default search action
Kazumi Saito
Person information
- affiliation: University of Shizuoka, Japan
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
Journal Articles
- 2023
- [j41]Yuki Yamagishi, Kazumi Saito, Kazuro Hirahara, Naonori Ueda:
Centrality measure and visualization technique for multiple-parent nodes of earthquakes based on correlation-metric. Appl. Netw. Sci. 8(1): 14 (2023) - [j40]Takayasu Fushimi, Kazumi Saito, Hiroshi Motoda:
Constructing outlier-free histograms with variable bin-width based on distance minimization. Intell. Data Anal. 27(1): 5-29 (2023) - 2022
- [j39]Takayasu Fushimi, Kazumi Saito, Hiroshi Motoda:
Efficient computation of expected motif frequency in uncertain graphs by exploiting possible world marginalization and motif transition. Soc. Netw. Anal. Min. 12(1): 126 (2022) - 2021
- [j38]Yuki Yamagishi, Kazumi Saito, Kazuro Hirahara, Naonori Ueda:
Spatio-temporal clustering of earthquakes based on distribution of magnitudes. Appl. Netw. Sci. 6(1): 71 (2021) - [j37]Kazumi Saito, Takayasu Fushimi, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
Efficient computation of target-oriented link criticalness centrality in uncertain graphs. Intell. Data Anal. 25(5): 1323-1343 (2021) - [j36]Kazuo Aoyama, Kazumi Saito, Tetsuo Ikeda:
CPI-model-based analysis of sparse k-means clustering algorithms. Int. J. Data Sci. Anal. 12(3): 229-248 (2021) - [j35]Takayasu Fushimi, Kazumi Saito, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
General framework of opening and closing shops over a spatial network based on stochastic utility under competitive and time-bounded environment. Soc. Netw. Anal. Min. 11(1): 70 (2021) - 2020
- [j34]Takayasu Fushimi, Seiya Okubo, Kazumi Saito:
Multiple perspective centrality measures based on facility location problem under inter-group competitive environment. Appl. Netw. Sci. 5(1): 80 (2020) - [j33]Kouzou Ohara, Kazumi Saito, Masahiro Kimura, Hiroshi Motoda:
Resampling-based predictive simulation framework of stochastic diffusion model for identifying top-K influential nodes. Int. J. Data Sci. Anal. 9(2): 175-195 (2020) - 2019
- [j32]Takayasu Fushimi, Kazumi Saito, Tetsuo Ikeda, Kazuhiro Kazama:
Estimating node connectedness in spatial network under stochastic link disconnection based on efficient sampling. Appl. Netw. Sci. 4(1): 66:1-66:24 (2019) - [j31]Kouzou Ohara, Kazumi Saito, Masahiro Kimura, Hiroshi Motoda:
Critical Node Identification based on Articulation Point Detection for Uncertain Network. Int. J. Netw. Comput. 9(2): 201-216 (2019) - 2018
- [j30]Takayasu Fushimi, Kazumi Saito, Tetsuo Ikeda, Kazuhiro Kazama:
Improving approximate extraction of functional similar regions from large-scale spatial networks based on greedy selection of representative nodes of different areas. Appl. Netw. Sci. 3(1): 18:1-18:14 (2018) - [j29]Kazumi Saito, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
Which is more influential, "Who" or "When" for a user to rate in online review site? Intell. Data Anal. 22(3): 639-657 (2018) - [j28]Yuki Yamagishi, Kazuo Aoyama, Kazumi Saito, Tetsuo Ikeda:
Pivot Generation Algorithm with a Complete Binary Tree for Efficient Exact Similarity Search. IEICE Trans. Inf. Syst. 101-D(1): 142-151 (2018) - [j27]Kazuo Aoyama, Kazumi Saito, Tetsuo Ikeda:
Accelerating a Lloyd-Type k-Means Clustering Algorithm with Summable Lower Bounds in a Lower-Dimensional Space. IEICE Trans. Inf. Syst. 101-D(11): 2773-2783 (2018) - [j26]Kazumi Saito, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
Accurate and efficient detection of critical links in network to minimize information loss. J. Intell. Inf. Syst. 51(2): 235-255 (2018) - 2017
- [j25]Yuki Yamagishi, Kazuo Aoyama, Kazumi Saito, Tetsuo Ikeda:
Efficient Similarity Search with a Pivot-Based Complete Binary Tree. IEICE Trans. Inf. Syst. 100-D(10): 2526-2536 (2017) - [j24]Takayasu Fushimi, Kazumi Saito, Tetsuo Ikeda, Kazuhiro Kazama:
Clustering and Visualizing Functionally Similar Regions in Large-Scale Spatial Networks. J. Inf. Process. 25: 398-406 (2017) - 2016
- [j23]Masahiro Kimura, Kazumi Saito, Kouzou Ohara, Hiroshi Motoda:
Speeding-up node influence computation for huge social networks. Int. J. Data Sci. Anal. 1(1): 3-16 (2016) - [j22]Kazumi Saito, Masahiro Kimura, Kouzou Ohara, Hiroshi Motoda:
Super mediator - A new centrality measure of node importance for information diffusion over social network. Inf. Sci. 329: 985-1000 (2016) - 2015
- [j21]Kazumi Saito, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
Change point detection for burst analysis from an observed information diffusion sequence of tweets. J. Intell. Inf. Syst. 44(2): 243-269 (2015) - 2013
- [j20]Masahiro Kimura, Kazumi Saito, Kouzou Ohara, Hiroshi Motoda:
Learning to predict opinion share and detect anti-majority opinionists in social networks. J. Intell. Inf. Syst. 41(1): 5-37 (2013) - [j19]Kazumi Saito, Masahiro Kimura, Kouzou Ohara, Hiroshi Motoda:
Detecting changes in information diffusion patterns over social networks. ACM Trans. Intell. Syst. Technol. 4(3): 55:1-55:23 (2013) - 2012
- [j18]Kazumi Saito, Masahiro Kimura, Kouzou Ohara, Hiroshi Motoda:
Efficient discovery of influential nodes for SIS models in social networks. Knowl. Inf. Syst. 30(3): 613-635 (2012) - 2011
- [j17]Masahiro Kimura, Kazumi Saito, Kouzou Ohara, Hiroshi Motoda:
Learning information diffusion model in a social network for predicting influence of nodes. Intell. Data Anal. 15(4): 633-652 (2011) - 2010
- [j16]Masahiro Kimura, Kazumi Saito, Ryohei Nakano, Hiroshi Motoda:
Extracting influential nodes on a social network for information diffusion. Data Min. Knowl. Discov. 20(1): 70-97 (2010) - 2009
- [j15]Masahiro Kimura, Kazumi Saito, Hiroshi Motoda:
Blocking links to minimize contamination spread in a social network. ACM Trans. Knowl. Discov. Data 3(2): 9:1-9:23 (2009) - 2008
- [j14]Kazumi Saito, Takeshi Yamada, Kazuhiro Kazama:
Extracting Communities from Complex Networks by the k-Dense Method. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 91-A(11): 3304-3311 (2008) - [j13]Akinori Fujino, Naonori Ueda, Kazumi Saito:
Semisupervised Learning for a Hybrid Generative/Discriminative Classifier based on the Maximum Entropy Principle. IEEE Trans. Pattern Anal. Mach. Intell. 30(3): 424-437 (2008) - [j12]Tomoharu Iwata, Kazumi Saito, Takeshi Yamada:
Recommendation Method for Improving Customer Lifetime Value. IEEE Trans. Knowl. Data Eng. 20(9): 1254-1263 (2008) - 2007
- [j11]Akinori Fujino, Naonori Ueda, Kazumi Saito:
A hybrid generative/discriminative approach to text classification with additional information. Inf. Process. Manag. 43(2): 379-392 (2007) - [j10]Tomoharu Iwata, Kazumi Saito, Naonori Ueda, Sean Stromsten, Thomas L. Griffiths, Joshua B. Tenenbaum:
Parametric Embedding for Class Visualization. Neural Comput. 19(9): 2536-2556 (2007) - [j9]Kazumi Saito, Ryohei Nakano:
Bidirectional clustering of weights for neural networks with common weights. Syst. Comput. Jpn. 38(10): 46-57 (2007) - 2006
- [j8]Naonori Ueda, Kazumi Saito:
Parametric mixture model for multitopic text. Syst. Comput. Jpn. 37(2): 56-66 (2006) - 2005
- [j7]Tomoharu Iwata, Kazumi Saito:
Visualization of Anomalies Using Mixture Models. J. Intell. Manuf. 16(6): 635-643 (2005) - [j6]Pablo A. Estévez, Cristián J. Figueroa, Kazumi Saito:
Cross-entropy embedding of high-dimensional data using the neural gas model. Neural Networks 18(5-6): 727-737 (2005) - 2004
- [j5]Masahiro Kimura, Kazumi Saito, Naonori Ueda:
Modeling of growing networks with directional attachment and communities. Neural Networks 17(7): 975-988 (2004) - [j4]Masahiro Kimura, Kazumi Saito, Naonori Ueda:
Modeling network growth with directional attachment and communities. Syst. Comput. Jpn. 35(8): 1-11 (2004) - 2002
- [j3]Kazumi Saito, Ryohei Nakano:
Extracting regression rules from neural networks. Neural Networks 15(10): 1279-1288 (2002) - 2000
- [j2]Kazumi Saito, Ryohei Nakano:
Second-Order Learning Algorithm with Squared Penalty Term. Neural Comput. 12(3): 709-729 (2000) - 1997
- [j1]Kazumi Saito, Ryohei Nakano:
Partial BFGS Update and Efficient Step-Length Calculation for Three-Layer Neural Networks. Neural Comput. 9(1): 123-141 (1997)
Conference and Workshop Papers
- 2021
- [c136]Takayasu Fushimi, Kazumi Saito, Hiroshi Motoda:
Efficient analytical computation of expected frequency of motifs of small size by marginalization in uncertain network. ASONAM 2021: 1-8 - [c135]Yuki Yamagishi, Kazumi Saito, Kazuro Hirahara, Naonori Ueda:
Constructing Weighted Networks of Earthquakes with Multiple-parent Nodes Based on Correlation-Metric. COMPLEX NETWORKS 2021: 487-498 - [c134]Yuki Yamagishi, Kazumi Saito, Kazuro Hirahara, Naonori Ueda:
Magnitude-Weighted Mean-Shift Clustering with Leave-One-Out Bandwidth Estimation. PRICAI (1) 2021: 347-358 - 2020
- [c133]Takayasu Fushimi, Kazumi Saito, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
Opening and Closing Dynamics of Competing Shop Groups over Spatial Networks. ASONAM 2020: 393-400 - [c132]Takayasu Fushimi, Kazumi Saito, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
Efficient Computing of PageRank Scores on Exact Expected Transition Matrix of Large Uncertain Graph. IEEE BigData 2020: 916-923 - [c131]Yuki Yamagishi, Kazumi Saito, Kazuro Hirahara, Naonori Ueda:
Spatio-Temporal Clustering of Earthquakes Based on Average Magnitudes. COMPLEX NETWORKS (1) 2020: 627-637 - [c130]Kouzou Ohara, Takayasu Fushimi, Kazumi Saito, Masahiro Kimura, Hiroshi Motoda:
Maximizing Network Coverage Under the Presence of Time Constraint by Injecting Most Effective k-Links. DS 2020: 421-436 - 2019
- [c129]Takayasu Fushimi, Seiya Okubo, Kazumi Saito:
Facility Location Problem on Network Based on Group Centrality Measure Considering Cooperation and Competition. COMPLEX NETWORKS (1) 2019: 64-76 - [c128]Takayasu Fushimi, Kiyoto Iwasaki, Seiya Okubo, Kazumi Saito:
Construction of Histogram with Variable Bin-Width Based on Change Point Detection. DS 2019: 40-50 - [c127]Kazumi Saito, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
Resampling-Based Framework for Unbiased Estimator of Node Centrality over Large Complex Network. DS 2019: 428-442 - [c126]Kazumi Saito, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
Efficient Identification of Critical Links Based on Reachability Under the Presence of Time Constraint. PRICAI (2) 2019: 404-418 - 2018
- [c125]Takayasu Fushimi, Kazumi Saito, Tetsuo Ikeda, Kazuhiro Kazama:
A New Group Centrality Measure for Maximizing the Connectedness of Network Under Uncertain Connectivity. COMPLEX NETWORKS (1) 2018: 3-14 - [c124]Kouzou Ohara, Kazumi Saito, Masahiro Kimura, Hiroshi Motoda:
Critical Node Identification Based on Articulation Point Detection for Network with Uncertain Connectivity. CANDAR 2018: 146-152 - [c123]Kazumi Saito, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
Critical Link Identification Based on Bridge Detection for Network with Uncertain Connectivity. ISMIS 2018: 89-99 - [c122]Kazumi Saito, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
Efficient Detection of Critical Links to Maintain Performance of Network with Uncertain Connectivity. PRICAI (1) 2018: 282-295 - 2017
- [c121]Takayasu Fushimi, Kazumi Saito, Tetsuo Ikeda, Kazuhiro Kazama:
Fast Extraction Method of Functional Clusters from Large-Scale Spatial Networks Based on Transfer Learning. COMPLEX NETWORKS 2017: 1210-1222 - [c120]Kouzou Ohara, Kazumi Saito, Masahiro Kimura, Hiroshi Motoda:
Maximizing Network Performance Based on Group Centrality by Creating Most Effective k-Links. DSAA 2017: 561-570 - [c119]Kanji Matsutani, Masahito Kumano, Masahiro Kimura, Kazumi Saito, Kouzou Ohara, Hiroshi Motoda:
Discovering Cooperative Structure Among Online Items for Attention Dynamics. ICDM Workshops 2017: 1033-1041 - [c118]Takayasu Fushimi, Kazumi Saito, Tetsuo Ikeda, Kazuhiro Kazama:
Accelerating Greedy K-Medoids Clustering Algorithm with L_1 Distance by Pivot Generation. ISMIS 2017: 87-96 - [c117]Kazumi Saito, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
An Accurate and Efficient Method to Detect Critical Links to Maintain Information Flow in Network. ISMIS 2017: 116-126 - [c116]Yuki Yamagishi, Kazumi Saito:
Visualizing Switching Regimes Based on Multinomial Distribution in Buzz Marketing Sites. ISMIS 2017: 385-395 - 2016
- [c115]Arief Maulana, Kazumi Saito, Tetsuo Ikeda, Hiroaki Yuze, Takayuki Watanabe, Seiya Okubo, Nobuaki Mutoh:
Characterizing Similarity Structure of Spatial Networks Based on Degree Mixing Patterns. AINA 2016: 9-16 - [c114]Takayasu Fushimi, Kazumi Saito, Tetsuo Ikeda, Kazuhiro Kazama:
Functional cluster extraction from large spatial networks. ASONAM 2016: 57-62 - [c113]Kouzou Ohara, Kazumi Saito, Masahiro Kimura, Hiroshi Motoda:
Accelerating Computation of Distance Based Centrality Measures for Spatial Networks. DS 2016: 376-391 - [c112]Kazumi Saito, Masahiro Kimura, Kouzou Ohara, Hiroshi Motoda:
Detecting Critical Links in Complex Network to Maintain Information Flow/Reachability. PRICAI 2016: 419-432 - [c111]Yuki Yamagishi, Kazumi Saito, Tetsuo Ikeda:
Modeling of Travel Behavior Processes from Social Media. PRICAI 2016: 626-637 - [c110]Takashi Hattori, Kazuo Aoyama, Kazumi Saito, Tetsuo Ikeda, Eri Kobayashi:
Pivot-based k-means Algorithm for Numerous-class Data Sets. SDM 2016: 333-341 - [c109]Takayasu Fushimi, Tetsuji Satoh, Kazumi Saito, Kazuhiro Kazama, Noriko Kando:
Content Centrality Measure for Networks: Introducing Distance-Based Decay Weights. SocInfo (2) 2016: 40-54 - 2015
- [c108]Kanji Matsutani, Masahito Kumano, Masahiro Kimura, Kazumi Saito, Kouzou Ohara, Hiroshi Motoda:
Combining activity-evaluation information with NMF for trust-link prediction in social media. IEEE BigData 2015: 2263-2272 - [c107]Kouzou Ohara, Kazumi Saito, Masahiro Kimura, Hiroshi Motoda:
Change Point Detection for Information Diffusion Tree. Discovery Science 2015: 161-169 - [c106]Takayasu Fushimi, Tetsuji Satoh, Kazumi Saito, Kazuhiro Kazama:
Comparison of influence measures on structural changes focused on node functions. iiWAS 2015: 16:1-16:10 - [c105]Kouzou Ohara, Kazumi Saito, Masahiro Kimura, Hiroshi Motoda:
Resampling-Based Gap Analysis for Detecting Nodes with High Centrality on Large Social Network. PAKDD (1) 2015: 135-147 - [c104]Kazumi Saito, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
Efficient Learning of User Conformity on Review Score. SBP 2015: 182-192 - 2014
- [c103]Kouzou Ohara, Kazumi Saito, Masahiro Kimura, Hiroshi Motoda:
Resampling-Based Framework for Estimating Node Centrality of Large Social Network. Discovery Science 2014: 228-239 - [c102]Masahiro Kimura, Kazumi Saito, Kouzou Ohara, Hiroshi Motoda:
Efficient analysis of node influence based on SIR model over huge complex networks. DSAA 2014: 216-222 - [c101]Takayasu Fushimi, Kazumi Saito, Kazuhiro Kazama:
Estimating Network Structure from Anonymous Ego-centric Information. PKAW 2014: 236-245 - [c100]Keito Hatta, Masahito Kumano, Masahiro Kimura, Kazumi Saito, Kouzou Ohara, Hiroshi Motoda:
Analyzing Mediator-Activity Effects for Trust-Network Evolution in Social Media. PRICAI 2014: 297-308 - [c99]Eri Kobayashi, Takayasu Fushimi, Kazumi Saito, Tetsuo Ikeda:
Similarity Search by Generating Pivots Based on Manhattan Distance. PRICAI 2014: 435-446 - [c98]Shoko Kato, Kazumi Saito, Kazuhiro Kazama, Tetsuji Satoh:
MDSR: An Eigenvector Approach to Core Analysis of Multiple Directed Graphs. PRICAI 2014: 447-458 - [c97]Yuki Yamagishi, Seiya Okubo, Kazumi Saito, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
A Method to Divide Stream Data of Scores over Review Sites. PRICAI 2014: 913-919 - [c96]Kazumi Saito, Masahiro Kimura, Kouzou Ohara, Hiroshi Motoda:
A New Approach for Item Ranking Based on Review Scores Reflecting Temporal Trust Factor. SBP 2014: 161-168 - 2013
- [c95]Kouzou Ohara, Kazumi Saito, Masahiro Kimura, Hiroshi Motoda:
Predictive Simulation Framework of Stochastic Diffusion Model for Identifying Top-K Influential Nodes. ACML 2013: 149-164 - [c94]Kazumi Saito, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
Detecting changes in content and posting time distributions in social media. ASONAM 2013: 572-578 - [c93]Kazumi Saito, Masahiro Kimura, Kouzou Ohara, Hiroshi Motoda:
Identifying Super-Mediators of Information Diffusion in Social Networks. Discovery Science 2013: 170-184 - [c92]Kazumi Saito, Masahiro Kimura, Kouzou Ohara, Hiroshi Motoda:
Which Targets to Contact First to Maximize Influence over Social Network. SBP 2013: 359-367 - 2012
- [c91]Kazumi Saito, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
Burst Detection in a Sequence of Tweets Based on Information Diffusion Model. Discovery Science 2012: 239-253 - [c90]Shoko Kato, Akihiro Koide, Takayasu Fushimi, Kazumi Saito, Hiroshi Motoda:
Network Analysis of Three Twitter Functions: Favorite, Follow and Mention. PKAW 2012: 298-312 - [c89]Takayasu Fushimi, Kazumi Saito, Kazuhiro Kazama:
Extracting Communities in Networks Based on Functional Properties of Nodes. PKAW 2012: 328-334 - [c88]Masahiro Kimura, Kazumi Saito, Kouzou Ohara, Hiroshi Motoda:
Opinion Formation by Voter Model with Temporal Decay Dynamics. ECML/PKDD (2) 2012: 565-580 - [c87]Kouzou Ohara, Kazumi Saito, Masahiro Kimura, Hiroshi Motoda:
Effect of In/Out-Degree Correlation on Influence Degree of Two Contrasting Information Diffusion Models. SBP 2012: 131-138 - [c86]Kazumi Saito, Masahiro Kimura, Kouzou Ohara, Hiroshi Motoda:
Graph embedding on spheres and its application to visualization of information diffusion data. WWW (Companion Volume) 2012: 1137-1144 - 2011
- [c85]Takayasu Fushimi, Yamato Kubota, Kazumi Saito, Masahiro Kimura, Kouzou Ohara, Hiroshi Motoda:
Speeding Up Bipartite Graph Visualization Method. Australasian Conference on Artificial Intelligence 2011: 697-706 - [c84]Masahiro Kimura, Kazumi Saito, Kouzou Ohara, Hiroshi Motoda:
Detecting Anti-majority Opinionists Using Value-Weighted Mixture Voter Model. Discovery Science 2011: 150-164 - [c83]Kazumi Saito, Kouzou Ohara, Yuki Yamagishi, Masahiro Kimura, Hiroshi Motoda:
Learning Diffusion Probability Based on Node Attributes in Social Networks. ISMIS 2011: 153-162 - [c82]Kazuo Aoyama, Kazumi Saito, Hiroshi Sawada, Naonori Ueda:
Fast approximate similarity search based on degree-reduced neighborhood graphs. KDD 2011: 1055-1063 - [c81]Kazumi Saito, Masahiro Kimura, Kouzou Ohara, Hiroshi Motoda:
Detecting Changes in Opinion Value Distribution for Voter Model. SBP 2011: 89-96 - [c80]Yuki Yamagishi, Kazumi Saito, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
Learning Attribute-weighted Voter Model over Social Networks. ACML 2011: 263-280 - [c79]Akihiro Koide, Kazumi Saito, Kouzou Ohara, Masahiro Kimura, Hiroshi Motoda:
Estimating Diffusion Probability Changes for AsIC-SIS Model. ACML 2011: 297-313 - 2010
- [c78]Masahiro Kimura, Kazumi Saito, Kouzou Ohara, Hiroshi Motoda:
Learning to Predict Opinion Share in Social Networks. AAAI 2010: 1364-1370 - [c77]Kazumi Saito, Masahiro Kimura, Kouzou Ohara, Hiroshi Motoda:
Discovery of Super-Mediators of Information Diffusion in Social Networks. Discovery Science 2010: 144-158 - [c76]Yusuke Tanahashi, Ryohei Nakano, Kazumi Saito:
Nominally Conditioned Linear Regression. ICANN (3) 2010: 290-293 - [c75]Kazuo Aoyama, Shinji Watanabe, Hiroshi Sawada, Yasuhiro Minami, Naonori Ueda, Kazumi Saito:
Fast similarity search on a large speech data set with neighborhood graph indexing. ICASSP 2010: 5358-5361 - [c74]Takayasu Fushimi, Kazumi Saito, Masahiro Kimura, Hiroshi Motoda, Kouzou Ohara:
Finding Relation between PageRank and Voter Model. PKAW 2010: 208-222 - [c73]Yuya Yoshikawa, Kazumi Saito, Hiroshi Motoda, Kouzou Ohara, Masahiro Kimura:
Acquiring Expected Influence Curve from Single Diffusion Sequence. PKAW 2010: 273-287 - [c72]Kazumi Saito, Masahiro Kimura, Kouzou Ohara, Hiroshi Motoda:
Selecting Information Diffusion Models over Social Networks for Behavioral Analysis. ECML/PKDD (3) 2010: 180-195 - [c71]Kazumi Saito, Masahiro Kimura, Kouzou Ohara, Hiroshi Motoda:
Efficient Estimation of Cumulative Influence for Multiple Activation Information Diffusion Model with Continuous Time Delay. PRICAI 2010: 244-255 - [c70]Kazumi Saito, Masahiro Kimura, Kouzou Ohara, Hiroshi Motoda:
Behavioral Analyses of Information Diffusion Models by Observed Data of Social Network. SBP 2010: 149-158 - [c69]Kazumi Saito, Masahiro Kimura, Kouzou Ohara, Hiroshi Motoda:
Generative Models of Information Diffusion with Asynchronous Timedelay. ACML 2010: 193-208 - 2009
- [c68]Kazumi Saito, Masahiro Kimura, Kouzou Ohara, Hiroshi Motoda:
Learning Continuous-Time Information Diffusion Model for Social Behavioral Data Analysis. ACML 2009: 322-337 - [c67]Kazuo Aoyama, Kazumi Saito, Takeshi Yamada, Naonori Ueda:
Fast Similarity Search in Small-World Networks. CompleNet 2009: 185-196 - [c66]Kazumi Saito, Masahiro Kimura, Hiroshi Motoda:
Discovering Influential Nodes for SIS Models in Social Networks. Discovery Science 2009: 302-316 - [c65]Masahiro Kimura, Kazumi Saito, Hiroshi Motoda:
Efficient Estimation of Influence Functions for SIS Model on Social Networks. IJCAI 2009: 2046-2051 - [c64]Ken-ichi Fukui, Kazuhisa Sato, Junichiro Mizusaki, Kazumi Saito, Masahiro Kimura, Masayuki Numao:
Growth Analysis of Neighbor Network for Evaluation of Damage Progress. PAKDD 2009: 933-940 - 2008
- [c63]Ken-ichi Fukui, Kazumi Saito, Masahiro Kimura, Masayuki Numao:
Sequence-based SOM: Visualizing transition of dynamic clusters. CIT 2008: 47-52 - [c62]Masahiro Kimura, Kazumi Saito, Hiroshi Motoda:
Minimizing the Spread of Contamination by Blocking Links in a Network. AAAI 2008: 1175-1180 - [c61]Masahiro Kimura, Kazumasa Yamakawa, Kazumi Saito, Hiroshi Motoda:
Community analysis of influential nodes for information diffusion on a social network. IJCNN 2008: 1358-1363 - [c60]Kazumi Saito, Nobuaki Mutoh, Tetsuo Ikeda, Toshinao Goda, Kazuki Mochizuki:
Improving Search Efficiency of Incremental Variable Selection by Using Second-Order Optimal Criterion. KES (3) 2008: 41-49 - [c59]Kazumi Saito, Ryohei Nakano, Masahiro Kimura:
Prediction of Information Diffusion Probabilities for Independent Cascade Model. KES (3) 2008: 67-75 - [c58]Takayasu Fushimi, Takashi Kawazoe, Kazumi Saito, Masahiro Kimura, Hiroshi Motoda:
What Does an Information Diffusion Model Tell about Social Network Structure?. PKAW 2008: 122-136 - [c57]Kazumi Saito, Masahiro Kimura, Hiroshi Motoda:
Effective Visualization of Information Diffusion Process over Complex Networks. ECML/PKDD (2) 2008: 326-341 - [c56]Masahiro Kimura, Kazumi Saito, Hiroshi Motoda:
Solving the Contamination Minimization Problem on Networks for the Linear Threshold Model. PRICAI 2008: 977-984 - 2007
- [c55]Masahiro Kimura, Kazumi Saito, Ryohei Nakano:
Extracting Influential Nodes for Information Diffusion on a Social Network. AAAI 2007: 1371-1376 - [c54]Ken-ichi Fukui, Kazuhisa Sato, Junichiro Mizusaki, Kazumi Saito, Masayuki Numao:
Combining Burst Extraction Method and Sequence-Based SOM for Evaluation of Fracture Dynamics in Solid Oxide Fuel Cell. ICTAI (2) 2007: 193-196 - [c53]Akinori Fujino, Naonori Ueda, Kazumi Saito:
Semi-Supervised Learning for Multi-Component Data Classification. IJCAI 2007: 2754-2759 - [c52]Pablo A. Estévez, Pablo A. Vera, Kazumi Saito:
Selecting the Most Influential Nodes in Social Networks. IJCNN 2007: 2397-2402 - [c51]Ken-ichi Fukui, Kazumi Saito, Masahiro Kimura, Masayuki Numao:
Interpretable Likelihood for Vector Representable Topic. KES (3) 2007: 202-209 - [c50]Manabu Kimura, Kazumi Saito, Naonori Ueda:
Pivot Learning for Efficient Similarity Search. KES (3) 2007: 227-234 - [c49]Kazumi Saito, Ryohei Nakano, Masahiro Kimura:
Prediction of Link Attachments by Estimating Probabilities of Information Propagation. KES (3) 2007: 235-242 - [c48]Tomoharu Iwata, Kazumi Saito, Takeshi Yamada:
Modeling user behavior in recommender systems based on maximum entropy. WWW 2007: 1281-1282 - 2006
- [c47]Tomoharu Iwata, Kazumi Saito, Naonori Ueda:
Visual nonlinear discriminant analysis for classifier design. ESANN 2006: 283-288 - [c46]Kazumi Saito, Takeshi Yamada:
Extracting Communities from Complex Networks by the k-dense Method. ICDM Workshops 2006: 300-304 - [c45]Tomoharu Iwata, Kazumi Saito, Takeshi Yamada:
Recommendation method for extending subscription periods. KDD 2006: 574-579 - [c44]Ken-ichi Fukui, Kazumi Saito, Masahiro Kimura, Masayuki Numao:
Visualization Architecture Based on SOM for Two-Class Sequential Data. KES (2) 2006: 929-936 - [c43]Masahiro Kimura, Kazumi Saito:
Approximate Solutions for the Influence Maximization Problem in a Social Network. KES (2) 2006: 937-944 - [c42]Kazumi Saito, Ryohei Nakano:
Improving Convergence Performance of PageRank Computation Based on Step-Length Calculation Approach. KES (2) 2006: 945-952 - [c41]Yusuke Tanahashi, Kazumi Saito, Daisuke Kitakoshi, Ryohei Nakano:
Finding Nominally Conditioned Multivariate Polynomials Using a Four-Layer Perceptron Having Shared Weights. KES (2) 2006: 969-976 - [c40]Masahiro Kimura, Kazumi Saito:
Tractable Models for Information Diffusion in Social Networks. PKDD 2006: 259-271 - 2005
- [c39]Akinori Fujino, Naonori Ueda, Kazumi Saito:
A Hybrid Generative/Discriminative Approach to Semi-Supervised Classifier Design. AAAI 2005: 764-769 - [c38]Akinori Fujino, Naonori Ueda, Kazumi Saito:
A Classifier Design Based on Combining Multiple Components by Maximum Entropy Principle. AIRS 2005: 423-438 - [c37]Yusuke Tanahashi, Kazumi Saito, Ryohei Nakano:
Model Selection and Weight Sharing of Multi-layer Perceptrons. KES (4) 2005: 716-722 - [c36]Masahiro Kimura, Kazumi Saito, Kazuhiro Kazama, Shin-ya Sato:
Detecting Search Engine Spam from a Trackback Network in Blogspace. KES (4) 2005: 723-729 - [c35]Ken-ichi Fukui, Kazumi Saito, Masahiro Kimura, Masayuki Numao:
Visualizing Dynamics of the Hot Topics Using Sequence-Based Self-organizing Maps. KES (4) 2005: 745-751 - 2004
- [c34]Yusuke Tanahashi, Kazumi Saito, Ryohei Nakano:
Piecewise Multivariate Polynomials Using a Four-Layer Perceptron. KES 2004: 602-608 - [c33]Yuji Kaneda, Naonori Ueda, Kazumi Saito:
Extended Parametric Mixture Model for Robust Multi-labeled Text Categorization. KES 2004: 616-623 - [c32]Tomoharu Iwata, Kazumi Saito:
Visualisation of Anomaly Using Mixture Model. KES 2004: 624-631 - [c31]Tomoharu Iwata, Kazumi Saito, Naonori Ueda, Sean Stromsten, Thomas L. Griffiths, Joshua B. Tenenbaum:
Parametric Embedding for Class Visualization. NIPS 2004: 617-624 - [c30]Yuji Kaneda, Naonori Ueda, Kazumi Saito:
Document Clustering at NTCIR-4 Workshop: Limiting Search Space of the K-Means Method Using Word Occurrence. NTCIR 2004 - 2003
- [c29]Dileep George, Kazumi Saito, Pat Langley, Stephen D. Bay, Kevin R. Arrigo:
Discovering Ecosystem Models from Time-Series Data. Discovery Science 2003: 141-152 - [c28]Kazumi Saito, Dileep George, Stephen D. Bay, Jeff Shrager:
Inducing Biological Models from Temporal Gene Expression Data. Discovery Science 2003: 468-469 - [c27]Masahiro Kimura, Kazumi Saito, Naonori Ueda:
Modeling of growing networks with directional attachment and communities. ESANN 2003: 15-20 - [c26]Pat Langley, Dileep George, Stephen D. Bay, Kazumi Saito:
Robust Induction of Process Models from Time-Series Data. ICML 2003: 432-439 - [c25]Takeshi Yamada, Kazumi Saito, Naonori Ueda:
Cross-Entropy Directed Embedding of Network Data. ICML 2003: 832-839 - 2002
- [c24]Kazumi Saito, Stephen D. Bay, Pat Langley:
Revising Qualitative Models of Gene Regulation. Discovery Science 2002: 59-70 - [c23]Kazumi Saito, Ryohei Nakano:
Structuring Neural Networks through Bidirectional Clustering of Weights. Discovery Science 2002: 206-219 - [c22]Ryohei Nakano, Kazumi Saito:
Discovering Polynomials to Fit Multivariate Data Having Numeric and Nominal Variables. Progress in Discovery Science 2002: 482-493 - [c21]Naonori Ueda, Kazumi Saito:
Single-shot detection of multiple categories of text using parametric mixture models. KDD 2002: 626-631 - [c20]Naonori Ueda, Kazumi Saito:
Parametric Mixture Models for Multi-Labeled Text. NIPS 2002: 721-728 - [c19]Masahiro Kimura, Kazumi Saito, Naonori Ueda:
Modeling of growing networks with communities. NNSP 2002: 189-198 - [c18]Kazumi Saito, Pat Langley:
Discovering Empirical Laws of Web Dynamics. SAINT 2002: 168-175 - 2001
- [c17]Kazumi Saito, Pat Langley, Trond Grenager, Christopher Potter, Alicia Torregrosa, Steven A. Klooster:
Computational Revision of Quantitative Scientific Models. Discovery Science 2001: 336-349 - [c16]Ryohei Nakano, Kazumi Saito:
Finding Polynomials to Fit Multivariate Data Having Numeric and Nominal Variables. IDA 2001: 258-267 - 2000
- [c15]Kazumi Saito, Naonori Ueda, Shigeru Katagiri, Yutaka Fukai, Hiroshi Fujimaru, Masayuki Fujinawa:
Law discovery from financial data using neural networks. CIFEr 2000: 209-212 - [c14]Kazumi Saito, Ryohei Nakano:
Discovery of Nominally Conditioned Polynomials Using Neural Networks, Vector Quantizers and Decision Trees. Discovery Science 2000: 325-329 - [c13]Kazumi Saito, Ryohei Nakano:
Discovery of Relevant Weights by Minimizing Cross-Validation Error. PAKDD 2000: 372-375 - 1999
- [c12]Ryohei Nakano, Kazumi Saito:
Discovery of a Set of Nominally Conditioned Polynomials. Discovery Science 1999: 287-298 - 1998
- [c11]Ryohei Nakano, Kazumi Saito:
Computational Characteristics of Law Discovery Using Neural Networks. Discovery Science 1998: 342-351 - 1997
- [c10]Kazumi Saito, Ryohei Nakano:
MDL regularizer: a new regularizer based on the MDL principle. ICNN 1997: 1833-1838 - [c9]Kazumi Saito, Ryohei Nakano:
Numeric Law Discovery Using Neural Networks. ICONIP (2) 1997: 843-846 - [c8]Kazumi Saito, Ryohei Nakano:
Law Discovery using Neural Networks. IJCAI 1997: 1078-1083 - 1996
- [c7]Kazumi Saito, Ryohei Nakano:
A constructive learning algorithm for an HME. ICNN 1996: 1268-1273 - [c6]Kazumi Saito, Ryohei Nakano:
Second-order Learning Algorithm with Squared Penalty Term. NIPS 1996: 627-633 - 1995
- [c5]Ryohei Nakano, Naonori Ueda, Kazumi Saito, Takeshi Yamada:
Parrot-like speaking using optimal vector quantization. ICNN 1995: 2871-2875 - [c4]Kazumi Saito, Ryohei Nakano:
A Connectionist Approach to Numeric Law Discorvery. Machine Intelligence 15 1995: 315-327 - 1994
- [c3]Kazumi Saito, Ryohei Nakano:
Adaptive Concept Learning Algorithm. IFIP Congress (1) 1994: 294-299 - 1993
- [c2]Kazumi Saito, Ryohei Nakano:
A concept learning algorithm with adaptive search. Machine Intelligence 14 1993: 353- - 1988
- [c1]Kazumi Saito, Ryohei Nakano:
Medical diagnostic expert system based on PDP model. ICNN 1988: 255-262
Parts in Books or Collections
- 2009
- [p2]Kazumi Saito, Takeshi Yamada, Kazuhiro Kazama:
The k-Dense Method to Extract Communities from Complex Networks. Mining Complex Data 2009: 243-257 - 2007
- [p1]Kazumi Saito, Pat Langley:
Quantitative Revision of Scientific Models. Computational Discovery of Scientific Knowledge 2007: 120-137
Informal and Other Publications
- 2021
- [i4]Kazuo Aoyama, Kazumi Saito:
Structured Inverted-File k-Means Clustering for High-Dimensional Sparse Data. CoRR abs/2103.16141 (2021) - 2020
- [i3]Kazuo Aoyama, Kazumi Saito, Tetsuo Ikeda:
Inverted-File k-Means Clustering: Performance Analysis. CoRR abs/2002.09094 (2020) - 2012
- [i2]Kazumi Saito, Masahiro Kimura, Kouzou Ohara, Hiroshi Motoda:
Learning Asynchronous-Time Information Diffusion Models and its Application to Behavioral Data Analysis over Social Networks. CoRR abs/1204.4528 (2012) - 2011
- [i1]Kouzou Ohara, Kazumi Saito, Masahiro Kimura, Hiroshi Motoda:
Efficient Detection of Hot Span in Information Diffusion from Observation. CoRR abs/1110.2659 (2011)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-04-24 22:55 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint