


default search action
16th AISTATS 2013: Scottsdale, AZ, USA
- Proceedings of the Sixteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2013, Scottsdale, AZ, USA, April 29 - May 1, 2013. JMLR Workshop and Conference Proceedings 31, JMLR.org 2013

Part I: Notable Papers
- Anjishnu Banerjee, Jared Murray

, David B. Dunson:
Bayesian learning of joint distributions of objects. 1-9 - Olivier Collier, Arnak S. Dalalyan:

Permutation estimation and minimax rates of identifiability. 10-19 - Nicholas J. Foti, Joseph D. Futoma, Daniel N. Rockmore, Sinead Williamson:

A unifying representation for a class of dependent random measures. 20-28 - James E. Johndrow, David B. Dunson, Kristian Lum:

Diagonal Orthant Multinomial Probit Models. 29-38 - Zhaoshi Meng, Dennis L. Wei, Ami Wiesel, Alfred O. Hero III:

Distributed Learning of Gaussian Graphical Models via Marginal Likelihoods. 39-47 - Zhaoran Wang, Fang Han, Han Liu:

Sparse Principal Component Analysis for High Dimensional Multivariate Time Series. 48-56
Part II: Regular Papers
- Jayadev Acharya, Ashkan Jafarpour, Alon Orlitsky, Ananda Theertha Suresh:

A Competitive Test for Uniformity of Monotone Distributions. 57-65 - Margareta Ackerman, Shai Ben-David, David Loker, Sivan Sabato:

Clustering Oligarchies. 66-74 - Andrej Aderhold, Dirk Husmeier, V. Anne Smith:

Reconstructing ecological networks with hierarchical Bayesian regression and Mondrian processes. 75-84 - Raja Hafiz Affandi, Alex Kulesza, Emily B. Fox, Ben Taskar:

Nystrom Approximation for Large-Scale Determinantal Processes. 85-98 - Shipra Agrawal, Navin Goyal:

Further Optimal Regret Bounds for Thompson Sampling. 99-107 - Sungjin Ahn, Yutian Chen, Max Welling:

Distributed and Adaptive Darting Monte Carlo through Regenerations. 108-116 - Raman Arora, Marina Meila:

Consensus Ranking with Signed Permutations. 117-125 - Krishnakumar Balasubramanian, Bharath K. Sriperumbudur, Guy Lebanon:

Ultrahigh Dimensional Feature Screening via RKHS Embeddings. 126-134 - Elias Bareinboim, Judea Pearl:

Meta-Transportability of Causal Effects: A Formal Approach. 135-143 - Guillaume Bouchard, Dawei Yin, Shengbo Guo:

Convex Collective Matrix Factorization. 144-152 - Arun Tejasvi Chaganty, Aditya V. Nori, Sriram K. Rajamani:

Efficiently Sampling Probabilistic Programs via Program Analysis. 153-160 - Chao Chen, Vladimir Kolmogorov, Yan Zhu, Dimitris N. Metaxas, Christoph H. Lampert:

Computing the M Most Probable Modes of a Graphical Model. 161-169 - Eunice Yuh-Jie Chen, Judea Pearl:

A simple criterion for controlling selection bias. 170-177 - Yutian Chen, Max Welling:

Evidence Estimation for Bayesian Partially Observed MRFs. 178-186 - Mung Chiang, Henry Lam, Zhenming Liu, H. Vincent Poor:

Why Steiner-tree type algorithms work for community detection. 187-195 - Peter Clifford, Ioana Cosma:

A simple sketching algorithm for entropy estimation over streaming data. 196-206 - Andreas C. Damianou, Neil D. Lawrence:

Deep Gaussian Processes. 207-215 - Frank Dondelinger, Dirk Husmeier, Simon Rogers, Maurizio Filippone:

ODE parameter inference using adaptive gradient matching with Gaussian processes. 216-228 - Nan Du, Le Song, Hyenkyun Woo, Hongyuan Zha:

Uncover Topic-Sensitive Information Diffusion Networks. 229-237 - Christopher DuBois, Carter T. Butts, Padhraic Smyth:

Stochastic blockmodeling of relational event dynamics. 238-246 - Elad Eban, Gideon Rothschild, Adi Mizrahi, Israel Nelken, Gal Elidan:

Dynamic Copula Networks for Modeling Real-valued Time Series. 247-255 - Doris Entner, Patrik O. Hoyer, Peter Spirtes:

Data-driven covariate selection for nonparametric estimation of causal effects. 256-264 - Brian Eriksson:

Learning to Top-K Search using Pairwise Comparisons. 265-273 - Hamed Firouzi, Bala Rajaratnam, Alfred O. Hero III:

Predictive Correlation Screening: Application to Two-stage Predictor Design in High Dimension. 274-288 - Georg M. Goerg, Cosma Rohilla Shalizi:

Mixed LICORS: A Nonparametric Algorithm for Predictive State Reconstruction. 289-297 - Quanquan Gu, Charu C. Aggarwal, Jiawei Han:

Unsupervised Link Selection in Networks. 298-306 - Quanquan Gu, Jiawei Han:

Clustered Support Vector Machines. 307-315 - Abner Guzmán-Rivera, Pushmeet Kohli, Dhruv Batra:

DivMCuts: Faster Training of Structural SVMs with Diverse M-Best Cutting-Planes. 316-324 - Jeffrey Ho, Guang Cheng, Hesamoddin Salehian, Baba C. Vemuri:

Recursive Karcher Expectation Estimators And Geometric Law of Large Numbers. 325-332 - Joyce C. Ho, Yubin Park, Carlos Carvalho, Joydeep Ghosh:

DYNACARE: Dynamic Cardiac Arrest Risk Estimation. 333-341 - Tomoharu Iwata, Neil Houlsby, Zoubin Ghahramani:

Active Learning for Interactive Visualization. 342-350 - Prabhanjan Kambadur, Aurélie C. Lozano:

A Parallel, Block Greedy Method for Sparse Inverse Covariance Estimation for Ultra-high Dimensions. 351-359 - Seungyeon Kim, Fuxin Li, Guy Lebanon, Irfan A. Essa:

Beyond Sentiment: The Manifold of Human Emotions. 360-369 - Janne H. Korhonen, Pekka Parviainen:

Exact Learning of Bounded Tree-width Bayesian Networks. 370-378 - Nevena Lazic, Christopher M. Bishop, John M. Winn:

Structural Expectation Propagation (SEP): Bayesian structure learning for networks with latent variables. 379-387 - Jason D. Lee, Trevor Hastie:

Structure Learning of Mixed Graphical Models. 388-396 - Lei Li, Bharath Ramsundar, Stuart Russell:

Dynamic Scaled Sampling for Deterministic Constraints. 397-405 - Daniel Lowd, Amirmohammad Rooshenas:

Learning Markov Networks With Arithmetic Circuits. 406-414 - Heng Luo, Pierre Luc Carrier, Aaron C. Courville, Yoshua Bengio:

Texture Modeling with Convolutional Spike-and-Slab RBMs and Deep Extensions. 415-423 - Yuancheng Luo, Ramani Duraiswami:

Fast Near-GRID Gaussian Process Regression. 424-432 - Jianzhu Ma, Jian Peng, Sheng Wang, Jinbo Xu:

Estimating the Partition Function of Graphical Models Using Langevin Importance Sampling. 433-441 - Joseph Charles Mellor, Jonathan Shapiro:

Thompson Sampling in Switching Environments with Bayesian Online Change Detection. 442-450 - Edward Moroshko, Koby Crammer:

A Last-Step Regression Algorithm for Non-Stationary Online Learning. 451-462 - Phuong Nguyen, Odalric-Ambrym Maillard, Daniil Ryabko, Ronald Ortner:

Competing with an Infinite Set of Models in Reinforcement Learning. 463-471 - Trung V. Nguyen, Edwin V. Bonilla:

Efficient Variational Inference for Gaussian Process Regression Networks. 472-480 - Zheng Pan, Changshui Zhang:

High-dimensional Inference via Lipschitz Sparsity-Yielding Regularizers. 481-488 - Mijung Park, Oluwasanmi Koyejo, Joydeep Ghosh, Russell A. Poldrack, Jonathan W. Pillow:

Bayesian Structure Learning for Functional Neuroimaging. 489-497 - Saurabh Paul, Christos Boutsidis, Malik Magdon-Ismail, Petros Drineas

:
Random Projections for Support Vector Machines. 498-506 - Barnabás Póczos, Aarti Singh, Alessandro Rinaldo, Larry A. Wasserman:

Distribution-Free Distribution Regression. 507-515 - Alexander Rakhlin, Ohad Shamir, Karthik Sridharan:

Localization and Adaptation in Online Learning. 516-526 - James Scott, Jason Baldridge:

A recursive estimate for the predictive likelihood in a topic model. 527-535 - James Sharpnack, Aarti Singh, Akshay Krishnamurthy:

Detecting Activations over Graphs using Spanning Tree Wavelet Bases. 536-544 - James Sharpnack, Aarti Singh, Alessandro Rinaldo:

Changepoint Detection over Graphs with the Spectral Scan Statistic. 545-553 - Mathieu Sinn, Bei Chen:

Central Limit Theorems for Conditional Markov Chains. 554-562 - Greg Ver Steeg, Aram Galstyan:

Statistical Tests for Contagion in Observational Social Network Studies. 563-571 - Nima Taghipour, Daan Fierens, Guy Van den Broeck, Jesse Davis, Hendrik Blockeel:

Completeness Results for Lifted Variable Elimination. 572-580 - Kirill Trapeznikov, Venkatesh Saligrama:

Supervised Sequential Classification Under Budget Constraints. 581-589 - Sebastian Tschiatschek, Franz Pernkopf:

On the Asymptotic Optimality of Maximum Margin Bayesian Networks. 590-598 - Pengyu Wang, Phil Blunsom:

Collapsed Variational Bayesian Inference for Hidden Markov Models. 599-607 - Weiguang Wang, Yingbin Liang, Eric P. Xing:

Block Regularized Lasso for Multivariate Multi-Response Linear Regression. 608-617 - Adrian Weller, Tony Jebara:

Bethe Bounds and Approximating the Global Optimum. 618-631 - Christopher Zach:

Dual Decomposition for Joint Discrete-Continuous Optimization. 632-640 - Ke Zhou, Hongyuan Zha, Le Song:

Learning Social Infectivity in Sparse Low-rank Networks Using Multi-dimensional Hawkes Processes. 641-649 - Tianyi Zhou, Dacheng Tao:

Greedy Bilateral Sketch, Completion & Smoothing. 650-658 - Stéphan Clémençon, Jérémie Jakubowicz:

Scoring anomalies: a M-estimation formulation. 659-667

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














