default search action
Gunnar Rätsch
Person information
- affiliation: ETH Zurich, Switzerland
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j58]Shkurta Gashi, Pietro Oldrati, Max Möbus, Marc Hilty, Liliana Barrios, Firat Ozdemir, Veronika Kana, Andreas Lutterotti, Gunnar Rätsch, Christian Holz:
Modeling multiple sclerosis using mobile and wearable sensor data. npj Digit. Medicine 7(1) (2024) - [c89]Alexandru Meterez, Amir Joudaki, Francesco Orabona, Alexander Immer, Gunnar Rätsch, Hadi Daneshmand:
Towards Training Without Depth Limits: Batch Normalization Without Gradient Explosion. ICLR 2024 - [c88]Alizée Pace, Hugo Yèche, Bernhard Schölkopf, Gunnar Rätsch, Guy Tennenholtz:
Delphic Offline Reinforcement Learning under Nonidentifiable Hidden Confounding. ICLR 2024 - [c87]Kouroche Bouchiat, Alexander Immer, Hugo Yèche, Gunnar Rätsch, Vincent Fortuin:
Improving Neural Additive Models with Bayesian Principles. ICML 2024 - [i53]Hugo Yèche, Manuel Burger, Dinara Veshchezerova, Gunnar Rätsch:
Dynamic Survival Analysis for Early Event Prediction. CoRR abs/2403.12818 (2024) - [i52]Fabian Baldenweg, Manuel Burger, Gunnar Rätsch, Rita Kuznetsova:
Multi-Modal Contrastive Learning for Online Clinical Time-Series Applications. CoRR abs/2403.18316 (2024) - [i51]Alizée Pace, Bernhard Schölkopf, Gunnar Rätsch, Giorgia Ramponi:
Preference Elicitation for Offline Reinforcement Learning. CoRR abs/2406.18450 (2024) - [i50]Fedor Sergeev, Paola Malsot, Gunnar Rätsch, Vincent Fortuin:
Towards Dynamic Feature Acquisition on Medical Time Series by Maximizing Conditional Mutual Information. CoRR abs/2407.13429 (2024) - 2023
- [j57]Olga Mineeva, Daniel Danciu, Bernhard Schölkopf, Ruth E. Ley, Gunnar Rätsch, Nicholas D. Youngblut:
ResMiCo: Increasing the quality of metagenome-assembled genomes with deep learning. PLoS Comput. Biol. 19(5) (2023) - [c86]Alexander Immer, Tycho F. A. van der Ouderaa, Mark van der Wilk, Gunnar Rätsch, Bernhard Schölkopf:
Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels. ICML 2023: 14333-14352 - [c85]Hugo Yèche, Alizée Pace, Gunnar Rätsch, Rita Kuznetsova:
Temporal Label Smoothing for Early Event Prediction. ICML 2023: 39913-39938 - [c84]Manuel Burger, Gunnar Rätsch, Rita Kuznetsova:
Multi-modal Graph Learning over UMLS Knowledge Graphs. ML4H@NeurIPS 2023: 52-81 - [c83]Rita Kuznetsova, Alizée Pace, Manuel Burger, Hugo Yèche, Gunnar Rätsch:
On the Importance of Step-wise Embeddings for Heterogeneous Clinical Time-Series. ML4H@NeurIPS 2023: 268-291 - [i49]Kouroche Bouchiat, Alexander Immer, Hugo Yèche, Gunnar Rätsch, Vincent Fortuin:
Laplace-Approximated Neural Additive Models: Improving Interpretability with Bayesian Inference. CoRR abs/2305.16905 (2023) - [i48]Alizée Pace, Hugo Yèche, Bernhard Schölkopf, Gunnar Rätsch, Guy Tennenholtz:
Delphic Offline Reinforcement Learning under Nonidentifiable Hidden Confounding. CoRR abs/2306.01157 (2023) - [i47]Alexander Immer, Tycho F. A. van der Ouderaa, Mark van der Wilk, Gunnar Rätsch, Bernhard Schölkopf:
Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels. CoRR abs/2306.03968 (2023) - [i46]Manuel Burger, Gunnar Rätsch, Rita Kuznetsova:
Multi-modal Graph Learning over UMLS Knowledge Graphs. CoRR abs/2307.04461 (2023) - [i45]Alexandru Meterez, Amir Joudaki, Francesco Orabona, Alexander Immer, Gunnar Rätsch, Hadi Daneshmand:
Towards Training Without Depth Limits: Batch Normalization Without Gradient Explosion. CoRR abs/2310.02012 (2023) - [i44]Yurong Hu, Manuel Burger, Gunnar Rätsch, Rita Kuznetsova:
Language Model Training Paradigms for Clinical Feature Embeddings. CoRR abs/2311.00768 (2023) - [i43]Samyak Jain, Manuel Burger, Gunnar Rätsch, Rita Kuznetsova:
Knowledge Graph Representations to enhance Intensive Care Time-Series Predictions. CoRR abs/2311.07180 (2023) - [i42]Rita Kuznetsova, Alizée Pace, Manuel Burger, Hugo Yèche, Gunnar Rätsch:
On the Importance of Step-wise Embeddings for Heterogeneous Clinical Time-Series. CoRR abs/2311.08902 (2023) - [i41]Kacper Kapusniak, Manuel Burger, Gunnar Rätsch, Amir Joudaki:
Learning Genomic Sequence Representations using Graph Neural Networks over De Bruijn Graphs. CoRR abs/2312.03865 (2023) - 2022
- [j56]Hana Rozhonová, Daniel Danciu, Stefan Stark, Gunnar Rätsch, André Kahles, Kjong-Van Lehmann:
SECEDO: SNV-based subclone detection using ultra-low coverage single-cell DNA sequencing. Bioinform. 38(18): 4293-4300 (2022) - [j55]Kjong-Van Lehmann, André Kahles, Magdalena Murr, Gunnar Rätsch:
RNA Instant Quality Check: Alignment-Free RNA-Degradation Detection. J. Comput. Biol. 29(8): 857-866 (2022) - [c82]Gideon Dresdner, Maria-Luiza Vladarean, Gunnar Rätsch, Francesco Locatello, Volkan Cevher, Alp Yurtsever:
Faster One-Sample Stochastic Conditional Gradient Method for Composite Convex Minimization. AISTATS 2022: 8439-8457 - [c81]Vincent Fortuin, Adrià Garriga-Alonso, Sebastian W. Ober, Florian Wenzel, Gunnar Rätsch, Richard E. Turner, Mark van der Wilk, Laurence Aitchison:
Bayesian Neural Network Priors Revisited. ICLR 2022 - [c80]Alexander Immer, Tycho F. A. van der Ouderaa, Gunnar Rätsch, Vincent Fortuin, Mark van der Wilk:
Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations. NeurIPS 2022 - [c79]Mikhail Karasikov, Harun Mustafa, Gunnar Rätsch, André Kahles:
Lossless Indexing with Counting de Bruijn Graphs. RECOMB 2022: 374-376 - [i40]Alexander Immer, Tycho F. A. van der Ouderaa, Vincent Fortuin, Gunnar Rätsch, Mark van der Wilk:
Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations. CoRR abs/2202.10638 (2022) - [i39]Gideon Dresdner, Maria-Luiza Vladarean, Gunnar Rätsch, Francesco Locatello, Volkan Cevher, Alp Yurtsever:
Faster One-Sample Stochastic Conditional Gradient Method for Composite Convex Minimization. CoRR abs/2202.13212 (2022) - [i38]Hugo Yèche, Alizée Pace, Gunnar Rätsch, Rita Kuznetsova:
Temporal Label Smoothing for Early Prediction of Adverse Events. CoRR abs/2208.13764 (2022) - [i37]Severin Husmann, Hugo Yèche, Gunnar Rätsch, Rita Kuznetsova:
On the Importance of Clinical Notes in Multi-modal Learning for EHR Data. CoRR abs/2212.03044 (2022) - 2021
- [j54]Vincent Fortuin, Gideon Dresdner, Heiko Strathmann, Gunnar Rätsch:
Sparse Gaussian Processes on Discrete Domains. IEEE Access 9: 76750-76758 (2021) - [j53]Daniel Danciu, Mikhail Karasikov, Harun Mustafa, André Kahles, Gunnar Rätsch:
Topology-based sparsification of graph annotations. Bioinform. 37(Supplement): 169-176 (2021) - [j52]Linda K. Sundermann, Jeff Wintersinger, Gunnar Rätsch, Jens Stoye, Quaid Morris:
Reconstructing tumor evolutionary histories and clone trees in polynomial-time with SubMARine. PLoS Comput. Biol. 17(1) (2021) - [c78]Metod Jazbec, Matthew Ashman, Vincent Fortuin, Michael Pearce, Stephan Mandt, Gunnar Rätsch:
Scalable Gaussian Process Variational Autoencoders. AISTATS 2021: 3511-3519 - [c77]Laura Manduchi, Matthias Hüser, Martin Faltys, Julia E. Vogt, Gunnar Rätsch, Vincent Fortuin:
T-DPSOM: an interpretable clustering method for unsupervised learning of patient health states. CHIL 2021: 236-245 - [c76]Alexander Immer, Matthias Bauer, Vincent Fortuin, Gunnar Rätsch, Mohammad Emtiyaz Khan:
Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning. ICML 2021: 4563-4573 - [c75]Hugo Yèche, Gideon Dresdner, Francesco Locatello, Matthias Hüser, Gunnar Rätsch:
Neighborhood Contrastive Learning Applied to Online Patient Monitoring. ICML 2021: 11964-11974 - [c74]Gideon Dresdner, Saurav Shekhar, Fabian Pedregosa, Francesco Locatello, Gunnar Rätsch:
Boosting Variational Inference With Locally Adaptive Step-Sizes. IJCAI 2021: 2337-2343 - [c73]Hugo Yèche, Rita Kuznetsova, Marc Zimmermann, Matthias Hüser, Xinrui Lyu, Martin Faltys, Gunnar Rätsch:
HiRID-ICU-Benchmark - A Comprehensive Machine Learning Benchmark on High-resolution ICU Data. NeurIPS Datasets and Benchmarks 2021 - [c72]Jonathan Heitz, Joanna Ficek, Martin Faltys, Tobias M. Merz, Gunnar Rätsch, Matthias Hüser:
WRSE - a non-parametric weighted-resolution ensemble for predicting individual survival distributions in the ICU. SPACA 2021: 54-69 - [i36]Simon Bing, Vincent Fortuin, Gunnar Rätsch:
On Disentanglement in Gaussian Process Variational Autoencoders. CoRR abs/2102.05507 (2021) - [i35]Vincent Fortuin, Adrià Garriga-Alonso, Florian Wenzel, Gunnar Rätsch, Richard E. Turner, Mark van der Wilk, Laurence Aitchison:
Bayesian Neural Network Priors Revisited. CoRR abs/2102.06571 (2021) - [i34]Alexander Immer, Matthias Bauer, Vincent Fortuin, Gunnar Rätsch, Mohammad Emtiyaz Khan:
Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning. CoRR abs/2104.04975 (2021) - [i33]Matthias Hüser, Martin Faltys, Xinrui Lyu, Chris Barber, Stephanie L. Hyland, Tobias M. Merz, Gunnar Rätsch:
Early prediction of respiratory failure in the intensive care unit. CoRR abs/2105.05728 (2021) - [i32]Gideon Dresdner, Saurav Shekhar, Fabian Pedregosa, Francesco Locatello, Gunnar Rätsch:
Boosting Variational Inference With Locally Adaptive Step-Sizes. CoRR abs/2105.09240 (2021) - [i31]Hugo Yèche, Gideon Dresdner, Francesco Locatello, Matthias Hüser, Gunnar Rätsch:
Neighborhood Contrastive Learning Applied to Online Patient Monitoring. CoRR abs/2106.05142 (2021) - [i30]Hugo Yèche, Rita Kuznetsova, Marc Zimmermann, Matthias Hüser, Xinrui Lyu, Martin Faltys, Gunnar Rätsch:
HiRID-ICU-Benchmark - A Comprehensive Machine Learning Benchmark on High-resolution ICU Data. CoRR abs/2111.08536 (2021) - 2020
- [j51]Xinrui Lyu, Jean Garret, Gunnar Rätsch, Kjong-Van Lehmann:
Mutational signature learning with supervised negative binomial non-negative matrix factorization. Bioinform. 36(Supplement-1): i154-i160 (2020) - [j50]Mikhail Karasikov, Harun Mustafa, Amir Joudaki, Sara Javadzadeh-No, Gunnar Rätsch, André Kahles:
Sparse Binary Relation Representations for Genome Graph Annotation. J. Comput. Biol. 27(4): 626-639 (2020) - [j49]Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf, Olivier Bachem:
A Sober Look at the Unsupervised Learning of Disentangled Representations and their Evaluation. J. Mach. Learn. Res. 21: 209:1-209:62 (2020) - [j48]Claudia Calabrese, Natalie R. Davidson, Deniz Demircioglu, Nuno A. Fonseca, Yao He, André Kahles, Kjong-Van Lehmann, Fenglin Liu, Yuichi Shiraishi, Cameron M. Soulette, Lara Urban, Liliana Greger, Siliang Li, Dongbing Liu, Marc D. Perry, Qian Xiang, Fan Zhang, Junjun Zhang, Peter Bailey, Serap Erkek, Katherine A. Hoadley, Yong Hou, Matthew R. Huska, Helena Kilpinen, Jan O. Korbel, Maximillian G. Marin, Julia Markowski, Tannistha Nandi, Qiang Pan-Hammarström, Chandra Sekhar Pedamallu, Reiner Siebert, Stefan G. Stark, Hong Su, Patrick Tan, Sebastian M. Waszak, Christina K. Yung, Shida Zhu, Philip Awadalla, Matthew Meyerson, B. F. Francis Ouellette, Kui Wu, Huanming Yang, Samirkumar B. Amin, Aurélien Chateigner, Isidro Cortés-Ciriano, Brian Craft, Milana Frenkel-Morgenstern, Mary Goldman, Ekta Khurana, Fabien C. Lamaze, Chang Li, Xiaobo Li, Xinyue Li, Xingmin Liu, Morten Muhlig Nielsen, Akinyemi I. Ojesina, Peter J. Park, Jakob Skou Pedersen, Bin Tean Teh, Jian Wang, Heng Xiong, Sergei Yakneen, Chen Ye, Xiuqing Zhang, Liangtao Zheng, Jingchun Zhu, Chad Creighton, Jonathan Göke, Roland F. Schwarz, Oliver Stegle, Zemin Zhang, Alvis Brazma, Gunnar Rätsch, Angela N. Brooks:
Genomic basis for RNA alterations in cancer. Nat. 578(7793): 129-136 (2020) - [c71]Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf, Olivier Bachem:
A Commentary on the Unsupervised Learning of Disentangled Representations. AAAI 2020: 13681-13684 - [c70]Vincent Fortuin, Dmitry Baranchuk, Gunnar Rätsch, Stephan Mandt:
GP-VAE: Deep Probabilistic Time Series Imputation. AISTATS 2020: 1651-1661 - [c69]Francesco Locatello, Michael Tschannen, Stefan Bauer, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem:
Disentangling Factors of Variations Using Few Labels. ICLR 2020 - [c68]Francesco Locatello, Ben Poole, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem, Michael Tschannen:
Weakly-Supervised Disentanglement Without Compromises. ICML 2020: 6348-6359 - [c67]Maciej Besta, Raghavendra Kanakagiri, Harun Mustafa, Mikhail Karasikov, Gunnar Rätsch, Torsten Hoefler, Edgar Solomonik:
Communication-Efficient Jaccard similarity for High-Performance Distributed Genome Comparisons. IPDPS 2020: 1122-1132 - [c66]Adrian Egli, Manuel Battegay, Andrea C. Büchler, Peter Bühlmann, Thierry Calandra, Philippe Eckert, Hansjakob Furrer, Gilbert Greub, Stephan M. Jakob, Laurent Kaiser, Stephen L. Leib, Stephan Marsch, Nicolai Meinshausen, Jean-Luc Pagani, Jerome Pugin, Gunnar Rätsch, Jacques Schrenzel, Reto Schüpbach, Martin Siegemund, Nicola Zamboni, Reinhard Zbinden, Annelies Zinkernagel, Karsten M. Borgwardt:
SPHN/PHRT: Forming a Swiss-Wide Infrastructure for Data-Driven Sepsis Research. MIE 2020: 1163-1167 - [c65]Pesho Ivanov, Benjamin Bichsel, Harun Mustafa, André Kahles, Gunnar Rätsch, Martin T. Vechev:
AStarix: Fast and Optimal Sequence-to-Graph Alignment. RECOMB 2020: 104-119 - [i29]Francesco Locatello, Ben Poole, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem, Michael Tschannen:
Weakly-Supervised Disentanglement Without Compromises. CoRR abs/2002.02886 (2020) - [i28]Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf, Olivier Bachem:
A Commentary on the Unsupervised Learning of Disentangled Representations. CoRR abs/2007.14184 (2020) - [i27]Metod Jazbec, Vincent Fortuin, Michael Pearce, Stephan Mandt, Gunnar Rätsch:
Scalable Gaussian Process Variational Autoencoders. CoRR abs/2010.13472 (2020) - [i26]Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf, Olivier Bachem:
A Sober Look at the Unsupervised Learning of Disentangled Representations and their Evaluation. CoRR abs/2010.14766 (2020) - [i25]Jonathan Heitz, Joanna Ficek, Martin Faltys, Tobias M. Merz, Gunnar Rätsch, Matthias Hüser:
WRSE - a non-parametric weighted-resolution ensemble for predicting individual survival distributions in the ICU. CoRR abs/2011.00865 (2020)
2010 – 2019
- 2019
- [j47]Harun Mustafa, Ingo Schilken, Mikhail Karasikov, Carsten Eickhoff, Gunnar Rätsch, André Kahles:
Dynamic compression schemes for graph coloring. Bioinform. 35(3): 407-414 (2019) - [c64]Vincent Fortuin, Matthias Hüser, Francesco Locatello, Heiko Strathmann, Gunnar Rätsch:
SOM-VAE: Interpretable Discrete Representation Learning on Time Series. ICLR (Poster) 2019 - [c63]Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf, Olivier Bachem:
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations. RML@ICLR 2019 - [c62]Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf, Olivier Bachem:
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations. ICML 2019: 4114-4124 - [c61]Mikhail Karasikov, Harun Mustafa, Amir Joudaki, Sara Javadzadeh-No, Gunnar Rätsch, André Kahles:
Sparse Binary Relation Representations for Genome Graph Annotation. RECOMB 2019: 120-135 - [i24]Vincent Fortuin, Gunnar Rätsch:
Deep Mean Functions for Meta-Learning in Gaussian Processes. CoRR abs/1901.08098 (2019) - [i23]Stephanie L. Hyland, Martin Faltys, Matthias Hüser, Xinrui Lyu, Thomas Gumbsch, Cristóbal Esteban, Christian Bock, Max Horn, Michael Moor, Bastian Rieck, Marc Zimmermann, Dean A. Bodenham, Karsten M. Borgwardt, Gunnar Rätsch, Tobias M. Merz:
Machine learning for early prediction of circulatory failure in the intensive care unit. CoRR abs/1904.07990 (2019) - [i22]Stefan G. Stark, Stephanie L. Hyland, Melanie Fernandes Pradier, Kjong-Van Lehmann, Andreas Wicki, Fernando Pérez-Cruz, Julia E. Vogt, Gunnar Rätsch:
Unsupervised Extraction of Phenotypes from Cancer Clinical Notes for Association Studies. CoRR abs/1904.12973 (2019) - [i21]Francesco Locatello, Michael Tschannen, Stefan Bauer, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem:
Disentangling Factors of Variation Using Few Labels. CoRR abs/1905.01258 (2019) - [i20]Vincent Fortuin, Gunnar Rätsch, Stephan Mandt:
Multivariate Time Series Imputation with Variational Autoencoders. CoRR abs/1907.04155 (2019) - [i19]Andreas Georgiou, Vincent Fortuin, Harun Mustafa, Gunnar Rätsch:
Deep Multiple Instance Learning for Taxonomic Classification of Metagenomic read sets. CoRR abs/1909.13146 (2019) - [i18]Laura Manduchi, Matthias Hüser, Gunnar Rätsch, Vincent Fortuin:
Variational PSOM: Deep Probabilistic Clustering with Self-Organizing Maps. CoRR abs/1910.01590 (2019) - [i17]Maciej Besta, Raghavendra Kanakagiri, Harun Mustafa, Mikhail Karasikov, Gunnar Rätsch, Torsten Hoefler, Edgar Solomonik:
Communication-Efficient Jaccard Similarity for High-Performance Distributed Genome Comparisons. CoRR abs/1911.04200 (2019) - 2018
- [c60]Francesco Locatello, Rajiv Khanna, Joydeep Ghosh, Gunnar Rätsch:
Boosting Variational Inference: an Optimization Perspective. AISTATS 2018: 464-472 - [c59]Stephanie L. Hyland, Martin Faltys, Matthias Hüser, Xinrui Lyu, Cristóbal Esteban, Gunnar Rätsch, Tobias Merz:
A Machine Learning-based Early Warning System for Circulatory System Deterioration in Intensive Care Unit Patients. AMIA 2018 - [c58]Francesco Locatello, Damien Vincent, Ilya O. Tolstikhin, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf:
Clustering Meets Implicit Generative Models. ICLR (Workshop) 2018 - [c57]Francesco Locatello, Anant Raj, Sai Praneeth Karimireddy, Gunnar Rätsch, Bernhard Schölkopf, Sebastian U. Stich, Martin Jaggi:
On Matching Pursuit and Coordinate Descent. ICML 2018: 3204-3213 - [c56]Stephanie L. Hyland, Matthias Hüser, Xinrui Lyu, Martin Faltys, Tobias Merz, Gunnar Rätsch:
Predicting circulatory system deterioration in intensive care unit patients. AIH@IJCAI 2018: 87-92 - [c55]Francesco Locatello, Gideon Dresdner, Rajiv Khanna, Isabel Valera, Gunnar Rätsch:
Boosting Black Box Variational Inference. NeurIPS 2018: 3405-3415 - [i16]Francesco Locatello, Anant Raj, Sai Praneeth Karimireddy, Gunnar Rätsch, Bernhard Schölkopf, Sebastian U. Stich, Martin Jaggi:
Revisiting First-Order Convex Optimization Over Linear Spaces. CoRR abs/1803.09539 (2018) - [i15]Francesco Locatello, Damien Vincent, Ilya O. Tolstikhin, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf:
Clustering Meets Implicit Generative Models. CoRR abs/1804.11130 (2018) - [i14]Francesco Locatello, Gideon Dresdner, Rajiv Khanna, Isabel Valera, Gunnar Rätsch:
Boosting Black Box Variational Inference. CoRR abs/1806.02185 (2018) - [i13]Vincent Fortuin, Matthias Hüser, Francesco Locatello, Heiko Strathmann, Gunnar Rätsch:
Deep Self-Organization: Interpretable Discrete Representation Learning on Time Series. CoRR abs/1806.02199 (2018) - [i12]Vincent Fortuin, Gideon Dresdner, Heiko Strathmann, Gunnar Rätsch:
Scalable Gaussian Processes on Discrete Domains. CoRR abs/1810.10368 (2018) - [i11]Xinrui Lyu, Matthias Hüser, Stephanie L. Hyland, George Zerveas, Gunnar Rätsch:
Improving Clinical Predictions through Unsupervised Time Series Representation Learning. CoRR abs/1812.00490 (2018) - 2017
- [j46]Yi Zhong, Theofanis Karaletsos, Philipp Drewe, Vipin T. Sreedharan, David Kuo, Kamini Singh, Hans-Guido Wendel, Gunnar Rätsch:
RiboDiff: detecting changes of mRNA translation efficiency from ribosome footprints. Bioinform. 33(1): 139-141 (2017) - [c54]Stephanie L. Hyland, Gunnar Rätsch:
Learning Unitary Operators with Help From u(n). AAAI 2017: 2050-2058 - [c53]Francesco Locatello, Michael Tschannen, Gunnar Rätsch, Martin Jaggi:
Greedy Algorithms for Cone Constrained Optimization with Convergence Guarantees. NIPS 2017: 773-784 - [i10]Francesco Locatello, Michael Tschannen, Gunnar Rätsch, Martin Jaggi:
Greedy Algorithms for Cone Constrained Optimization with Convergence Guarantees. CoRR abs/1705.11041 (2017) - [i9]Cristóbal Esteban, Stephanie L. Hyland, Gunnar Rätsch:
Real-valued (Medical) Time Series Generation with Recurrent Conditional GANs. CoRR abs/1706.02633 (2017) - [i8]Francesco Locatello, Rajiv Khanna, Joydeep Ghosh, Gunnar Rätsch:
Boosting Variational Inference: an Optimization Perspective. CoRR abs/1708.01733 (2017) - 2016
- [j45]André Kahles, Jonas Behr, Gunnar Rätsch:
MMR: a tool for read multi-mapper resolution. Bioinform. 32(5): 770-772 (2016) - [j44]Kana Shimizu, Koji Nuida, Gunnar Rätsch:
Efficient privacy-preserving string search and an application in genomics. Bioinform. 32(11): 1652-1661 (2016) - [j43]André Kahles, Cheng Soon Ong, Yi Zhong, Gunnar Rätsch:
SplAdder: identification, quantification and testing of alternative splicing events from RNA-Seq data. Bioinform. 32(12): 1840-1847 (2016) - [c52]Stephanie L. Hyland, Theofanis Karaletsos, Gunnar Rätsch:
A Generative Model of Words and Relationships from Multiple Sources. AAAI 2016: 2622-2629 - [c51]Theofanis Karaletsos, Serge J. Belongie, Gunnar Rätsch:
When crowds hold privileges: Bayesian unsupervised representation learning with oracle constraints. ICLR (Poster) 2016 - [i7]Stephanie L. Hyland, Theofanis Karaletsos, Gunnar Rätsch:
Knowledge Transfer with Medical Language Embeddings. CoRR abs/1602.03551 (2016) - [i6]Stephanie L. Hyland, Gunnar Rätsch:
Learning Unitary Operators with Help From u(n). CoRR abs/1607.04903 (2016) - 2015
- [j42]Yi Zhong, Philipp Drewe, Andrew L. Wolfe, Kamini Singh, Hans-Guido Wendel, Gunnar Rätsch:
Protein translational control and its contribution to oncogenesis revealed by computational methods. BMC Bioinform. 16(S-2): A6 (2015) - [j41]Julia E. Vogt, Marius Kloft, Stefan Stark, Sudhir Raman, Sandhya Prabhakaran, Volker Roth, Gunnar Rätsch:
Probabilistic clustering of time-evolving distance data. Mach. Learn. 100(2-3): 635-654 (2015) - [c50]Marina M.-C. Vidovic, Nico Görnitz, Klaus-Robert Müller, Gunnar Rätsch, Marius Kloft:
Opening the Black Box: Revealing Interpretable Sequence Motifs in Kernel-Based Learning Algorithms. ECML/PKDD (2) 2015: 137-153 - [c49]Søren Brunak, Francisco M. de la Vega, Adam A. Margolin, Benjamin J. Raphael, Gunnar Rätsch, Joshua M. Stuart:
Session Introduction. Pacific Symposium on Biocomputing 2015: 8-9 - [c48]Kjong-Van Lehmann, André Kahles, Cyriac Kandoth, William Lee, Nikolaus Schultz, Oliver Stegle, Gunnar Rätsch:
Integrative Genome-wide Analysis of the Determinants of RNA Splicing in Kidney Renal Clear Cell Carcinoma. Pacific Symposium on Biocomputing 2015: 44-55 - [i5]Julia E. Vogt, Marius Kloft, Stefan Stark, Sudhir Raman, Sandhya Prabhakaran, Volker Roth, Gunnar Rätsch:
Probabilistic Clustering of Time-Evolving Distance Data. CoRR abs/1504.03701 (2015) - [i4]Christian Widmer, Marius Kloft, Vipin T. Sreedharan, Gunnar Rätsch:
Framework for Multi-task Multiple Kernel Learning and Applications in Genome Analysis. CoRR abs/1506.09153 (2015) - [i3]Stephanie L. Hyland, Theofanis Karaletsos, Gunnar Rätsch:
A Generative Model of Words and Relationships from Multiple Sources. CoRR abs/1510.00259 (2015) - [i2]Trevor Darrell, Marius Kloft, Massimiliano Pontil, Gunnar Rätsch, Erik Rodner:
Machine Learning with Interdependent and Non-identically Distributed Data (Dagstuhl Seminar 15152). Dagstuhl Reports 5(4): 18-55 (2015) - 2014
- [j40]