilfred Ng:
Effective Techniques for Message Reduction and Load Balancing in Distributed Graph Computation. WWW 2015: 1307-1317 - [i10]Da Yan, James Cheng, Yi Lu, Wilfred Ng:
Effective Techniques for Message Reduction and Load Balancing in Distributed Graph Computation. CoRR abs/1503.00626 (2015) - [i9]Fanhua Shang, Yuanyuan Liu, James Cheng, Hong Cheng:
Regularized Orthogonal Tensor Decompositions for Multi-Relational Learning. CoRR abs/1512.08120 (2015) - 2014
- [j21]Huanhuan Wu, James Cheng, Silu Huang, Yiping Ke
, Yi Lu, Yanyan Xu:
Path Problems in Temporal Graphs. Proc. VLDB Endow. 7(9): 721-732 (2014) - [j20]Da Yan, James Cheng, Kai Xing, Yi Lu, Wilfred Ng, Yingyi Bu:
Pregel Algorithms for Graph Connectivity Problems with Performance Guarantees. Proc. VLDB Endow. 7(14): 1821-1832 (2014) - [j19]