default search action
Vladimir Vapnik
Person information
- affiliation: Columbia University, New York City, USA
- affiliation: Facebook, AI Research Lab, New York, USA
- unicode name: Владимир Наумович Вапник
- award (2017): IEEE John von Neumann Medal
- award (2012): Benjamin Franklin Medal
- award (2008): Paris Kanellakis Award
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2021
- [j27]Vladimir Vapnik, Rauf Izmailov:
Reinforced SVM method and memorization mechanisms. Pattern Recognit. 119: 108018 (2021) - 2020
- [c50]Vladimir Vapnik, Rauf Izmailov:
Complete statistical theory of learning: learning using statistical invariants. COPA 2020: 4-40
2010 – 2019
- 2019
- [j26]Vladimir Naumovich Vapnik:
Complete Statistical Theory of Learning. Autom. Remote. Control. 80(11): 1949-1975 (2019) - [j25]Vladimir Vapnik, Rauf Izmailov:
Rethinking statistical learning theory: learning using statistical invariants. Mach. Learn. 108(3): 381-423 (2019) - 2017
- [j24]Vladimir Vapnik, Rauf Izmailov:
Knowledge transfer in SVM and neural networks. Ann. Math. Artif. Intell. 81(1-2): 3-19 (2017) - 2016
- [j23]Vladimir Vapnik, Rauf Izmailov:
Synergy of Monotonic Rules. J. Mach. Learn. Res. 17: 136:1-136:33 (2016) - [c49]Vladimir Vapnik, Rauf Izmailov:
Learning with Intelligent Teacher. COPA 2016: 3-19 - [c48]David Lopez-Paz, Léon Bottou, Bernhard Schölkopf, Vladimir Vapnik:
Unifying distillation and privileged information. ICLR (Poster) 2016 - 2015
- [j22]Vladimir Vapnik, Rauf Izmailov:
V-matrix method of solving statistical inference problems. J. Mach. Learn. Res. 16: 1683-1730 (2015) - [j21]Vladimir Vapnik, Rauf Izmailov:
Learning using privileged information: similarity control and knowledge transfer. J. Mach. Learn. Res. 16: 2023-2049 (2015) - [j20]Vladimir Vapnik, Igor Braga, Rauf Izmailov:
Constructive setting for problems of density ratio estimation. Stat. Anal. Data Min. 8(3): 137-146 (2015) - [c47]Vladimir Vapnik, Rauf Izmailov:
Learning with Intelligent Teacher: Similarity Control and Knowledge Transfer - In memory of Alexey Chervonenkis. SLDS 2015: 3-32 - [c46]Vladimir Vapnik, Rauf Izmailov:
Statistical Inference Problems and Their Rigorous Solutions - In memory of Alexey Chervonenkis. SLDS 2015: 33-71 - 2014
- [c45]Vladimir Vapnik, Igor Braga, Rauf Izmailov:
A Constructive Setting for the Problem of Density Ratio Estimation. SDM 2014: 434-442 - 2013
- [c44]Vladimir Naumovich Vapnik, Alexey Ya. Chervonenkis:
On the Uniform Convergence of the Frequencies of Occurrence of Events to Their Probabilities. Empirical Inference 2013: 7-12 - [c43]Rauf Izmailov, Vladimir Vapnik, Akshay Vashist:
Multidimensional splines with infinite number of knots as SVM kernels. IJCNN 2013: 1-7 - [i1]Alex Gammerman, Volodya Vovk, Vladimir Vapnik:
Learning by Transduction. CoRR abs/1301.7375 (2013) - 2011
- [j19]Ilia Nouretdinov, Sergi G. Costafreda, Alexander Gammerman, Alexey Ya. Chervonenkis, Vladimir Vovk, Vladimir Vapnik, Cynthia H. Y. Fu:
Machine learning classification with confidence: Application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression. NeuroImage 56(2): 809-813 (2011) - 2010
- [c42]Dmitry Pechyony, Rauf Izmailov, Akshay Vashist, Vladimir Vapnik:
SMO-Style Algorithms for Learning Using Privileged Information. DMIN 2010: 235-241 - [c41]Dmitry Pechyony, Vladimir Vapnik:
On the Theory of Learnining with Privileged Information. NIPS 2010: 1894-1902
2000 – 2009
- 2009
- [j18]Vladimir Vapnik, Akshay Vashist:
A new learning paradigm: Learning using privileged information. Neural Networks 22(5-6): 544-557 (2009) - [c40]Vladimir Vapnik, Akshay Vashist, Natalya Pavlovitch:
Learning using hidden information (Learning with teacher). IJCNN 2009: 3188-3195 - 2008
- [j17]Ran El-Yaniv, Dmitry Pechyony, Vladimir Vapnik:
Large margin vs. large volume in transductive learning. Mach. Learn. 72(3): 173-188 (2008) - [c39]Ran El-Yaniv, Dmitry Pechyony, Vladimir Vapnik:
Large Margin vs. Large Volume in Transductive Learning. ECML/PKDD (1) 2008: 9-10 - 2007
- [c38]Vladimir Vapnik, Akshay Vashist, Natalya Pavlovitch:
Learning using hidden information: Master-class learning. NATO ASI Mining Massive Data Sets for Security 2007: 3-14 - 2006
- [b4]Vladimir Vapnik:
Estimation of Dependences Based on Empirical Data, Second Editiontion. Springer 2006, ISBN 978-0-387-30865-4, pp. 1-497 - [c37]Vladimir Vapnik:
Learning hidden information: SVM+. GrC 2006: 22 - [c36]Jason Weston, Ronan Collobert, Fabian H. Sinz, Léon Bottou, Vladimir Vapnik:
Inference with the Universum. ICML 2006: 1009-1016 - [p2]Vladimir Vapnik:
Transductive Inference and Semi-Supervised Learning. Semi-Supervised Learning 2006: 452-472 - 2004
- [c35]Hans Peter Graf, Eric Cosatto, Léon Bottou, Igor Durdanovic, Vladimir Vapnik:
Parallel Support Vector Machines: The Cascade SVM. NIPS 2004: 521-528 - 2003
- [c34]Jinbo Bi, Vladimir Vapnik:
Learning with Rigorous Support Vector Machines. COLT 2003: 243-257 - 2002
- [j16]Olivier Chapelle, Vladimir Vapnik, Olivier Bousquet, Sayan Mukherjee:
Choosing Multiple Parameters for Support Vector Machines. Mach. Learn. 46(1-3): 131-159 (2002) - [j15]Isabelle Guyon, Jason Weston, Stephen Barnhill, Vladimir Vapnik:
Gene Selection for Cancer Classification using Support Vector Machines. Mach. Learn. 46(1-3): 389-422 (2002) - [j14]Olivier Chapelle, Vladimir Vapnik, Yoshua Bengio:
Model Selection for Small Sample Regression. Mach. Learn. 48(1-3): 9-23 (2002) - [c33]Jason Weston, Olivier Chapelle, André Elisseeff, Bernhard Schölkopf, Vladimir Vapnik:
Kernel Dependency Estimation. NIPS 2002: 873-880 - 2001
- [j13]Asa Ben-Hur, David Horn, Hava T. Siegelmann, Vladimir Vapnik:
Support Vector Clustering. J. Mach. Learn. Res. 2: 125-137 (2001) - 2000
- [b3]Vladimir Naumovich Vapnik:
The Nature of Statistical Learning Theory, Second Edition. Statistics for Engineering and Information Science, Springer 2000, ISBN 978-0-387-98780-4, pp. I-XIX, 1-314 - [b2]Vladimir Vapnik:
The Nature of Statistical Learning Theory. Statistics for Engineering and Information Science, Springer 2000, ISBN 978-1-4419-3160-3, pp. 1-314 - [j12]Vladimir Vapnik, Olivier Chapelle:
Bounds on Error Expectation for Support Vector Machines. Neural Comput. 12(9): 2013-2036 (2000) - [c32]Asa Ben-Hur, Hava T. Siegelmann, David Horn, Vladimir Vapnik:
A Support Vector Clustering Method. ICPR 2000: 2724-2727 - [c31]Vladimir Naumovich Vapnik:
SVM method of estimating density, conditional probability, and conditional density. ISCAS 2000: 749-752 - [c30]Asa Ben-Hur, David Horn, Hava T. Siegelmann, Vladimir Vapnik:
A Support Vector Method for Clustering. NIPS 2000: 367-373 - [c29]Olivier Chapelle, Jason Weston, Léon Bottou, Vladimir Vapnik:
Vicinal Risk Minimization. NIPS 2000: 416-422 - [c28]Jason Weston, Sayan Mukherjee, Olivier Chapelle, Massimiliano Pontil, Tomaso A. Poggio, Vladimir Vapnik:
Feature Selection for SVMs. NIPS 2000: 668-674
1990 – 1999
- 1999
- [j11]Vladimir Vapnik:
An overview of statistical learning theory. IEEE Trans. Neural Networks 10(5): 988-999 (1999) - [j10]Harris Drucker, Donghui Wu, Vladimir Vapnik:
Support vector machines for spam categorization. IEEE Trans. Neural Networks 10(5): 1048-1054 (1999) - [j9]Olivier Chapelle, Patrick Haffner, Vladimir Vapnik:
Support vector machines for histogram-based image classification. IEEE Trans. Neural Networks 10(5): 1055-1064 (1999) - [j8]Vladimir Cherkassky, Xuhui Shao, Filip Mulier, Vladimir Vapnik:
Model complexity control for regression using VC generalization bounds. IEEE Trans. Neural Networks 10(5): 1075-1089 (1999) - [c27]Olivier Chapelle, Vladimir Vapnik:
Model Selection for Support Vector Machines. NIPS 1999: 230-236 - [c26]Olivier Chapelle, Vladimir Vapnik, Jason Weston:
Transductive Inference for Estimating Values of Functions. NIPS 1999: 421-427 - [c25]Vladimir Vapnik, Sayan Mukherjee:
Support Vector Method for Multivariate Density Estimation. NIPS 1999: 659-665 - 1998
- [b1]Vladimir Vapnik:
Statistical learning theory. Wiley 1998, ISBN 978-0-471-03003-4, pp. I-XXIV, 1-736 - [j7]Isabelle Guyon, John Makhoul, Richard M. Schwartz, Vladimir Vapnik:
What Size Test Set Gives Good Error Rate Estimates?. IEEE Trans. Pattern Anal. Mach. Intell. 20(1): 52-64 (1998) - [c24]Alexander Gammerman, Volodya Vovk, Vladimir Vapnik:
Learning by Transduction. UAI 1998: 148-155 - 1997
- [j6]Bernhard Schölkopf, Kah Kay Sung, Christopher J. C. Burges, Federico Girosi, Partha Niyogi, Tomaso A. Poggio, Vladimir Vapnik:
Comparing support vector machines with Gaussian kernels to radial basis function classifiers. IEEE Trans. Signal Process. 45(11): 2758-2765 (1997) - [c23]Vladimir Vapnik:
The Support Vector Method. ICANN 1997: 263-271 - [c22]Klaus-Robert Müller, Alexander J. Smola, Gunnar Rätsch, Bernhard Schölkopf, Jens Kohlmorgen, Vladimir Vapnik:
Predicting Time Series with Support Vector Machines. ICANN 1997: 999-1004 - [c21]Bernhard Schölkopf, Patrice Y. Simard, Alexander J. Smola, Vladimir Vapnik:
Prior Knowledge in Support Vector Kernels. NIPS 1997: 640-646 - 1996
- [c20]Bernhard Schölkopf, Chris Burges, Vladimir Vapnik:
Incorporating Invariances in Support Vector Learning Machines. ICANN 1996: 47-52 - [c19]Volker Blanz, Bernhard Schölkopf, Heinrich H. Bülthoff, Chris Burges, Vladimir Vapnik, Thomas Vetter:
Comparison of View-Based Object Recognition Algorithms Using Realistic 3D Models. ICANN 1996: 251-256 - [c18]Vladimir Vapnik:
Statistical Theory of Generalization (Abstract). ICML 1996: 557 - [c17]Harris Drucker, Christopher J. C. Burges, Linda Kaufman, Alexander J. Smola, Vladimir Vapnik:
Support Vector Regression Machines. NIPS 1996: 155-161 - [c16]Vladimir Vapnik, Steven E. Golowich, Alexander J. Smola:
Support Vector Method for Function Approximation, Regression Estimation and Signal Processing. NIPS 1996: 281-287 - [p1]Isabelle Guyon, Nada Matic, Vladimir Vapnik:
Discovering Informative Patterns and Data Cleaning. Advances in Knowledge Discovery and Data Mining 1996: 181-203 - 1995
- [j5]Corinna Cortes, Vladimir Vapnik:
Support-Vector Networks. Mach. Learn. 20(3): 273-297 (1995) - [c15]Vladimir Vapnik:
Estimation of dependencies based on small number of observations. CIFEr 1995: 41 - [c14]Corinna Cortes, Harris Drucker, Dennis Hoover, Vladimir Vapnik:
Capacity and Complexity Control in Predicting the Spread Between Borrowing and Lending Interest Rates. KDD 1995: 51-56 - [c13]Bernhard Schölkopf, Chris Burges, Vladimir Vapnik:
Extracting Support Data for a Given Task. KDD 1995: 252-257 - 1994
- [j4]Vladimir Vapnik, Esther Levin, Yann LeCun:
Measuring the VC-Dimension of a Learning Machine. Neural Comput. 6(5): 851-876 (1994) - [j3]Harris Drucker, Corinna Cortes, Lawrence D. Jackel, Yann LeCun, Vladimir Vapnik:
Boosting and Other Ensemble Methods. Neural Comput. 6(6): 1289-1301 (1994) - [c12]Harris Drucker, Corinna Cortes, Lawrence D. Jackel, Yann LeCun, Vladimir Vapnik:
Boosting and Other Machine Learning Algorithms. ICML 1994: 53-61 - [c11]Léon Bottou, Corinna Cortes, John S. Denker, Harris Drucker, Isabelle Guyon, Larry D. Jackel, Yann LeCun, Urs A. Müller, Eduard Säckinger, Patrice Y. Simard, Vladimir Vapnik:
Comparison of classifier methods: a case study in handwritten digit recognition. ICPR (2) 1994: 77-82 - [c10]Isabelle Guyon, Nada Matic, Vladimir Vapnik:
Discovering Informative Patterns and Data Cleaning. KDD Workshop 1994: 145-156 - 1993
- [j2]Vladimir Vapnik, Léon Bottou:
Local Algorithms for Pattern Recognition and Dependencies Estimation. Neural Comput. 5(6): 893-909 (1993) - [c9]Nada Matic, Isabelle Guyon, John S. Denker, Vladimir Vapnik:
Writer-adaptation for on-line handwritten character recognition. ICDAR 1993: 187-191 - [c8]Corinna Cortes, Lawrence D. Jackel, Sara A. Solla, Vladimir Vapnik, John S. Denker:
Learning Curves: Asymptotic Values and Rate of Convergence. NIPS 1993: 327-334 - 1992
- [j1]Léon Bottou, Vladimir Vapnik:
Local Learning Algorithms. Neural Comput. 4(6): 888-900 (1992) - [c7]Bernhard E. Boser, Isabelle Guyon, Vladimir Vapnik:
A Training Algorithm for Optimal Margin Classifiers. COLT 1992: 144-152 - [c6]Nada Matic, Isabelle Guyon, Léon Bottou, John S. Denker, Vladimir Vapnik:
Computer aided cleaning of large databases for character recognition. ICPR (2) 1992: 330-333 - [c5]Isabelle Guyon, Vladimir Vapnik, Bernhard E. Boser, Léon Bottou, Sara A. Solla:
Capacity control in linear classifiers for pattern recognition. ICPR (2) 1992: 385-388 - [c4]Isabelle Guyon, Bernhard E. Boser, Vladimir Vapnik:
Automatic Capacity Tuning of Very Large VC-Dimension Classifiers. NIPS 1992: 147-155 - 1991
- [c3]Isabelle Guyon, Vladimir Vapnik, Bernhard E. Boser, Léon Bottou, Sara A. Solla:
Structural Risk Minimization for Character Recognition. NIPS 1991: 471-479 - [c2]Vladimir Vapnik:
Principles of Risk Minimization for Learning Theory. NIPS 1991: 831-838
1980 – 1989
- 1989
- [c1]Vladimir Vapnik:
Inductive Principles of the Search for Empirical Dependences (Methods Based on Weak Convergence of Probability Measures). COLT 1989: 3-21
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-09-13 01:40 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint