


default search action
Greg Ver Steeg
Person information
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j11]Qiang Li
, Greg Ver Steeg, Jesus Malo
:
Functional connectivity via total correlation: Analytical results in visual areas. Neurocomputing 571: 127143 (2024) - [j10]Dimitris Stripelis
, Umang Gupta, Hamza Saleem, Nikhil J. Dhinagar, Tanmay Ghai, Chrysovalantis Anastasiou, Rafael Sanchez, Greg Ver Steeg, Srivatsan Ravi, Muhammad Naveed, Paul M. Thompson, José Luis Ambite:
A federated learning architecture for secure and private neuroimaging analysis. Patterns 5(8): 101031 (2024) - [c76]Haz Sameen Shahgir, Xianghao Kong, Greg Ver Steeg, Yue Dong:
Asymmetric Bias in Text-to-Image Generation with Adversarial Attacks. ACL (Findings) 2024: 5779-5796 - [c75]Myrl G. Marmarelis, Fred Morstatter, Aram Galstyan, Greg Ver Steeg:
Policy Learning for Localized Interventions from Observational Data. AISTATS 2024: 4456-4464 - [c74]Myrl G. Marmarelis, Greg Ver Steeg, Aram Galstyan, Fred Morstatter:
Ensembled Prediction Intervals for Causal Outcomes Under Hidden Confounding. CLeaR 2024: 18-40 - [c73]Soroosh Safari Loaliyan, Greg Ver Steeg:
Comparative Analysis of Generalization and Harmonization Methods for 3D Brain fMRI Images: A Case Study on OpenBHB Dataset. CVPR Workshops 2024: 4915-4923 - [c72]Alessandro Achille, Greg Ver Steeg, Tian Yu Liu, Matthew Trager, Carson Klingenberg, Stefano Soatto:
Interpretable Measures of Conceptual Similarity by Complexity-Constrained Descriptive Auto-Encoding. CVPR 2024: 11062-11071 - [c71]Yao Qiang, Subhrangshu Nandi, Ninareh Mehrabi, Greg Ver Steeg, Anoop Kumar, Anna Rumshisky, Aram Galstyan:
Prompt Perturbation Consistency Learning for Robust Language Models. EACL (Findings) 2024: 1357-1370 - [c70]Xianghao Kong, Ollie Liu, Han Li, Dani Yogatama, Greg Ver Steeg:
Interpretable Diffusion via Information Decomposition. ICLR 2024 - [c69]Yunshu Wu, Yingtao Luo, Xianghao Kong, Vagelis Papalexakis, Greg Ver Steeg:
Your Diffusion Model is Secretly a Noise Classifier and Benefits from Contrastive Training. NeurIPS 2024 - [c68]Keshav Balasubramanian
, Abdulla Alshabanah
, Elan Markowitz
, Greg Ver Steeg
, Murali Annavaram
:
Biased User History Synthesis for Personalized Long-Tail Item Recommendation. RecSys 2024: 189-199 - [c67]Tamoghna Chattopadhyay, Neha Ann Joshy, Chirag Jagad, Emma J. Gleave, Sophia I. Thomopoulos, Yixue Feng, Julio E. Villalon-Reina, Emily Laltoo, Himanshu Joshi, Ganesan Venkatasubramanian, John P. John, Greg Ver Steeg, José Luis Ambite, Paul M. Thompson:
Comparison of Explainable AI Models for MRI-Based Alzheimer's Disease Classification. SIPAIM 2024: 1-4 - [i83]Alessandro Achille, Greg Ver Steeg, Tian Yu Liu, Matthew Trager, Carson Klingenberg, Stefano Soatto:
Interpretable Measures of Conceptual Similarity by Complexity-Constrained Descriptive Auto-Encoding. CoRR abs/2402.08919 (2024) - [i82]Yao Qiang, Subhrangshu Nandi, Ninareh Mehrabi, Greg Ver Steeg, Anoop Kumar, Anna Rumshisky, Aram Galstyan:
Prompt Perturbation Consistency Learning for Robust Language Models. CoRR abs/2402.15833 (2024) - [i81]Yunshu Wu, Yingtao Luo, Xianghao Kong, Evangelos E. Papalexakis, Greg Ver Steeg:
