default search action
Frank-Michael Schleif
Person information
- affiliation: Bielefeld University, Germany
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c103]Manuel Röder, Frank-Michael Schleif:
Deep Transfer Hashing for Adaptive Learning on Federated Streaming Data. IAL@PKDD/ECML 2024: 7-11 - [c102]Manuel Röder, Maximilian Münch, Christoph Raab, Frank-Michael Schleif:
Crossing Domain Borders with Federated Few-Shot Adaptation. ICPRAM 2024: 511-521 - [i13]Manuel Röder, Frank-Michael Schleif:
Sparse Uncertainty-Informed Sampling from Federated Streaming Data. CoRR abs/2408.17108 (2024) - [i12]Manuel Röder, Frank-Michael Schleif:
Deep Transfer Hashing for Adaptive Learning on Federated Streaming Data. CoRR abs/2409.12575 (2024) - 2023
- [j47]Maximilian Münch, Manuel Röder, Simon Heilig, Christoph Raab, Frank-Michael Schleif:
Static and adaptive subspace information fusion for indefinite heterogeneous proximity data. Neurocomputing 555: 126635 (2023) - [c101]Maximilian Münch, Manuel Röder, Frank-Michael Schleif:
Unlocking the Potential of Non-PSD Kernel Matrices: A Polar Decomposition-based Transformation for Improved Prediction Models. CIKM 2023: 1867-1876 - [c100]Maximilian Münch, Katrin Sophie Bohnsack, Alexander Engelsberger, Frank-Michael Schleif, Thomas Villmann:
Sparse Nyström Approximation for Non-Vectorial Data Using Class-informed Landmark Selection. ESANN 2023 - [c99]Lukas Ewecker, Timo Winkler, Philipp Väth, Robin Schwager, Tim Brühl, Frank-Michael Schleif:
How Important is the Temporal Context to Anticipate Oncoming Vehicles at Night? SMC 2023: 1000-1007 - [i11]Manuel Röder, Leon Heller, Maximilian Münch, Frank-Michael Schleif:
Efficient Cross-Domain Federated Learning by MixStyle Approximation. CoRR abs/2312.07064 (2023) - 2022
- [j46]Moritz Heusinger, Christoph Raab, Frank-Michael Schleif:
Dimensionality reduction in the context of dynamic social media data streams. Evol. Syst. 13(3): 387-401 (2022) - [j45]Christoph Raab, Manuel Röder, Frank-Michael Schleif:
Domain adversarial tangent subspace alignment for explainable domain adaptation. Neurocomputing 506: 418-429 (2022) - [j44]Luca Oneto, Nicolò Navarin, Frank-Michael Schleif:
Advances in artificial neural networks, machine learning and computational intelligence. Neurocomputing 507: 311-314 (2022) - [j43]Moritz Heusinger, Christoph Raab, Frank-Michael Schleif:
Passive concept drift handling via variations of learning vector quantization. Neural Comput. Appl. 34(1): 89-100 (2022) - [c98]Maximilian Münch, Christoph Raab, Simon Heilig, Manuel Röder, Frank-Michael Schleif:
Adaptive multi-modal positive semi-definite and indefinite kernel fusion for binary classification. ESANN 2022 - [c97]Moritz Heusinger, Frank-Michael Schleif:
A Streaming Approach to the Core Vector Machine. ICAISC (2) 2022: 91-101 - [c96]Simon Heilig, Maximilian Münch, Frank-Michael Schleif:
Memory Efficient Kernel Approximation for Non-Stationary and Indefinite Kernels. IJCNN 2022: 1-8 - [i10]Moritz Heusinger, Christoph Raab, Fabrice Rossi, Frank-Michael Schleif:
Federated Learning - Methods, Applications and beyond. CoRR abs/2212.11729 (2022) - 2021
- [c95]Moritz Heusinger, Christoph Raab, Fabrice Rossi, Frank-Michael Schleif:
Federated Learning - Methods, Applications and beyond. ESANN 2021 - [c94]Maximilian Münch, Simon Heilig, Frank-Michael Schleif:
Multi-perspective embedding for non-metric time series classification. ESANN 2021 - [c93]Christoph Raab, Sascha Saralajew, Frank-Michael Schleif:
Domain Adversarial Tangent Learning Towards Interpretable Domain Adaptation. ESANN 2021 - [c92]Moritz Heusinger, Frank-Michael Schleif:
Classification in Non-stationary Environments Using Coresets over Sliding Windows. IWANN (1) 2021: 126-137 - [c91]Maximilian Münch, Simon Heilig, Philipp Väth, Frank-Michael Schleif:
Scalable embedding of multiple perspectives for indefinite life-science data analysis. SSCI 2021: 1-8 - [i9]Simon Heilig, Maximilian Münch, Frank-Michael Schleif:
Revisiting Memory Efficient Kernel Approximation: An Indefinite Learning Perspective. CoRR abs/2112.09893 (2021) - 2020
- [j42]Maximilian Münch, Christoph Raab, Michael Biehl, Frank-Michael Schleif:
Data-Driven Supervised Learning for Life Science Data. Frontiers Appl. Math. Stat. 6: 553000 (2020) - [j41]Christoph Raab, Frank-Michael Schleif:
Transfer learning extensions for the probabilistic classification vector machine. Neurocomputing 397: 320-330 (2020) - [j40]Christoph Raab, Moritz Heusinger, Frank-Michael Schleif:
Reactive Soft Prototype Computing for Concept Drift Streams. Neurocomputing 416: 340-351 (2020) - [j39]Frank-Michael Schleif, Christoph Raab, Peter Tiño:
Sparsification of core set models in non-metric supervised learning. Pattern Recognit. Lett. 129: 1-7 (2020) - [c90]Christoph Raab, Philipp Väth, Peter Meier, Frank-Michael Schleif:
Bridging Adversarial and Statistical Domain Transfer via Spectral Adaptation Networks. ACCV (3) 2020: 457-473 - [c89]Moritz Heusinger, Christoph Raab, Frank-Michael Schleif:
Analyzing Dynamic Social Media Data via Random Projection - A New Challenge for Stream Classifiers. EAIS 2020: 1-8 - [c88]Moritz Heusinger, Frank-Michael Schleif:
Random Projection in supervised non-stationary environments. ESANN 2020: 405-410 - [c87]Christoph Raab, Peter Meier, Frank-Michael Schleif:
Domain Invariant Representations with Deep Spectral Alignment. ESANN 2020: 509-514 - [c86]Moritz Heusinger, Frank-Michael Schleif:
Random Projection in the Presence of Concept Drift in Supervised Environments. ICAISC (1) 2020: 514-524 - [c85]Maximilian Münch, Christoph Raab, Michael Biehl, Frank-Michael Schleif:
Structure Preserving Encoding of Non-euclidean Similarity Data. ICPRAM 2020: 43-51 - [c84]Maximilian Münch, Christoph Raab, Frank-Michael Schleif:
Encoding of Indefinite Proximity Data: A Structure Preserving Perspective. ICPRAM (Revised Selected Papers) 2020: 112-137 - [c83]Christoph Raab, Frank-Michael Schleif:
Low-Rank Subspace Override for Unsupervised Domain Adaptation. KI 2020: 132-147 - [c82]Moritz Heusinger, Frank-Michael Schleif:
Reactive Concept Drift Detection Using Coresets Over Sliding Windows. SSCI 2020: 1350-1355 - [c81]Maximilian Münch, Michiel Straat, Michael Biehl, Frank-Michael Schleif:
Complex-Valued Embeddings of Generic Proximity Data. S+SSPR 2020: 14-23 - [i8]Christoph Raab, Moritz Heusinger, Frank-Michael Schleif:
Reactive Soft Prototype Computing for Concept Drift Streams. CoRR abs/2007.05432 (2020) - [i7]Christoph Raab, Frank-Michael Schleif:
Transfer learning extensions for the probabilistic classification vector machine. CoRR abs/2007.07090 (2020) - [i6]Maximilian Münch, Michiel Straat, Michael Biehl, Frank-Michael Schleif:
Complex-valued embeddings of generic proximity data. CoRR abs/2008.13454 (2020)
2010 – 2019
- 2019
- [j38]Luca Oneto, Kerstin Bunte, Frank-Michael Schleif:
Advances in artificial neural networks, machine learning and computational intelligence: Selected papers from the 26th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2018). Neurocomputing 342: 1-5 (2019) - [j37]Mohammad Mohammadi, Nicolai Petkov, Kerstin Bunte, Reynier F. Peletier, Frank-Michael Schleif:
Globular cluster detection in the GAIA survey. Neurocomputing 342: 164-171 (2019) - [c80]Albert Bifet, Barbara Hammer, Frank-Michael Schleif:
Recent trends in streaming data analysis, concept drift and analysis of dynamic data sets. ESANN 2019 - [c79]Maximilian Münch, Karsten Huffstadt, Frank-Michael Schleif:
Towards a device-free passive presence detection system with Bluetooth Low Energy beacons. ESANN 2019 - [c78]Christoph Raab, Moritz Heusinger, Frank-Michael Schleif:
Reactive Soft Prototype Computing for frequent reoccurring Concept Drift. ESANN 2019 - [c77]Maximilian Münch, Frank-Michael Schleif:
Device-Free Passive Human Counting with Bluetooth Low Energy Beacons. IWANN (2) 2019: 799-810 - [c76]Moritz Heusinger, Christoph Raab, Frank-Michael Schleif:
Passive Concept Drift Handling via Momentum Based Robust Soft Learning Vector Quantization. WSOM+ 2019: 200-209 - [i5]Christoph Raab, Frank-Michael Schleif:
Domain Adaptation via Low-Rank Basis Approximation. CoRR abs/1907.01343 (2019) - 2018
- [j36]Frank-Michael Schleif, Andrej Gisbrecht, Peter Tiño:
Supervised low rank indefinite kernel approximation using minimum enclosing balls. Neurocomputing 318: 213-226 (2018) - [c75]Christoph Raab, Frank-Michael Schleif:
Transfer learning for the probabilistic classification vector machine. COPA 2018: 187-200 - [c74]Mohammad Mohammadi, Reynier Peletier, Frank-Michael Schleif, Nicolai Petkov, Kerstin Bunte:
Globular Cluster Detection in the Gaia Survey. ESANN 2018 - [c73]Christoph Raab, Frank-Michael Schleif:
Sparse Transfer Classification for Text Documents. KI 2018: 169-181 - [c72]Frank-Michael Schleif, Christoph Raab, Peter Tiño:
Sparsification of Indefinite Learning Models. S+SSPR 2018: 173-183 - 2017
- [j35]Frank-Michael Schleif, Peter Tiño:
Indefinite Core Vector Machine. Pattern Recognit. 71: 187-195 (2017) - [c71]Frank-Michael Schleif:
Indefinite Support Vector Regression. ICANN (2) 2017: 313-321 - [c70]Frank-Michael Schleif:
Small sets of random Fourier features by kernelized Matrix LVQ. WSOM 2017: 192-196 - 2016
- [j34]Frank-Michael Schleif, Barbara Hammer, Javier Gonzalez Monroy, Javier González Jiménez, José-Luis Blanco-Claraco, Michael Biehl, Nicolai Petkov:
Odor recognition in robotics applications by discriminative time-series modeling. Pattern Anal. Appl. 19(1): 207-220 (2016) - [c69]Frank-Michael Schleif, Ata Kabán, Peter Tiño:
Finding Small Sets of Random Fourier Features for Shift-Invariant Kernel Approximation. ANNPR 2016: 42-54 - [c68]Frank-Michael Schleif, Peter Tiño, Yingyu Liang:
Learning in indefinite proximity spaces - recent trends. ESANN 2016 - [c67]Kerstin Bunte, Marika Kaden, Frank-Michael Schleif:
Low-Rank Kernel Space Representations in Prototype Learning. WSOM 2016: 341-353 - [i4]Frank-Michael Schleif, Andrej Gisbrecht, Peter Tiño:
Probabilistic classifiers with low rank indefinite kernels. CoRR abs/1604.02264 (2016) - 2015
- [j33]Frank-Michael Schleif, Xibin Zhu, Barbara Hammer:
Sparse conformal prediction for dissimilarity data. Ann. Math. Artif. Intell. 74(1-2): 95-116 (2015) - [j32]Frank-Michael Schleif:
Generic probabilistic prototype based classification of vectorial and proximity data. Neurocomputing 154: 208-216 (2015) - [j31]Andrej Gisbrecht, Frank-Michael Schleif:
Metric and non-metric proximity transformations at linear costs. Neurocomputing 167: 643-657 (2015) - [j30]Michael Biehl, Alessandro Ghio, Frank-Michael Schleif:
Developments in computational intelligence and machine learning. Neurocomputing 169: 185-186 (2015) - [j29]Bassam Mokbel, Benjamin Paaßen, Frank-Michael Schleif, Barbara Hammer:
Metric learning for sequences in relational LVQ. Neurocomputing 169: 306-322 (2015) - [j28]Frank-Michael Schleif, Peter Tiño:
Indefinite Proximity Learning: A Review. Neural Comput. 27(10): 2039-2096 (2015) - [c66]Frank-Michael Schleif, Andrej Gisbrecht, Peter Tiño:
Probabilistic Classification Vector Machine at large scale. ESANN 2015 - [c65]Michael Biehl, Barbara Hammer, Frank-Michael Schleif, Petra Schneider, Thomas Villmann:
Stationarity of Matrix Relevance LVQ. IJCNN 2015: 1-8 - [c64]Frank-Michael Schleif, H. Chen, Peter Tiño:
Incremental probabilistic classification vector machine with linear costs. IJCNN 2015: 1-8 - [c63]Frank-Michael Schleif, Andrej Gisbrecht, Peter Tiño:
Large Scale Indefinite Kernel Fisher Discriminant. SIMBAD 2015: 160-170 - 2014
- [j27]Barbara Hammer, Daniela Hofmann, Frank-Michael Schleif, Xibin Zhu:
Learning vector quantization for (dis-)similarities. Neurocomputing 131: 43-51 (2014) - [j26]Mark J. Embrechts, Fabrice Rossi, Frank-Michael Schleif, John Aldo Lee:
Advances in artificial neural networks, machine learning, and computational intelligence (ESANN 2013). Neurocomputing 141: 1-2 (2014) - [j25]Daniela Hofmann, Frank-Michael Schleif, Benjamin Paaßen, Barbara Hammer:
Learning interpretable kernelized prototype-based models. Neurocomputing 141: 84-96 (2014) - [j24]Marc Strickert, Kerstin Bunte, Frank-Michael Schleif, Eyke Hüllermeier:
Correlation-based embedding of pairwise score data. Neurocomputing 141: 97-109 (2014) - [j23]Xibin Zhu, Frank-Michael Schleif, Barbara Hammer:
Adaptive conformal semi-supervised vector quantization for dissimilarity data. Pattern Recognit. Lett. 49: 138-145 (2014) - [c62]Frank-Michael Schleif:
Proximity learning for non-standard big data. ESANN 2014 - [c61]Frank-Michael Schleif, Peter Tiño, Thomas Villmann:
Recent trends in learning of structured and non-standard data. ESANN 2014 - [c60]Frank-Michael Schleif:
Discriminative Fast Soft Competitive Learning. ICANN 2014: 81-88 - [c59]Frank-Michael Schleif, Thomas Villmann, Xibin Zhu:
High Dimensional Matrix Relevance Learning. ICDM Workshops 2014: 661-667 - [c58]Tina Geweniger, Frank-Michael Schleif, Thomas Villmann:
Probabilistic Prototype Classification Using t-norms. WSOM 2014: 99-108 - [e1]Thomas Villmann, Frank-Michael Schleif, Marika Kaden, Mandy Lange:
Advances in Self-Organizing Maps and Learning Vector Quantization - Proceedings of the 10th International Workshop, WSOM 2014, Mittweida, Germany, July, 2-4, 2014. Advances in Intelligent Systems and Computing 295, Springer 2014, ISBN 978-3-319-07694-2 [contents] - [i3]Andrej Gisbrecht, Frank-Michael Schleif:
Metric and non-metric proximity transformations at linear costs. CoRR abs/1411.1646 (2014) - 2013
- [j22]Alessio Micheli, Frank-Michael Schleif, Peter Tiño:
Novel approaches in machine learning and computational intelligence. Neurocomputing 112: 1-3 (2013) - [c57]Xibin Zhu, Frank-Michael Schleif, Barbara Hammer:
Semi-Supervised Vector Quantization for proximity data. ESANN 2013 - [c56]Frank-Michael Schleif, Xibin Zhu, Barbara Hammer:
Sparse Prototype Representation by Core Sets. IDEAL 2013: 302-309 - [c55]Xibin Zhu, Frank-Michael Schleif, Barbara Hammer:
Secure Semi-supervised Vector Quantization for Dissimilarity Data. IWANN (1) 2013: 347-356 - [c54]Frank-Michael Schleif, Andrej Gisbrecht:
Data Analysis of (Non-)Metric Proximities at Linear Costs. SIMBAD 2013: 59-74 - 2012
- [j21]Andrej Gisbrecht, Bassam Mokbel, Frank-Michael Schleif, Xibin Zhu, Barbara Hammer:
Linear Time Relational Prototype Based Learning. Int. J. Neural Syst. 22(5) (2012) - [j20]Xibin Zhu, Andrej Gisbrecht, Frank-Michael Schleif, Barbara Hammer:
Approximation techniques for clustering dissimilarity data. Neurocomputing 90: 72-84 (2012) - [j19]Kerstin Bunte, Petra Schneider, Barbara Hammer, Frank-Michael Schleif, Thomas Villmann, Michael Biehl:
Limited Rank Matrix Learning, discriminative dimension reduction and visualization. Neural Networks 26: 159-173 (2012) - [c53]Frank-Michael Schleif, Xibin Zhu, Barbara Hammer:
Soft Competitive Learning for Large Data Sets. ADBIS Workshops 2012: 141-151 - [c52]Kerstin Bunte, Frank-Michael Schleif, Michael Biehl:
Adaptive learning for complex-valued data. ESANN 2012 - [c51]Barbara Hammer, Bassam Mokbel, Frank-Michael Schleif, Xibin Zhu:
White Box Classification of Dissimilarity Data. HAIS (1) 2012: 309-321 - [c50]Frank-Michael Schleif, Bassam Mokbel, Andrej Gisbrecht, Leslie Theunissen, Volker Dürr, Barbara Hammer:
Learning Relevant Time Points for Time-Series Data in the Life Sciences. ICANN (2) 2012: 531-539 - [c49]Frank-Michael Schleif, Xibin Zhu, Andrej Gisbrecht, Barbara Hammer:
Fast approximated relational and kernel clustering. ICPR 2012: 1229-1232 - [c48]Frank-Michael Schleif, Xibin Zhu, Barbara Hammer:
A Conformal Classifier for Dissimilarity Data. AIAI (2) 2012: 234-243 - [c47]Michael Biehl, Kerstin Bunte, Frank-Michael Schleif, Petra Schneider, Thomas Villmann:
Large margin linear discriminative visualization by Matrix Relevance Learning. IJCNN 2012: 1-8 - [c46]Frank-Michael Schleif, Andrej Gisbrecht, Barbara Hammer:
Relevance learning for short high-dimensional time series in the life sciences. IJCNN 2012: 1-8 - [c45]Xibin Zhu, Frank-Michael Schleif, Barbara Hammer:
Patch Processing for Relational Learning Vector Quantization. ISNN (1) 2012: 55-63 - 2011
- [j18]Frank-Michael Schleif, T. Riemer, U. Börner, L. Schnapka-Hille, Michael Cross:
Genetic algorithm for shift-uncertainty correction in 1-D NMR-based metabolite identifications and quantifications. Bioinform. 27(4): 524-533 (2011) - [j17]Frank-Michael Schleif, Thomas Villmann, Barbara Hammer, Petra Schneider:
Efficient Kernelized Prototype Based Classification. Int. J. Neural Syst. 21(6): 443-457 (2011) - [j16]John Aldo Lee, Frank-Michael Schleif, Thomas Martinetz:
Advances in artificial neural networks, machine learning, and computational intelligence. Neurocomputing 74(9): 1299-1300 (2011) - [j15]Ernest Mwebaze, Petra Schneider, Frank-Michael Schleif, Jennifer R. Aduwo, John A. Quinn, Sven Haase, Thomas Villmann, Michael Biehl:
Divergence-based classification in learning vector quantization. Neurocomputing 74(9): 1429-1435 (2011) - [c44]Andrej Gisbrecht, Barbara Hammer, Frank-Michael Schleif, Xibin Zhu:
Accelerating kernel clustering for biomedical data analysis. CIBCB 2011: 154-161 - [c43]Kerstin Bunte, Frank-Michael Schleif, Sven Haase, Thomas Villmann:
Mathematical Foundations of the Self Organized Neighbor Embedding (SONE) for Dimension Reduction and Visualization. ESANN 2011 - [c42]Petra Schneider, Tina Geweniger, Frank-Michael Schleif, Michael Biehl, Thomas Villmann:
Multivariate class labeling in Robust Soft LVQ. ESANN 2011 - [c41]Udo Seiffert, Frank-Michael Schleif, Dietlind Zühlke:
Recent trends in computational intelligence in life sciences. ESANN 2011 - [c40]Frank-Michael Schleif, Andrej Gisbrecht, Barbara Hammer:
Accelerating Kernel Neural Gas. ICANN (1) 2011: 150-158 - [c39]Barbara Hammer, Frank-Michael Schleif, Xibin Zhu:
Relational Extensions of Learning Vector Quantization. ICONIP (2) 2011: 481-489 - [c38]Barbara Hammer, Bassam Mokbel, Frank-Michael Schleif, Xibin Zhu:
Prototype-Based Classification of Dissimilarity Data. IDA 2011: 185-197 - [c37]Andrej Gisbrecht, Frank-Michael Schleif, Xibin Zhu, Barbara Hammer:
Linear Time Heuristics for Topographic Mapping of Dissimilarity Data. IDEAL 2011: 25-33 - [c36]Frank-Michael Schleif:
Sparse kernelized vector quantization with local dependencies. IJCNN 2011: 1538-1545 - [c35]Barbara Hammer, Andrej Gisbrecht, Alexander Hasenfuss, Bassam Mokbel, Frank-Michael Schleif, Xibin Zhu:
Topographic Mapping of Dissimilarity Data. WSOM 2011: 1-15 - [i2]Frank-Michael Schleif, Andrej Gisbrecht, Barbara Hammer:
Supervised learning of short and high-dimensional temporal sequences for life science measurements. CoRR abs/1110.2416 (2011) - 2010
- [j14]Cecilio Angulo, John Aldo Lee, Frank-Michael Schleif:
Advances in computational intelligence and learning (ESANN 2009). Neurocomputing 73(7-9): 1049-1050 (2010) - [j13]Stephan Simmuteit, Frank-Michael Schleif, Thomas Villmann, Barbara Hammer:
Evolving trees for the retrieval of mass spectrometry-based bacteria fingerprints. Knowl. Inf. Syst. 25(2): 327-343 (2010) - [c34]Thomas Villmann, Sven Haase, Frank-Michael Schleif, Barbara Hammer, Michael Biehl:
The Mathematics of Divergence Based Online Learning in Vector Quantization. ANNPR 2010: 108-119 - [c33]Ernest Mwebaze, Petra Schneider, Frank-Michael Schleif, Sven Haase, Thomas Villmann, Michael Biehl:
Divergence based Learning Vector Quantization. ESANN 2010 - [c32]Thomas Villmann, Frank-Michael Schleif, Barbara Hammer:
Sparse representation of data. ESANN 2010 - [c31]Dietlind Zühlke, Frank-Michael Schleif, Tina Geweniger, Sven Haase, Thomas Villmann:
Learning vector quantization for heterogeneous structured data. ESANN 2010 - [c30]Thomas Villmann, Sven Haase, Frank-Michael Schleif, Barbara Hammer:
Divergence Based Online Learning in Vector Quantization. ICAISC (1) 2010: 479-486 - [c29]Frank-Michael Schleif, Thomas Villmann, Barbara Hammer, Petra Schneider, Michael Biehl:
Generalized Derivative Based Kernelized Learning Vector Quantization. IDEAL 2010: 21-28
2000 – 2009
- 2009
- [j12]Frank-Michael Schleif, Thomas Villmann, Markus Kostrzewa, Barbara Hammer, Alexander Gammerman:
Cancer informatics by prototype networks in mass spectrometry. Artif. Intell. Medicine 45(2-3): 215-228 (2009) - [j11]Frank-Michael Schleif, Michael Biehl, Alfredo Vellido:
Advances in machine learning and computational intelligence. Neurocomputing 72(7-9): 1377-1378 (2009) - [j10]Frank-Michael Schleif, Thomas Villmann, Matthias Ongyerth:
Supervised data analysis and reliability estimation with exemplary application for spectral data. Neurocomputing 72(16-18): 3590-3601 (2009) - [c28]Marc Strickert, Frank-Michael Schleif, Thomas Villmann, Udo Seiffert:
Unleashing Pearson Correlation for Faithful Analysis of Biomedical Data. Similarity-Based Clustering 2009: 70-91 - [c27]Frank-Michael Schleif, Thomas Villmann:
Neural Maps and Learning Vector Quantization - Theory and Applications. ESANN 2009 - [c26]Stephan Simmuteit, Frank-Michael Schleif, Thomas Villmann, Thomas Elssner:
Tanimoto Metric in Tree-SOM for Improved Representation of Mass Spectrometry Data with an Underlying Taxonomic Structure. ICMLA 2009: 563-567 - [c25]Marc Strickert, Jens Keilwagen, Frank-Michael Schleif, Thomas Villmann, Michael Biehl:
Matrix Metric Adaptation Linear Discriminant Analysis of Biomedical Data. IWANN (1) 2009: 933-940 - [c24]Thomas Villmann, Frank-Michael Schleif:
Funtional vector quantization by neural maps. WHISPERS 2009: 1-4 - [c23]Stephan Simmuteit, Frank-Michael Schleif, Thomas Villmann, Markus Kostrzewa:
Hierarchical PCA Using Tree-SOM for the Identification of Bacteria. WSOM 2009: 272-280 - [r1]Frank-Michael Schleif, Thomas Villmann, Barbara Hammer:
Prototype Based Classification in Bioinformatics. Encyclopedia of Artificial Intelligence 2009: 1337-1342 - 2008
- [j9]Marc Strickert, Frank-Michael Schleif, Udo Seiffert, Thomas Villmann:
Derivatives of Pearson Correlation for Gradient-based Analysis of Biomedical Data. Inteligencia Artif. 12(37): 37-44 (2008) - [j8]Thomas Villmann, Frank-Michael Schleif, Markus Kostrzewa, Axel Walch, Barbara Hammer:
Classification of mass-spectrometric data in clinical proteomics using learning vector quantization methods. Briefings Bioinform. 9(2): 129-143 (2008) - [j7]Frank-Michael Schleif, Thomas Villmann, Barbara Hammer:
Prototype based fuzzy classification in clinical proteomics. Int. J. Approx. Reason. 47(1): 4-16 (2008) - [j6]Thomas Villmann, Barbara Hammer, Frank-Michael Schleif, Wieland Hermann, Marie Cottrell:
Fuzzy classification using information theoretic learning vector quantization. Neurocomputing 71(16-18): 3070-3076 (2008) - [c22]Frank-Michael Schleif, Matthias Ongyerth, Thomas Villmann:
Sparse Coding Neural Gas for Analysis of Nuclear Magnetic Resonance Spectroscopy. CBMS 2008: 620-625 - [c21]Marc Strickert, Frank-Michael Schleif, Thomas Villmann:
Metric adaptation for supervised attribute rating. ESANN 2008: 31-36 - [c20]Petra Schneider, Frank-Michael Schleif, Thomas Villmann, Michael Biehl:
Generalized matrix learning vector quantizer for the analysis of spectral data. ESANN 2008: 451-456 - [c19]Tina Geweniger, Frank-Michael Schleif, Alexander Hasenfuss, Barbara Hammer, Thomas Villmann:
Comparison of Cluster Algorithms for the Analysis of Text Data Using Kolmogorov Complexity. ICONIP (2) 2008: 61-69 - [p2]Frank-Michael Schleif, Thomas Villmann, Barbara Hammer, Martijn van der Werff, André M. Deelder, Rob A. E. M. Tollenaar:
Analysis of Spectral Data in Clinical Proteomics by Use of Learning Vector Quantizers. Computational Intelligence in Biomedicine and Bioinformatics 2008: 141-167 - 2007
- [j5]Frank-Michael Schleif, Barbara Hammer, Thomas Villmann:
Margin-based active learning for LVQ networks. Neurocomputing 70(7-9): 1215-1224 (2007) - [j4]Frank-Michael Schleif:
Maschinelles Lernen mit Prototypmethoden in der klinischen Proteomik. Künstliche Intell. 21(4): 65-67 (2007) - [c18]Marc Gerhard, Soren-Oliver Deininger, Frank-Michael Schleif:
Statistical Classification and Visualization of MALDI-Imaging Data. CBMS 2007: 403-405 - [c17]Thomas Villmann, Marc Strickert, Cornelia Brüß, Frank-Michael Schleif, Udo Seiffert:
Visualization of Fuzzy Information in Fuzzy-Classification for Image Segmentation using MDS. ESANN 2007: 103-108 - [c16]Thomas Villmann, Frank-Michael Schleif, Martijn van der Werff, André M. Deelder, Rob A. E. M. Tollenaar:
Association Learning in SOMs for Fuzzy-Classification. ICMLA 2007: 581-586 - [c15]Barbara Hammer, Alexander Hasenfuss, Frank-Michael Schleif, Thomas Villmann, Marc Strickert, Udo Seiffert:
Intuitive Clustering of Biological Data. IJCNN 2007: 1877-1882 - [c14]Alexander Hasenfuss, Barbara Hammer, Frank-Michael Schleif, Thomas Villmann:
Neural Gas Clustering for Dissimilarity Data with Continuous Prototypes. IWANN 2007: 539-546 - [c13]Thomas Villmann, Frank-Michael Schleif, Erzsébet Merényi, Barbara Hammer:
Fuzzy Labeled Self-Organizing Map for Classification of Spectra. IWANN 2007: 556-563 - [c12]Frank-Michael Schleif, Thomas Villmann, Barbara Hammer:
Supervised Neural Gas for Classification of Functional Data and Its Application to the Analysis of Clinical Proteom Spectra. IWANN 2007: 1036-1044 - [c11]Frank-Michael Schleif, Thomas Villmann, Barbara Hammer:
Analysis of Proteomic Spectral Data by Multi Resolution Analysis and Self-Organizing Maps. WILF 2007: 563-570 - [i1]Frank-Michael Schleif:
Advances in pre-processing and model generation for mass spectrometric data analysis. Similarity-based Clustering and its Application to Medicine and Biology 2007 - 2006
- [b1]Frank-Michael Schleif:
Prototype based machine learning for clinical proteomics. Clausthal University of Technology, Clausthal-Zellerfeld, Lower Saxony, Germany, 2006, pp. 1-133 - [j3]Thomas Villmann, Frank-Michael Schleif, Barbara Hammer:
Prototype-based fuzzy classification with local relevance for proteomics. Neurocomputing 69(16-18): 2425-2428 (2006) - [j2]Thomas Villmann, Frank-Michael Schleif, Barbara Hammer:
Comparison of relevance learning vector quantization with other metric adaptive classification methods. Neural Networks 19(5): 610-622 (2006) - [j1]Thomas Villmann, Barbara Hammer, Frank-Michael Schleif, Tina Geweniger, Wieland Hermann:
Fuzzy classification by fuzzy labeled neural gas. Neural Networks 19(6-7): 772-779 (2006) - [c10]Barbara Hammer, Alexander Hasenfuss, Frank-Michael Schleif, Thomas Villmann:
Supervised Batch Neural Gas. ANNPR 2006: 33-45 - [c9]Thomas Villmann, Udo Seiffert, Frank-Michael Schleif, Cornelia Brüß, Tina Geweniger, Barbara Hammer:
Fuzzy Labeled Self-Organizing Map with Label-Adjusted Prototypes. ANNPR 2006: 46-56 - [c8]Frank-Michael Schleif, Thomas Elssner, Markus Kostrzewa, Thomas Villmann, Barbara Hammer:
Analysis and Visualization of Proteomic Data by Fuzzy Labeled Self-Organizing Maps. CBMS 2006: 919-924 - [c7]Frank-Michael Schleif, Barbara Hammer, Thomas Villmann:
Margin based Active Learning for LVQ Networks. ESANN 2006: 539-544 - [c6]Cornelia Brüß, Felix Bollenbeck, Frank-Michael Schleif, Winfriede Weschke, Thomas Villmann, Udo Seiffert:
Fuzzy image segmentation with Fuzzy Labelled Neural Gas. ESANN 2006: 563-568 - [c5]Barbara Hammer, Thomas Villmann, Frank-Michael Schleif, Cornelia Albani, Wieland Hermann:
Learning Vector Quantization Classification with Local Relevance Determination for Medical Data. ICAISC 2006: 603-612 - [c4]Thomas Villmann, Barbara Hammer, Frank-Michael Schleif, Tina Geweniger, Tom Fischer, Marie Cottrell:
Prototype Based Classification Using Information Theoretic Learning. ICONIP (2) 2006: 40-49 - [p1]Frank-Michael Schleif:
Prototype based machine learning for clinical proteomics. Ausgezeichnete Informatikdissertationen 2006: 179-188 - 2005
- [c3]Thomas Villmann, Frank-Michael Schleif, Barbara Hammer:
Fuzzy Labeled Soft Nearest Neighbor Classification with Relevance Learning. ICMLA 2005 - [c2]Frank-Michael Schleif, Thomas Villmann, Barbara Hammer:
Local Metric Adaptation for Soft Nearest Prototype Classification to Classify Proteomic Data. WILF 2005: 290-296 - 2004
- [c1]Frank-Michael Schleif, U. Clauss, Thomas Villmann, Barbara Hammer:
Supervised relevance neural gas and unified maximum separability analysis for classification of mass spectrometric data. ICMLA 2004: 374-379
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-25 21:15 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint