


Остановите войну!
for scientists:


default search action
Manish Parashar
Person information

- affiliation: Rutgers University
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [j154]Zhe Wang
, Matthieu Dorier, Pradeep Subedi, Philip E. Davis, Manish Parashar:
Adaptive elasticity policies for staging-based in situ visualization. Future Gener. Comput. Syst. 142: 75-89 (2023) - [j153]Manish Parashar
:
Editorial. IEEE Trans. Parallel Distributed Syst. 34(2): 429-430 (2023) - 2022
- [j152]Manish Parashar, Amy Friedlander, Erwin P. Gianchandani, Margaret Martonosi:
Transforming science through cyberinfrastructure. Commun. ACM 65(8): 30-32 (2022) - [j151]Manish Parashar:
Advancing Reproducibility in Parallel and Distributed Systems Research. Computer 55(5): 4-5 (2022) - [j150]Manish Parashar, Michael A. Heroux, Victoria Stodden:
Research Reproducibility. Computer 55(8): 16-18 (2022) - [j149]Manish Parashar:
Democratizing Science Through Advanced Cyberinfrastructure. Computer 55(9): 79-84 (2022) - [j148]Charlie Catlett
, Pete Beckman, Nicola J. Ferrier
, Michael E. Papka
, Rajesh Sankaran, Jeff Solin
, Valerie E. Taylor, Douglas Pancoast, Daniel A. Reed
, Manish Parashar, David Abramson:
Hands-On Computer Science: The Array of Things Experimental Urban Instrument. Comput. Sci. Eng. 24(1): 57-63 (2022) - [j147]James M. Brase, Nancy Campbell, Barbara Helland, Thuc Hoang, Manish Parashar, Michael Rosenfield
, James C. Sexton, John Towns
, Kathryn Mohror, John M. Shalf:
The COVID-19 High-Performance Computing Consortium. Comput. Sci. Eng. 24(1): 78-85 (2022) - [j146]Yubo Qin, Ivan Rodero
, Manish Parashar
:
Toward Democratizing Access to Facilities Data: A Framework for Intelligent Data Discovery and Delivery. Comput. Sci. Eng. 24(3): 52-60 (2022) - [j145]Manish Parashar
:
Jack Dongarra: Catalyzing the Transformation of High-Performance Computing. Comput. Sci. Eng. 24(4): 4-5 (2022) - [j144]Manish Parashar
, David Abramson
:
Accidental Translationists: A Perspective From the Trenches. Comput. Sci. Eng. 24(4): 70-75 (2022) - [j143]Eric Suchyta
, Scott Klasky, Norbert Podhorszki, Matthew Wolf, Abolaji D. Adesoji, Choong-Seock Chang, Jong Choi, Philip E. Davis, Julien Dominski, Stéphane Ethier, Ian T. Foster
, Kai Germaschewski, Berk Geveci, Chris Harris, Kevin A. Huck
, Qing Liu, Jeremy Logan
, Kshitij Mehta, Gabriele Merlo, Shirley V. Moore, Todd S. Munson, Manish Parashar, David Pugmire, Mark S. Shephard
, Cameron W. Smith
, Pradeep Subedi, Lipeng Wan, Ruonan Wang, Shuangxi Zhang:
The Exascale Framework for High Fidelity coupled Simulations (EFFIS): Enabling whole device modeling in fusion science. Int. J. High Perform. Comput. Appl. 36(1): 106-128 (2022) - [j142]Muhammad K. Ali
, Ashiq Anjum
, Omer F. Rana
, Ali Reza Zamani, Daniel Balouek-Thomert
, Manish Parashar
:
RES: Real-Time Video Stream Analytics Using Edge Enhanced Clouds. IEEE Trans. Cloud Comput. 10(2): 792-804 (2022) - [j141]Manish Parashar
:
EiC Editorial - Advancing Reproducibility in Parallel and Distributed Systems Research. IEEE Trans. Parallel Distributed Syst. 33(9): 2010 (2022) - [j140]Moustafa AbdelBaky
, Manish Parashar
:
A General Performance and QoS Model for Distributed Software-Defined Environments. IEEE Trans. Serv. Comput. 15(1): 228-240 (2022) - [c240]Bo Zhang, Pradeep Subedi, Philip E. Davis, Francesco Rizzi, Keita Teranishi, Manish Parashar:
Assembling Portable In-Situ Workflow from Heterogeneous Components using Data Reorganization. CCGRID 2022: 41-50 - [c239]Manish Parashar:
Data-Management for Extreme Science: Experiences in Translational Computer Science Research. HPDC 2022: 3 - [c238]Matthieu Dorier, Zhe Wang, Utkarsh Ayachit, Shane Snyder, Robert B. Ross, Manish Parashar:
Colza: Enabling Elastic In Situ Visualization for High-performance Computing Simulations. IPDPS 2022: 538-548 - [c237]Zhe Wang, Matthieu Dorier, Manish Parashar:
Research Perspectives Toward Autonomic Optimization of In Situ Analysis and Visualization. ISAV@SC 2022: 7-13 - [c236]Moustafa AbdelBaky, Manish Parashar:
A General Performance and QoS Model for Distributed Software-Defined Environments. SERVICES 2022: 28 - 2021
- [j139]Manish Parashar
:
Enabling Reproducible Research in Parallel and Distributed Systems. Computer 54(7): 4-5 (2021) - [j138]Manish Parashar, David Abramson:
Translational Computer Science for Science and Engineering. Comput. Sci. Eng. 23(5): 5-6 (2021) - [j137]Yubo Qin, Ivan Rodero, Anthony Simonet, Charles Meertens, Daniel Reiner, James Riley, Manish Parashar:
Leveraging user access patterns and advanced cyberinfrastructure to accelerate data delivery from shared-use scientific observatories. Future Gener. Comput. Syst. 122: 14-27 (2021) - [j136]Ian T. Foster
, Mark Ainsworth, Julie Bessac, Franck Cappello, Jong Choi, Sheng Di, Zichao Wendy Di, Ali Murat Gok, Hanqi Guo
, Kevin A. Huck
, Christopher Kelly, Scott Klasky, Kerstin Kleese van Dam
, Xin Liang, Kshitij Mehta, Manish Parashar, Tom Peterka, Line Pouchard, Tong Shu, Ozan Tugluk
, Hubertus Van Dam
, Lipeng Wan, Matthew Wolf, Justin M. Wozniak, Wei Xu, Igor Yakushin, Shinjae Yoo
, Todd S. Munson:
Online data analysis and reduction: An important Co-design motif for extreme-scale computers. Int. J. High Perform. Comput. Appl. 35(6): 617-635 (2021) - [j135]Ioan Petri
, Omer F. Rana
, Luiz F. Bittencourt, Daniel Balouek-Thomert
, Manish Parashar
:
Autonomics at the Edge: Resource Orchestration for Edge Native Applications. IEEE Internet Comput. 25(4): 21-29 (2021) - [j134]David Abramson, Manish Parashar, Peter W. Arzberger:
Translation computer science - Overview of the special issue. J. Comput. Sci. 52: 101227 (2021) - [j133]Manish Parashar:
Editor's Note. IEEE Trans. Parallel Distributed Syst. 32(4): 743-745 (2021) - [j132]Manish Parashar
:
Editor's Note. IEEE Trans. Parallel Distributed Syst. 32(10): 2381-2385 (2021) - [j131]Manish Parashar
:
Guest Editorial: Special Section on SC19 Student Cluster Competition. IEEE Trans. Parallel Distributed Syst. 32(11): 2606 (2021) - [c235]Pradeep Subedi, Philip E. Davis, Manish Parashar:
RISE: Reducing I/O Contention in Staging-based Extreme-Scale In-situ Workflows. CLUSTER 2021: 146-156 - [c234]Zhe Wang, Pradeep Subedi, Matthieu Dorier, Philip E. Davis, Manish Parashar:
Adaptive Placement of Data Analysis Tasks For Staging Based In-Situ Processing. HiPC 2021: 242-251 - [c233]Daniel Balouek-Thomert, Manish Parashar:
Platforms for Edge Computing and Internet of Things applications: A survey. IC3 2021: 140-149 - [c232]Yubo Qin, Ivan Rodero, Manish Parashar:
Facilitating Data Discovery for Large-scale Science Facilities using Knowledge Networks. IPDPS 2021: 651-660 - [c231]Zhe Wang, Pradeep Subedi, Matthieu Dorier, Philip E. Davis, Manish Parashar:
Facilitating Staging-based Unstructured Mesh Processing to Support Hybrid In-Situ Workflows. IPDPS Workshops 2021: 960-964 - [c230]Zeina Houmani, Daniel Balouek-Thomert, Eddy Caron, Manish Parashar:
Enabling microservices management for Deep Learning applications across the Edge-Cloud Continuum. SBAC-PAD 2021: 137-146 - [c229]Daniel Balouek-Thomert, Ivan Rodero, Manish Parashar:
Evaluating policy-driven adaptation on the Edge-to-Cloud Continuum. UrgentHPC@SC 2021: 11-20 - [c228]Daniel Balouek-Thomert, Pedro Silva, Kevin Fauvel, Alexandru Costan, Gabriel Antoniu, Manish Parashar:
MDSC: modelling distributed stream processing across the edge-to-cloud continuum. UCC Companion 2021: 25:1-25:6 - [c227]Zhe Wang, Matthieu Dorier, Pradeep Subedi, Philip E. Davis, Manish Parashar:
An Adaptive Elasticity Policy For Staging Based In-Situ Processing. WORKS 2021: 33-41 - [i14]Azita Nouri, Philip E. Davis, Pradeep Subedi, Manish Parashar:
Scalable Graph Embedding LearningOn A Single GPU. CoRR abs/2110.06991 (2021) - [i13]Azita Nouri, Philip E. Davis, Pradeep Subedi, Manish Parashar:
Exploring the Role of Machine Learning in Scientific Workflows: Opportunities and Challenges. CoRR abs/2110.13999 (2021) - [i12]Yubo Qin, Ivan Rodero, Manish Parashar:
Toward Democratizing Access to Facilities Data: A Framework for Intelligent Data Discovery and Delivery. CoRR abs/2112.06479 (2021) - 2020
- [j130]Manish Parashar
:
Parallel and Distributed Systems. Computer 53(11): 7-8 (2020) - [j129]Ali Reza Zamani, Moustafa AbdelBaky, Daniel Balouek-Thomert, Juan J. Villalobos, Ivan Rodero
, Manish Parashar:
Submarine: A subscription-based data streaming framework for integrating large facilities and advanced cyberinfrastructure. Concurr. Comput. Pract. Exp. 32(16) (2020) - [j128]Manish Parashar
, Anthony Simonet
, Ivan Rodero
, Forough Ghahramani, Grace Agnew, Ron Jantz, Vasant G. Honavar
:
The Virtual Data Collaboratory: A Regional Cyberinfrastructure for Collaborative Data-Driven Research. Comput. Sci. Eng. 22(3): 79-92 (2020) - [j127]Ivan Rodero
, Manish Parashar:
Data Cyberinfrastructure for End-to-End Science. Comput. Sci. Eng. 22(5): 60-71 (2020) - [j126]Ali Reza Zamani, Daniel Balouek-Thomert, Juan J. Villalobos, Ivan Rodero
, Manish Parashar:
An edge-aware autonomic runtime for data streaming and in-transit processing. Future Gener. Comput. Syst. 110: 107-118 (2020) - [j125]Hank Childs, Sean Ahern, James P. Ahrens, Andrew C. Bauer, Janine Bennett, E. Wes Bethel, Peer-Timo Bremer, Eric Brugger, Joseph Cottam, Matthieu Dorier, Soumya Dutta
, Jean M. Favre, Thomas Fogal, Steffen Frey
, Christoph Garth, Berk Geveci, William F. Godoy
, Charles D. Hansen, Cyrus Harrison, Bernd Hentschel, Joseph A. Insley, Christopher R. Johnson, Scott Klasky, Aaron Knoll, James Kress, Matthew Larsen, Jay F. Lofstead, Kwan-Liu Ma, Preeti Malakar, Jeremy S. Meredith
, Kenneth Moreland, Paul A. Navrátil, Patrick O'Leary, Manish Parashar, Valerio Pascucci, John Patchett, Tom Peterka, Steve Petruzza, Norbert Podhorszki, David Pugmire, Michel E. Rasquin
, Silvio Rizzi, David H. Rogers, Sudhanshu Sane
, Franz Sauer, Robert Sisneros, Han-Wei Shen, Will Usher, Rhonda Vickery, Venkatram Vishwanath, Ingo Wald, Ruonan Wang, Gunther H. Weber
, Brad Whitlock, Matthew Wolf, Hongfeng Yu, Sean B. Ziegeler:
A terminology for in situ visualization and analysis systems. Int. J. High Perform. Comput. Appl. 34(6) (2020) - [j124]Tong Jin, Fan Zhang, Qian Sun, Melissa Romanus, Hoang Bui, Manish Parashar:
Towards autonomic data management for staging-based coupled scientific workflows. J. Parallel Distributed Comput. 146: 35-51 (2020) - [j123]Daniel Balouek-Thomert, Ivan Rodero
, Manish Parashar:
Harnessing the Computing Continuum for Urgent Science. SIGMETRICS Perform. Evaluation Rev. 48(2): 41-46 (2020) - [d1]William F. Godoy
, Norbert Podhorszki, Ruonan Wang, Chuck Atkins, Greg Eisenhauer, Junmin Gu, Philip E. Davis, Jong Choi, Kai Germaschewski, Kevin A. Huck
, Axel Huebl
, Mark Kim, James Kress, Tahsin M. Kurç, Qing Liu, Jeremy Logan
, Kshitij Mehta, George Ostrouchov, Manish Parashar, Franz Poeschel, David Pugmire, Eric Suchyta, Keichi Takahashi
, Nick Thompson, Seiji Tsutsumi, Lipeng Wan, Matthew Wolf, Kesheng Wu
, Scott Klasky:
ADIOS 2: The Adaptable Input Output System. A framework for high-performance data management. SoftwareX 12: 100561 (2020) - [j122]Shiyan Hu
, Xin Li, Haibo He, Shuguang Cui, Manish Parashar:
Big Data for Cyber-Physical Systems. IEEE Trans. Big Data 6(4): 606-608 (2020) - [j121]Ching-Hsien Hsu, Manish Parashar, Omer F. Rana
:
Guest Editorial: Special Section on Advances of Utility and Cloud Computing Technologies and Services. IEEE Trans. Cloud Comput. 8(4): 972-974 (2020) - [j120]Shaohua Duan, Pradeep Subedi, Philip E. Davis, Keita Teranishi, Hemanth Kolla, Marc Gamell, Manish Parashar:
CoREC: Scalable and Resilient In-memory Data Staging for In-situ Workflows. ACM Trans. Parallel Comput. 7(2): 12:1-12:29 (2020) - [j119]Manish Parashar
:
Editor's Note. IEEE Trans. Parallel Distributed Syst. 31(2): 251-252 (2020) - [j118]Ali Reza Zamani, Mengsong Zou, Javier Diaz Montes
, Ioan Petri
, Omer F. Rana
, Ashiq Anjum
, Manish Parashar
:
Deadline Constrained Video Analysis via In-Transit Computational Environments. IEEE Trans. Serv. Comput. 13(1): 59-72 (2020) - [c226]Kevin Fauvel, Daniel Balouek-Thomert, Diego Melgar, Pedro Silva, Anthony Simonet, Gabriel Antoniu, Alexandru Costan, Véronique Masson, Manish Parashar, Ivan Rodero, Alexandre Termier:
A Distributed Multi-Sensor Machine Learning Approach to Earthquake Early Warning. AAAI 2020: 403-411 - [c225]Zeina Houmani, Daniel Balouek-Thomert, Eddy Caron, Manish Parashar:
Enhancing microservices architectures using data-driven service discovery and QoS guarantees. CCGRID 2020: 290-299 - [c224]Issam Raïs
, Otto J. Anshus, John Markus Bjørndalen, Daniel Balouek-Thomert, Manish Parashar:
Trading Data Size and CNN Confidence Score for Energy Efficient CPS Node Communications. CCGRID 2020: 469-478 - [c223]Zhe Wang, Pradeep Subedi, Matthieu Dorier, Philip E. Davis, Manish Parashar:
Staging Based Task Execution for Data-driven, In-Situ Scientific Workflows. CLUSTER 2020: 209-220 - [c222]Shaohua Duan, Manish Parashar:
Scalable Crash Consistency for Staging-based In-situ Scientific Workflows. IPDPS Workshops 2020: 340-348 - [c221]Shaleen Garg, Sudarsun Kannan, Manish Parashar:
The Need for Precise and Efficient Memory Capacity Budgeting. MEMSYS 2020: 169-177 - [c220]Philip E. Davis, Pradeep Subedi, Shaohua Duan, Lee F. Ricketson, Jeffrey A. F. Hittinger, Manish Parashar:
Benesh: a Programming Model for Coupled Scientific Workflows. ESPM2@SC 2020: 1-9 - [e25]Manish Parashar, Vladimir Vlassov, David E. Irwin, Kathryn Mohror:
HPDC '20: The 29th International Symposium on High-Performance Parallel and Distributed Computing, Stockholm, Sweden, June 23-26, 2020. ACM 2020, ISBN 978-1-4503-7052-3 [contents] - [i11]Zhe Wang, Pradeep Subedi, Shaohua Duan, Yubo Qin, Philip E. Davis, Anthony Simonet, Ivan Rodero, Manish Parashar:
Exploring Trade-offs in Dynamic Task Triggering for Loosely Coupled Scientific Workflows. CoRR abs/2004.10381 (2020) - [i10]Yubo Qin, Ivan Rodero, Anthony Simonet, Charles Meertens, Daniel Reiner, James Riley
, Manish Parashar:
Leveraging User Access Patterns and Advanced Cyberinfrastructure to Accelerate Data Delivery from Shared-use Scientific Observatories. CoRR abs/2012.15321 (2020)
2010 – 2019
- 2019
- [j117]David Abramson
, Manish Parashar:
Translational Research in Computer Science. Computer 52(9): 16-23 (2019) - [j116]Manish Parashar:
The Reproducibility Initiative. Computer 52(11): 7-8 (2019) - [j115]Daniel Balouek-Thomert
, Eduard Gibert Renart, Ali Reza Zamani, Anthony Simonet, Manish Parashar:
Towards a computing continuum: Enabling edge-to-cloud integration for data-driven workflows. Int. J. High Perform. Comput. Appl. 33(6) (2019) - [j114]Edward Chuah
, Arshad Jhumka, Samantha Alt, Daniel Balouek-Thomert, James C. Browne, Manish Parashar:
Towards comprehensive dependability-driven resource use and message log-analysis for HPC systems diagnosis. J. Parallel Distributed Comput. 132: 95-112 (2019) - [j113]Manish Parashar
:
Editor's Note. IEEE Trans. Parallel Distributed Syst. 30(1): 1 (2019) - [j112]Manish Parashar
:
Editor's Note. IEEE Trans. Parallel Distributed Syst. 30(8): 1687-1689 (2019) - [j111]Manish Parashar
:
Editor's Note: IEEE Transactions on Parallel and Distributed Systems (TPDS) Reproducibility Initiative, June 2019. IEEE Trans. Parallel Distributed Syst. 30(8): 1690 (2019) - [c219]Xuan Hu, Jie Gong, Eduard Gibert Renart, Manish Parashar:
Two-Stage Framework for Big Spatial Data Analytics to Support Disaster Response. IEEE BigData 2019: 5409-5418 - [c218]Shouwei Chen, Wensheng Wang, Xueyang Wu, Zhen Fan, Kunwu Huang, Peiyu Zhuang, Yue Li, Ivan Rodero
, Manish Parashar, Dennis Z. Weng:
Optimizing Performance and Computing Resource Management of In-memory Big Data Analytics with Disaggregated Persistent Memory. CCGRID 2019: 21-30 - [c217]Eduard Gibert Renart, Alexandre Da Silva Veith
, Daniel Balouek-Thomert, Marcos Dias de Assunção, Laurent Lefèvre, Manish Parashar:
Distributed Operator Placement for IoT Data Analytics Across Edge and Cloud Resources. CCGRID 2019: 459-468 - [c216]Pradeep Subedi, Philip E. Davis, Manish Parashar:
Leveraging Machine Learning for Anticipatory Data Delivery in Extreme Scale In-situ Workflows. CLUSTER 2019: 1-11 - [c215]Yubo Qin, Anthony Simonet, Philip E. Davis, Azita Nouri, Zhe Wang, Manish Parashar, Ivan Rodero
:
Towards a Smart, Internet-Scale Cache Service for Data Intensive Scientific Applications. ScienceCloud@HPDC 2019: 11-18 - [c214]Issam Raïs
, Daniel Balouek-Thomert, Anne-Cécile Orgerie, Laurent Lefèvre, Manish Parashar:
Leveraging energy-efficient non-lossy compression for data-intensive applications. HPCS 2019: 463-469 - [c213]Eduard Gibert Renart, Daniel Balouek-Thomert, Manish Parashar:
An Edge-Based Framework for Enabling Data-Driven Pipelines for IoT Systems. IPDPS Workshops 2019: 885-894 - [c212]Edward Chuah
, Arshad Jhumka, Samantha Alt, Juan J. Villalobos, Joshua Fryman, William Barth, Manish Parashar:
Using Resource Use Data and System Logs for HPC System Error Propagation and Recovery Diagnosis. ISPA/BDCloud/SocialCom/SustainCom 2019: 458-467 - [c211]Shaohua Duan, Pradeep Subedi, Philip E. Davis, Manish Parashar:
Addressing data resiliency for staging based scientific workflows. SC 2019: 87:1-87:22 - [i9]Eduard Gibert Renart, Daniel Balouek-Thomert, Manish Parashar:
Challenges in designing edge-based middlewares for the Internet of Things: A survey. CoRR abs/1912.06567 (2019) - 2018
- [j110]Ali Reza Zamani, Mengsong Zou, Javier Diaz Montes, Ioan Petri
, Omer F. Rana
, Manish Parashar:
A computational model to support in-network data analysis in federated ecosystems. Future Gener. Comput. Syst. 80: 342-354 (2018) - [j109]Yunbo Li, Anne-Cécile Orgerie
, Ivan Rodero
, Betsegaw Lemma Amersho, Manish Parashar, Jean-Marc Menaud:
End-to-end energy models for Edge Cloud-based IoT platforms: Application to data stream analysis in IoT. Future Gener. Comput. Syst. 87: 667-678 (2018) - [j108]Moustafa AbdelBaky, Javier Diaz Montes, Manish Parashar:
Software-defined environments for science and engineering. Int. J. High Perform. Comput. Appl. 32(1): 104-122 (2018) - [j107]Ewa Deelman, Tom Peterka, Ilkay Altintas, Christopher D. Carothers, Kerstin Kleese van Dam
, Kenneth Moreland, Manish Parashar, Lavanya Ramakrishnan, Michela Taufer
, Jeffrey S. Vetter:
The future of scientific workflows. Int. J. High Perform. Comput. Appl. 32(1): 159-175 (2018) - [j106]Manish Parashar, Franco Zambonelli:
Farewell Editorial. ACM Trans. Auton. Adapt. Syst. 12(4): 17:1-17:2 (2018) - [j105]Javier Diaz Montes, Manuel Diaz-Granados, Mengsong Zou, Shu Tao, Manish Parashar
:
Supporting Data-Intensive Workflows in Software-Defined Federated Multi-Clouds. IEEE Trans. Cloud Comput. 6(1): 250-263 (2018) - [j104]Manish Parashar
:
State of the Journal. IEEE Trans. Parallel Distributed Syst. 29(1): 1 (2018) - [c210]Jong Youl Choi, Choong-Seock Chang
, Julien Dominski
, Scott Klasky, Gabriele Merlo, Eric Suchyta, Mark Ainsworth, Bryce Allen, Franck Cappello, Michael Churchill, Philip E. Davis, Sheng Di, Greg Eisenhauer, Stéphane Ethier, Ian T. Foster, Berk Geveci, Hanqi Guo
, Kevin A. Huck
, Frank Jenko, Mark Kim, James Kress, Seung-Hoe Ku, Qing Liu, Jeremy Logan
, Allen D. Malony, Kshitij Mehta, Kenneth Moreland, Todd S. Munson, Manish Parashar, Tom Peterka, Norbert Podhorszki, Dave Pugmire, Ozan Tugluk
, Ruonan Wang, Ben Whitney, Matthew Wolf, Chad Wood:
Coupling Exascale Multiphysics Applications: Methods and Lessons Learned. eScience 2018: 442-452 - [c209]Manish Parashar:
Data Management, In-Situ Workflows and Extreme Scales. ROSS@HPDC 2018: 1:1 - [c208]Scott Klasky, Matthew Wolf
, Mark Ainsworth, Chuck Atkins, Jong Choi, Greg Eisenhauer, Berk Geveci, William F. Godoy
, Mark Kim, James Kress, Tahsin M. Kurç, Qing Liu, Jeremy Logan
, Arthur B. Maccabe
, Kshitij Mehta, George Ostrouchov, Manish Parashar, Norbert Podhorszki, David Pugmire, Eric Suchyta, Lipeng Wan, Ruonan Wang:
A View from ORNL: Scientific Data Research Opportunities in the Big Data Age. ICDCS 2018: 1357-1368 - [c207]Muhammad K. Ali, Ashiq Anjum
, Muhammad Usman Yaseen
, Ali Reza Zamani, Daniel Balouek-Thomert, Omer F. Rana
, Manish Parashar:
Edge Enhanced Deep Learning System for Large-Scale Video Stream Analytics. ICFEC 2018: 1-10 - [c206]Manish Parashar:
HCW 2018 Keynote Talk 1. IPDPS Workshops 2018: 5 - [c205]Shaohua Duan, Pradeep Subedi, Keita Teranishi, Philip E. Davis, Hemanth Kolla, Marc Gamell, Manish Parashar:
Scalable Data Resilience for In-memory Data Staging. IPDPS 2018: 105-115 - [c204]Shadi Ibrahim, Manish Parashar, Anna Queralt
, Domenico Talia:
Introduction to CEBDA 2018. IPDPS Workshops 2018: 1204 - [c203]Yubo Qin, Ivan Rodero
, Pradeep Subedi, Manish Parashar, Sandro Rigo:
Exploring Power Budget Scheduling Opportunities and Tradeoffs for AMR-Based Applications. SBAC-PAD 2018: 57-64 - [c202]Ali Reza Zamani, Daniel Balouek-Thomert, Juan J. Villalobos, Ivan Rodero
, Manish Parashar:
Runtime Management of Data Quality for Scientific Observatories Using Edge and In-Transit Resources. SBAC-PAD 2018: 274-281 - [c201]Pradeep Subedi, Philip E. Davis, Shaohua Duan, Scott Klasky, Hemanth Kolla, Manish Parashar:
Stacker: an autonomic data movement engine for extreme-scale data staging-based in-situ workflows. SC 2018: 73:1-73:11 - [c200]Ioan Petri
, Ali Reza Zamani, Daniel Balouek-Thomert, Omer F. Rana
, Yacine Rezgui
, Manish Parashar:
Ensemble-Based Network Edge Processing. UCC 2018: 133-142 - [i8]Pradeep Subedi, Philip E. Davis, Juan J. Villalobos, Ivan Rodero, Manish Parashar:
Using Intel Optane Devices for In-situ Data Staging in HPC Workflows. CoRR abs/1807.09651 (2018) - [i7]Eduard Gibert Renart, Daniel Balouek-Thomert, Manish Parashar:
Edge Based Data-Driven Pipelines (Technical Report). CoRR abs/1808.01353 (2018) - 2017
- [j103]Luiz F. Bittencourt, Javier Diaz Montes, Rajkumar Buyya, Omer F. Rana
, Manish Parashar:
Mobility-Aware Application Scheduling in Fog Computing. IEEE Cloud Comput. 4(2): 26-35 (2017) - [j102]Rafael Tolosana-Calasanz
, Javier Diaz Montes, Omer F. Rana
, Manish Parashar, Erotokritos Xydas, Charalampos E. Marmaras, Panagiotis Papadopoulos
, Liana Cipcigan:
Computational resource management for data-driven applications with deadline constraints. Concurr. Comput. Pract. Exp. 29(8) (2017) - [j101]Fan Zhang
, Tong Jin, Qian Sun, Melissa Romanus, Hoang Bui, Scott Klasky, Manish Parashar:
In-memory staging and data-centric task placement for coupled scientific simulation workflows. Concurr. Comput. Pract. Exp. 29(12) (2017) - [j100]Marc Gamell, Keita Teranishi, Hemanth Kolla, Jackson R. Mayo, Michael A. Heroux, Jacqueline Chen, Manish Parashar:
Scalable Failure Masking for Stencil Computations using Ghost Region Expansion and Cell to Rank Remapping. SIAM J. Sci. Comput. 39(5) (2017) - [j99]Rafael Tolosana-Calasanz
, Javier Diaz Montes, Omer F. Rana
, Manish Parashar:
Feedback-Control & Queueing Theory-Based Resource Management for Streaming Applications. IEEE Trans. Parallel Distributed Syst. 28(4): 1061-1075 (2017) - [j98]Marc Gamell, Keita Teranishi, Jackson R. Mayo, Hemanth Kolla, Michael A. Heroux, Jacqueline Chen, Manish Parashar:
Modeling and Simulating Multiple Failure Masking Enabled by Local Recovery for Stencil-Based Applications at Extreme Scales. IEEE Trans. Parallel Distributed Syst. 28(10): 2881-2895 (2017) - [j97]