Your Diffusion Model is Secretly a Noise Classifier and Benefits from Contrastive Training. CoRR abs/2407.08946 (2024) - [i80]Neal Lawton, Aishwarya Padmakumar, Judith Gaspers, Jack FitzGerald, Anoop Kumar, Greg Ver Steeg, Aram Galstyan:
QuAILoRA: Quantization-Aware Initialization for LoRA. CoRR abs/2410.14713 (2024) - [i79]Shaorong Zhang, Yuanbin Cheng, Xianghao Kong, Greg Ver Steeg:
Exploring the Design Space of Diffusion Bridge Models via Stochasticity Control. CoRR abs/2410.21553 (2024) - [i78]Neal Lawton, Aram Galstyan, Greg Ver Steeg:
Learning Morphisms with Gauss-Newton Approximation for Growing Networks. CoRR abs/2411.05855 (2024) - 2023
- [c66]Arghya Datta, Subhrangshu Nandi, Jingcheng Xu, Greg Ver Steeg, He Xie, Anoop Kumar, Aram Galstyan:
Measuring and Mitigating Local Instability in Deep Neural Networks. ACL (Findings) 2023: 2810-2823 - [c65]Neal Lawton, Anoop Kumar, Govind Thattai, Aram Galstyan, Greg Ver Steeg:
Neural Architecture Search for Parameter-Efficient Fine-tuning of Large Pre-trained Language Models. ACL (Findings) 2023: 8506-8515 - [c64]Umang Gupta, Aram Galstyan, Greg Ver Steeg:
Jointly Reparametrized Multi-Layer Adaptation for Efficient and Private Tuning. ACL (Findings) 2023: 12612-12629 - [c63]Xianghao Kong, Rob Brekelmans, Greg Ver Steeg:
Information-Theoretic Diffusion. ICLR 2023 - [c62]Umang Gupta, Tamoghna Chattopadhyay, Nikhil J. Dhinagar, Paul M. Thompson
, Greg Ver Steeg:
Transferring Models Trained on Natural Images to 3D MRI via Position Encoded Slice Models. ISBI 2023: 1-5 - [c61]Elizabeth Haddad
, Myrl G. Marmarelis
, Talia M. Nir
, Aram Galstyan, Greg Ver Steeg, Neda Jahanshad
:
Causal Sensitivity Analysis for Hidden Confounding: Modeling the Sex-Specific Role of Diet on the Aging Brain. MLCN@MICCAI 2023: 91-101 - [c60]Dheeraj Komandur, Umang Gupta, Tamoghna Chattopadhyay, Nikhil J. Dhinagar, Sophia I. Thomopoulos, Jiu-Chiuan Chen, Dan Beavers, Greg Ver Steeg, Paul M. Thompson
:
Unsupervised harmonization of brain MRI using 3D CycleGANs and its effect on brain age prediction. SIPAIM 2023: 1-5 - [c59]Myrl G. Marmarelis, Elizabeth Haddad, Andrew Jesson, Neda Jahanshad, Aram Galstyan, Greg Ver Steeg:
Partial identification of dose responses with hidden confounders. UAI 2023: 1368-1379 - [i77]Xianghao Kong, Rob Brekelmans, Greg Ver Steeg:
Information-Theoretic Diffusion. CoRR abs/2302.03792 (2023) - [i76]Umang Gupta, Tamoghna Chattopadhyay, Nikhil J. Dhinagar, Paul M. Thompson, Greg Ver Steeg, Alzheimer's Disease Neuroimaging Initiative:
Transferring Models Trained on Natural Images to 3D MRI via Position Encoded Slice Models. CoRR abs/2303.01491 (2023) - [i75]Rob Brekelmans, Sicong Huang, Marzyeh Ghassemi, Greg Ver Steeg, Roger B. Grosse, Alireza Makhzani:
Improving Mutual Information Estimation with Annealed and Energy-Based Bounds. CoRR abs/2303.06992 (2023) - [i74]Arghya Datta
, Subhrangshu Nandi, Jingcheng Xu, Greg Ver Steeg, He Xie, Anoop Kumar, Aram Galstyan:
Measuring and Mitigating Local Instability in Deep Neural Networks. CoRR abs/2305.10625 (2023) - [i73]Neal Lawton, Anoop Kumar, Govind Thattai, Aram Galstyan, Greg Ver Steeg:
Neural Architecture Search for Parameter-Efficient Fine-tuning of Large Pre-trained Language Models. CoRR abs/2305.16597 (2023) - [i72]Umang Gupta, Aram Galstyan, Greg Ver Steeg:
Jointly Reparametrized Multi-Layer Adaptation for Efficient and Private Tuning. CoRR abs/2305.19264 (2023) - [i71]Elan Markowitz, Ziyan Jiang, Fan Yang, Xing Fan, Tony Chen, Greg Ver Steeg, Aram Galstyan:
Multi-Task Knowledge Enhancement for Zero-Shot and Multi-Domain Recommendation in an AI Assistant Application. CoRR abs/2306.06302 (2023) - [i70]Myrl G. Marmarelis, Greg Ver Steeg, Aram Galstyan, Fred Morstatter:
Tighter Prediction Intervals for Causal Outcomes Under Hidden Confounding. CoRR abs/2306.09520 (2023) - [i69]Xianghao Kong, Ollie Liu, Han Li, Dani Yogatama, Greg Ver Steeg:
Interpretable Diffusion via Information Decomposition. CoRR abs/2310.07972 (2023) - [i68]Haz Sameen Shahgir, Xianghao Kong, Greg Ver Steeg, Yue Dong:
Asymmetric Bias in Text-to-Image Generation with Adversarial Attacks. CoRR abs/2312.14440 (2023) - 2022
- [j9]Qiang Li
, Greg Ver Steeg
, Shujian Yu, Jesus Malo
:
Functional Connectome of the Human Brain with Total Correlation. Entropy 24(12): 1725 (2022) - [j8]Myrl G. Marmarelis, Greg Ver Steeg, Aram Galstyan:
A Metric Space for Point Process Excitations. J. Artif. Intell. Res. 73 (2022) - [c58]Umang Gupta, Jwala Dhamala, Varun Kumar
, Apurv Verma, Yada Pruksachatkun, Satyapriya Krishna, Rahul Gupta, Kai-Wei Chang, Greg Ver Steeg, Aram Galstyan:
Mitigating Gender Bias in Distilled Language Models via Counterfactual Role Reversal. ACL (Findings) 2022: 658-678 - [c57]Tigran Galstyan, Hrayr Harutyunyan, Hrant Khachatrian, Greg Ver Steeg, Aram Galstyan:
Failure Modes of Domain Generalization Algorithms. CVPR 2022: 19055-19064 - [c56]Rob Brekelmans, Sicong Huang, Marzyeh Ghassemi, Greg Ver Steeg, Roger Baker Grosse, Alireza Makhzani:
Improving Mutual Information Estimation with Annealed and Energy-Based Bounds. ICLR 2022 - [c55]Hrayr Harutyunyan, Greg Ver Steeg, Aram Galstyan:
Formal limitations of sample-wise information-theoretic generalization bounds. ITW 2022: 440-445 - [c54]Dimitris Stripelis, Umang Gupta, Nikhil J. Dhinagar, Greg Ver Steeg, Paul M. Thompson
, José Luis Ambite:
Towards Sparsified Federated Neuroimaging Models via Weight Pruning. DeCaF/FAIR@MICCAI 2022: 141-151 - [c53]Judith Gaspers, Anoop Kumar, Greg Ver Steeg, Aram Galstyan:
Temporal Generalization for Spoken Language Understanding. NAACL-HLT (Industry Papers) 2022: 37-44 - [c52]Elan Markowitz, Keshav Balasubramanian, Mehrnoosh Mirtaheri, Murali Annavaram, Aram Galstyan, Greg Ver Steeg:
StATIK: Structure and Text for Inductive Knowledge Graph Completion. NAACL-HLT (Findings) 2022: 604-615 - [i67]Marcin Abram, Keith Burghardt, Greg Ver Steeg, Aram Galstyan, Rémi Dingreville:
Inferring topological transitions in pattern-forming processes with self-supervised learning. CoRR abs/2203.10204 (2022) - [i66]Umang Gupta, Jwala Dhamala, Varun Kumar, Apurv Verma
, Yada Pruksachatkun, Satyapriya Krishna, Rahul Gupta, Kai-Wei Chang, Greg Ver Steeg, Aram Galstyan:
Mitigating Gender Bias in Distilled Language Models via Counterfactual Role Reversal. CoRR abs/2203.12574 (2022) - [i65]Myrl G. Marmarelis, Greg Ver Steeg, Aram Galstyan:
Bounding the Effects of Continuous Treatments for Hidden Confounders. CoRR abs/2204.11206 (2022) - [i64]Dimitris Stripelis, Umang Gupta, Greg Ver Steeg, José Luis Ambite:
Federated Progressive Sparsification (Purge, Merge, Tune)+. CoRR abs/2204.12430 (2022) - [i63]Dimitris Stripelis, Umang Gupta, Hamza Saleem, Nikhil J. Dhinagar, Tanmay Ghai, Rafael Sanchez, Chrysovalantis Anastasiou, Armaghan Asghar, Greg Ver Steeg, Srivatsan Ravi
, Muhammad Naveed, Paul M. Thompson, José Luis Ambite:
Secure Federated Learning for Neuroimaging. CoRR abs/2205.05249 (2022) - [i62]Hrayr Harutyunyan, Greg Ver Steeg, Aram Galstyan:
Formal limitations of sample-wise information-theoretic generalization bounds. CoRR abs/2205.06915 (2022) - [i61]Dimitris Stripelis, Umang Gupta, Nikhil J. Dhinagar, Greg Ver Steeg, Paul M. Thompson, José Luis Ambite:
Towards Sparsified Federated Neuroimaging Models via Weight Pruning. CoRR abs/2208.11669 (2022) - 2021
- [j7]Kyle Reing, Greg Ver Steeg
, Aram Galstyan:
Discovering Higher-Order Interactions Through Neural Information Decomposition. Entropy 23(1): 79 (2021) - [j6]Mehrnoosh Mirtaheri
, Sami Abu-El-Haija, Fred Morstatter
, Greg Ver Steeg, Aram Galstyan:
Identifying and Analyzing Cryptocurrency Manipulations in Social Media. IEEE Trans. Comput. Soc. Syst. 8(3): 607-617 (2021) - [c51]Umang Gupta, Aaron M. Ferber, Bistra Dilkina, Greg Ver Steeg:
Controllable Guarantees for Fair Outcomes via Contrastive Information Estimation. AAAI 2021: 7610-7619 - [c50]James O'Neill, Greg Ver Steeg, Aram Galstyan:
Layer-Wise Neural Network Compression via Layer Fusion. ACML 2021: 1381-1396 - [c49]Kyle Reing, Greg Ver Steeg, Aram Galstyan:
Influence Decompositions For Neural Network Attribution. AISTATS 2021: 2710-2718 - [c48]Elan Sopher Markowitz, Keshav Balasubramanian, Mehrnoosh Mirtaheri, Sami Abu-El-Haija, Bryan Perozzi, Greg Ver Steeg, Aram Galstyan:
Graph Traversal with Tensor Functionals: A Meta-Algorithm for Scalable Learning. ICLR 2021 - [c47]Umang Gupta, Pradeep K. Lam, Greg Ver Steeg, Paul M. Thompson
:
Improved Brain Age Estimation With Slice-Based Set Networks. ISBI 2021: 840-844 - [c46]Umang Gupta, Dimitris Stripelis, Pradeep K. Lam, Paul M. Thompson, José Luis Ambite, Greg Ver Steeg:
Membership Inference Attacks on Deep Regression Models for Neuroimaging. MIDL 2021: 228-251 - [c45]Sami Abu-El-Haija, Hesham Mostafa, Marcel Nassar, Valentino Crespi, Greg Ver Steeg, Aram Galstyan:
Implicit SVD for Graph Representation Learning. NeurIPS 2021: 8419-8431 - [c44]Greg Ver Steeg, Aram Galstyan:
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling. NeurIPS 2021: 11012-11025 - [c43]Hrayr Harutyunyan, Maxim Raginsky, Greg Ver Steeg, Aram Galstyan:
Information-theoretic generalization bounds for black-box learning algorithms. NeurIPS 2021: 24670-24682 - [c42]Vaden Masrani, Rob Brekelmans, Thang Bui, Frank Nielsen, Aram Galstyan, Greg Ver Steeg, Frank Wood:
q-Paths: Generalizing the geometric annealing path using power means. UAI 2021: 1938-1947 - [i60]Umang Gupta, Aaron M. Ferber, Bistra Dilkina, Greg Ver Steeg:
Controllable Guarantees for Fair Outcomes via Contrastive Information Estimation. CoRR abs/2101.04108 (2021) - [i59]Elan Markowitz, Keshav Balasubramanian, Mehrnoosh Mirtaheri, Sami Abu-El-Haija, Bryan Perozzi, Greg Ver Steeg, Aram Galstyan:
Graph Traversal with Tensor Functionals: A Meta-Algorithm for Scalable Learning. CoRR abs/2102.04350 (2021) - [i58]Umang Gupta, Pradeep Lam, Greg Ver Steeg, Paul Thompson:
Improved Brain Age Estimation with Slice-based Set Networks. CoRR abs/2102.04438 (2021) - [i57]Sami Abu-El-Haija, Valentino Crespi, Greg Ver Steeg, Aram Galstyan:
Fast Graph Learning with Unique Optimal Solutions. CoRR abs/2102.08530 (2021) - [i56]Umang Gupta, Dimitris Stripelis, Pradeep K. Lam, Paul M. Thompson, José Luis Ambite, Greg Ver Steeg:
Membership Inference Attacks on Deep Regression Models for Neuroimaging. CoRR abs/2105.02866 (2021) - [i55]Vaden Masrani, Rob Brekelmans, Thang Bui, Frank Nielsen, Aram Galstyan, Greg Ver Steeg, Frank Wood:
q-Paths: Generalizing the Geometric Annealing Path using Power Means. CoRR abs/2107.00745 (2021) - [i54]Dimitris Stripelis, Hamza Saleem, Tanmay Ghai, Nikhil J. Dhinagar, Umang Gupta, Chrysovalantis Anastasiou, Greg Ver Steeg, Srivatsan Ravi, Muhammad Naveed, Paul M. Thompson, José Luis Ambite:
Secure Neuroimaging Analysis using Federated Learning with Homomorphic Encryption. CoRR abs/2108.03437 (2021) - [i53]Ninareh Mehrabi, Umang Gupta, Fred Morstatter, Greg Ver Steeg, Aram Galstyan:
Attributing Fair Decisions with Attention Interventions. CoRR abs/2109.03952 (2021) - [i52]Hrayr Harutyunyan, Maxim Raginsky, Greg Ver Steeg, Aram Galstyan:
Information-theoretic generalization bounds for black-box learning algorithms. CoRR abs/2110.01584 (2021) - [i51]Greg Ver Steeg, Aram Galstyan:
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling. CoRR abs/2111.02434 (2021) - [i50]Sami Abu-El-Haija, Hesham Mostafa, Marcel Nassar, Valentino Crespi, Greg Ver Steeg, Aram Galstyan:
Implicit SVD for Graph Representation Learning. CoRR abs/2111.06312 (2021) - [i49]Tigran Galstyan, Hrayr Harutyunyan, Hrant Khachatrian, Greg Ver Steeg, Aram Galstyan:
Failure Modes of Domain Generalization Algorithms. CoRR abs/2111.13733 (2021) - 2020
- [j5]Kyle Reing
, Greg Ver Steeg, Aram Galstyan:
Maximizing Multivariate Information With Error-Correcting Codes. IEEE Trans. Inf. Theory 66(5): 2683-2695 (2020) - [c41]Sahil Garg, Irina Rish, Guillermo A. Cecchi, Palash Goyal, Sarik Ghazarian, Shuyang Gao, Greg Ver Steeg, Aram Galstyan:
Modeling Dialogues with Hashcode Representations: A Nonparametric Approach. AAAI 2020: 3970-3979 - [c40]Ayush Jaiswal, Daniel Moyer, Greg Ver Steeg, Wael AbdAlmageed, Premkumar Natarajan:
Invariant Representations through Adversarial Forgetting. AAAI 2020: 4272-4279 - [c39]Rob Brekelmans, Vaden Masrani, Frank Wood, Greg Ver Steeg, Aram Galstyan:
All in the Exponential Family: Bregman Duality in Thermodynamic Variational Inference. ICML 2020: 1111-1122 - [c38]Hrayr Harutyunyan, Kyle Reing, Greg Ver Steeg, Aram Galstyan:
Improving generalization by controlling label-noise information in neural network weights. ICML 2020: 4071-4081 - [i48]Hrayr Harutyunyan, Kyle Reing, Greg Ver Steeg, Aram Galstyan:
Improving Generalization by Controlling Label-Noise Information in Neural Network Weights. CoRR abs/2002.07933 (2020) - [i47]Myrl G. Marmarelis, Greg Ver Steeg, Aram Galstyan:
Event Cartography: Latent Point Process Embeddings. CoRR abs/2005.02515 (2020) - [i46]Daniel Moyer, Greg Ver Steeg, Paul M. Thompson:
Overview of Scanner Invariant Representations. CoRR abs/2006.00115 (2020) - [i45]Rob Brekelmans, Vaden Masrani, Frank Wood, Greg Ver Steeg, Aram Galstyan:
All in the Exponential Family: Bregman Duality in Thermodynamic Variational Inference. CoRR abs/2007.00642 (2020) - [i44]Tigran Galstyan, Hrant Khachatrian, Greg Ver Steeg, Aram Galstyan:
Robust Classification under Class-Dependent Domain Shift. CoRR abs/2007.05335 (2020) - [i43]James O'Neill, Greg Ver Steeg, Aram Galstyan:
Compressing Deep Neural Networks via Layer Fusion. CoRR abs/2007.14917 (2020) - [i42]Rob Brekelmans, Vaden Masrani, Thang Bui, Frank Wood, Aram Galstyan, Greg Ver Steeg, Frank Nielsen:
Annealed Importance Sampling with q-Paths. CoRR abs/2012.07823 (2020) - [i41]Rob Brekelmans, Frank Nielsen, Alireza Makhzani, Aram Galstyan, Greg Ver Steeg:
Likelihood Ratio Exponential Families. CoRR abs/2012.15480 (2020)
2010 – 2019
- 2019
- [c37]Sahil Garg, Aram Galstyan, Greg Ver Steeg, Irina Rish, Guillermo A. Cecchi, Shuyang Gao:
Kernelized Hashcode Representations for Relation Extraction. AAAI 2019: 6431-6440 - [c36]Shuyang Gao, Rob Brekelmans, Greg Ver Steeg, Aram Galstyan:
Auto-Encoding Total Correlation Explanation. AISTATS 2019: 1157-1166 - [c35]Sahil Garg, Aram Galstyan, Greg Ver Steeg, Guillermo A. Cecchi:
Nearly-Unsupervised Hashcode Representations for Biomedical Relation Extraction. EMNLP/IJCNLP (1) 2019: 4024-4034 - [c34]Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr Harutyunyan, Greg Ver Steeg, Aram Galstyan:
MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing. ICML 2019: 21-29 - [c33]Rob Brekelmans, Daniel Moyer, Aram Galstyan, Greg Ver Steeg:
Exact Rate-Distortion in Autoencoders via Echo Noise. NeurIPS 2019: 3884-3895 - [c32]Greg Ver Steeg, Hrayr Harutyunyan, Daniel Moyer, Aram Galstyan:
Fast structure learning with modular regularization. NeurIPS 2019: 15567-15577 - [i40]Mehrnoosh Mirtaheri, Sami Abu-El-Haija, Fred Morstatter, Greg Ver Steeg, Aram Galstyan:
Identifying and Analyzing Cryptocurrency Manipulations in Social Media. CoRR abs/1902.03110 (2019) - [i39]Daniel Moyer, Greg Ver Steeg, Chantal M. W. Tax, Paul M. Thompson:
Scanner Invariant Representations for Diffusion MRI Harmonization. CoRR abs/1904.05375 (2019) - [i38]Rob Brekelmans, Daniel Moyer, Aram Galstyan, Greg Ver Steeg:
Exact Rate-Distortion in Autoencoders via Echo Noise. CoRR abs/1904.07199 (2019) - [i37]Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Hrayr Harutyunyan, Nazanin Alipourfard, Kristina Lerman, Greg Ver Steeg, Aram Galstyan:
MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing. CoRR abs/1905.00067 (2019) - [i36]Hrayr Harutyunyan, Daniel Moyer, Hrant Khachatrian, Greg Ver Steeg, Aram Galstyan:
Efficient Covariance Estimation from Temporal Data. CoRR abs/1905.13276 (2019) - [i35]Sahil Garg, Aram Galstyan, Greg Ver Steeg, Guillermo A. Cecchi:
Nearly-Unsupervised Hashcode Representations for Relation Extraction. CoRR abs/1909.03881 (2019) - [i34]Ayush Jaiswal, Daniel Moyer, Greg Ver Steeg, Wael AbdAlmageed, Premkumar Natarajan:
Invariant Representations through Adversarial Forgetting. CoRR abs/1911.04060 (2019) - [i33]Ayush Jaiswal, Rob Brekelmans, Daniel Moyer, Greg Ver Steeg, Wael AbdAlmageed, Premkumar Natarajan:
Discovery and Separation of Features for Invariant Representation Learning. CoRR abs/1912.00646 (2019) - 2018
- [c31]Sahil Garg, Guillermo A. Cecchi, Irina Rish, Shuyang Gao, Greg Ver Steeg, Sarik Ghazarian, Palash Goyal, Aram Galstyan:
Dialogue Modeling Via Hash Functions. LaCATODA@IJCAI 2018: 24-36 - [c30]Daniel Moyer, Shuyang Gao, Rob Brekelmans, Aram Galstyan, Greg Ver Steeg:
Invariant Representations without Adversarial Training. NeurIPS 2018: 9102-9111 - [c29]Neal Lawton, Greg Ver Steeg, Aram Galstyan:
A Forest Mixture Bound for Block-Free Parallel Inference. UAI 2018: 968-977 - [i32]Sahil Garg, Greg Ver Steeg, Aram Galstyan:
Stochastic Learning of Nonstationary Kernels for Natural Language Modeling. CoRR abs/1801.03911 (2018) - [i31]Shuyang Gao, Rob Brekelmans, Greg Ver Steeg, Aram Galstyan:
Auto-Encoding Total Correlation Explanation. CoRR abs/1802.05822 (2018) - [i30]Neal Lawton, Aram Galstyan, Greg Ver Steeg:
A Forest Mixture Bound for Block-Free Parallel Inference. CoRR abs/1805.06951 (2018) - [i29]Daniel Moyer, Shuyang Gao, Rob Brekelmans, Greg Ver Steeg, Aram Galstyan:
Evading the Adversary in Invariant Representation. CoRR abs/1805.09458 (2018) - [i28]Daniel Moyer, Paul M. Thompson, Greg Ver Steeg:
Measures of Tractography Convergence. CoRR abs/1806.04634 (2018) - [i27]Kyle Reing, Greg Ver Steeg, Aram Galstyan:
Maximizing Multivariate Information with Error-Correcting Codes. CoRR abs/1811.10839 (2018) - 2017
- [j4]Ryan J. Gallagher, Kyle Reing, David C. Kale, Greg Ver Steeg:
Anchored Correlation Explanation: Topic Modeling with Minimal Domain Knowledge. Trans. Assoc. Comput. Linguistics 5: 529-542 (2017) - [c28]Greg Ver Steeg, Rob Brekelmans, Hrayr Harutyunyan, Aram Galstyan:
Disentangled representations via synergy minimization. Allerton 2017: 180-187 - [c27]Linhong Zhu, Dong Guo, Junming Yin, Greg Ver Steeg, Aram Galstyan:
Scalable Temporal Latent Space Inference for Link Prediction in Dynamic Social Networks (Extended Abstract). ICDE 2017: 57-58 - [c26]Greg Ver Steeg, Shuyang Gao, Kyle Reing, Aram Galstyan:
Sifting Common Information from Many Variables. IJCAI 2017: 2885-2892 - [c25]Greg Ver Steeg:
Unsupervised Learning via Total Correlation Explanation. IJCAI 2017: 5151-5155 - [c24]David Stück, Haraldur Tómas Hallgrímsson, Greg Ver Steeg, Alessandro Epasto
, Luca Foschini:
The Spread of Physical Activity Through Social Networks. WWW 2017: 519-528 - [i26]Greg Ver Steeg, Aram Galstyan:
Low Complexity Gaussian Latent Factor Models and a Blessing of Dimensionality. CoRR abs/1706.03353 (2017) - [i25]Wenzhe Li, Dong Guo, Greg Ver Steeg, Aram Galstyan:
Unifying Local and Global Change Detection in Dynamic Networks. CoRR abs/1710.03035 (2017) - [i24]Greg Ver Steeg, Rob Brekelmans, Hrayr Harutyunyan, Aram Galstyan:
Disentangled Representations via Synergy Minimization. CoRR abs/1710.03839 (2017) - [i23]