default search action
Alain Durmus
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c39]Samuel Gruffaz, Kyurae Kim, Alain Durmus, Jacob R. Gardner:
Stochastic Approximation with Biased MCMC for Expectation Maximization. AISTATS 2024: 2332-2340 - [c38]Tom Sander, Maxime Sylvestre, Alain Durmus:
Implicit Bias in Noisy-SGD: With Applications to Differentially Private Training. AISTATS 2024: 3295-3303 - [c37]Pierre Clavier, Tom Huix, Alain Oliviero Durmus:
VITS : Variational Inference Thompson Sampling for contextual bandits. ICML 2024 - [c36]Louis Grenioux, Maxence Noble, Marylou Gabrié, Alain Oliviero Durmus:
Stochastic Localization via Iterative Posterior Sampling. ICML 2024 - [c35]Tom Huix, Anna Korba, Alain Oliviero Durmus, Eric Moulines:
Theoretical Guarantees for Variational Inference with Fixed-Variance Mixture of Gaussians. ICML 2024 - [c34]Tom Sander, Yaodong Yu, Maziar Sanjabi, Alain Oliviero Durmus, Yi Ma, Kamalika Chaudhuri, Chuan Guo:
Differentially Private Representation Learning via Image Captioning. ICML 2024 - [c33]Antoine Scheid, Daniil Tiapkin, Etienne Boursier, Aymeric Capitaine, Eric Moulines, Michael I. Jordan, El-Mahdi El-Mhamdi, Alain Oliviero Durmus:
Incentivized Learning in Principal-Agent Bandit Games. ICML 2024 - [i48]Tom Sander, Maxime Sylvestre, Alain Durmus:
Implicit Bias in Noisy-SGD: With Applications to Differentially Private Training. CoRR abs/2402.08344 (2024) - [i47]Louis Grenioux, Maxence Noble, Marylou Gabrié, Alain Oliviero Durmus:
Stochastic Localization via Iterative Posterior Sampling. CoRR abs/2402.10758 (2024) - [i46]Tom Sander, Pierre Fernandez, Alain Durmus, Matthijs Douze, Teddy Furon:
Watermarking Makes Language Models Radioactive. CoRR abs/2402.14904 (2024) - [i45]Samuel Gruffaz, Kyurae Kim, Alain Oliviero Durmus, Jacob R. Gardner:
Stochastic Approximation with Biased MCMC for Expectation Maximization. CoRR abs/2402.17870 (2024) - [i44]Tom Sander, Yaodong Yu, Maziar Sanjabi, Alain Durmus, Yi Ma, Kamalika Chaudhuri, Chuan Guo:
Differentially Private Representation Learning via Image Captioning. CoRR abs/2403.02506 (2024) - [i43]Antoine Scheid, Daniil Tiapkin, Etienne Boursier, Aymeric Capitaine, El Mahdi El Mhamdi, Eric Moulines, Michael I. Jordan, Alain Durmus:
Incentivized Learning in Principal-Agent Bandit Games. CoRR abs/2403.03811 (2024) - [i42]Yazid Janati El Idrissi, Alain Durmus, Eric Moulines, Jimmy Olsson:
Divide-and-Conquer Posterior Sampling for Denoising Diffusion Priors. CoRR abs/2403.11407 (2024) - [i41]Tom Huix, Anna Korba, Alain Durmus, Eric Moulines:
Theoretical Guarantees for Variational Inference with Fixed-Variance Mixture of Gaussians. CoRR abs/2406.04012 (2024) - [i40]Antoine Scheid, Aymeric Capitaine, Etienne Boursier, Eric Moulines, Michael I. Jordan, Alain Durmus:
Mitigating Externalities while Learning: an Online Version of the Coase Theorem. CoRR abs/2406.19824 (2024) - [i39]Aymeric Capitaine, Etienne Boursier, Antoine Scheid, Eric Moulines, Michael I. Jordan, El-Mahdi El-Mhamdi, Alain Durmus:
Unravelling in Collaborative Learning. CoRR abs/2407.14332 (2024) - [i38]Dario Shariatian, Umut Simsekli, Alain Durmus:
Denoising Lévy Probabilistic Models. CoRR abs/2407.18609 (2024) - [i37]Andrea Bertazzi, Alain Oliviero Durmus, Dario Shariatian, Umut Simsekli, Eric Moulines:
Piecewise deterministic generative models. CoRR abs/2407.19448 (2024) - [i36]Marta Gentiloni Silveri, Giovanni Conforti, Alain Durmus:
Theoretical guarantees in KL for Diffusion Flow Matching. CoRR abs/2409.08311 (2024) - 2023
- [j11]Rémi Laumont, Valentin De Bortoli, Andrés Almansa, Julie Delon, Alain Durmus, Marcelo Pereyra:
On Maximum a Posteriori Estimation with Plug & Play Priors and Stochastic Gradient Descent. J. Math. Imaging Vis. 65(1): 140-163 (2023) - [c32]Vincent Plassier, Eric Moulines, Alain Durmus:
Federated Averaging Langevin Dynamics: Toward a unified theory and new algorithms. AISTATS 2023: 5299-5356 - [c31]Tom Huix, Matthew Zhang, Alain Durmus:
Tight Regret and Complexity Bounds for Thompson Sampling via Langevin Monte Carlo. AISTATS 2023: 8749-8770 - [c30]Giacomo Greco, Maxence Noble, Giovanni Conforti, Alain Durmus:
Non-asymptotic convergence bounds for Sinkhorn iterates and their gradients: a coupling approach. COLT 2023: 716-746 - [c29]Louis Grenioux, Alain Oliviero Durmus, Eric Moulines, Marylou Gabrié:
On Sampling with Approximate Transport Maps. ICML 2023: 11698-11733 - [c28]Kruno Lehman, Alain Durmus, Umut Simsekli:
Approximate Heavy Tails in Offline (Multi-Pass) Stochastic Gradient Descent. NeurIPS 2023 - [c27]Maxence Noble, Valentin De Bortoli, Alain Durmus:
Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo. NeurIPS 2023 - [c26]Maxence Noble, Valentin De Bortoli, Arnaud Doucet, Alain Durmus:
Tree-Based Diffusion Schrödinger Bridge with Applications to Wasserstein Barycenters. NeurIPS 2023 - [i35]Louis Grenioux, Alain Durmus, Éric Moulines, Marylou Gabrié:
On Sampling with Approximate Transport Maps. CoRR abs/2302.04763 (2023) - [i34]Maxence Noble, Valentin De Bortoli, Arnaud Doucet, Alain Durmus:
Tree-Based Diffusion Schrödinger Bridge with Applications to Wasserstein Barycenters. CoRR abs/2305.16557 (2023) - [i33]Evan Camrud, Alain Oliviero Durmus, Pierre Monmarché, Gabriel Stoltz:
Second order quantitative bounds for unadjusted generalized Hamiltonian Monte Carlo. CoRR abs/2306.09513 (2023) - [i32]Pierre Clavier, Tom Huix, Alain Durmus:
VITS : Variational Inference Thomson Sampling for contextual bandits. CoRR abs/2307.10167 (2023) - [i31]Krunoslav Lehman Pavasovic, Alain Durmus, Umut Simsekli:
Approximate Heavy Tails in Offline (Multi-Pass) Stochastic Gradient Descent. CoRR abs/2310.18455 (2023) - 2022
- [j10]Rémi Laumont, Valentin De Bortoli, Andrés Almansa, Julie Delon, Alain Durmus, Marcelo Pereyra:
Bayesian Imaging Using Plug & Play Priors: When Langevin Meets Tweedie. SIAM J. Imaging Sci. 15(2): 701-737 (2022) - [j9]Alain Durmus, Éric Moulines, Marcelo Pereyra:
A Proximal Markov Chain Monte Carlo Method for Bayesian Inference in Imaging Inverse Problems: When Langevin Meets Moreau. SIAM Rev. 64(4): 991-1028 (2022) - [c25]Maxime Vono, Vincent Plassier, Alain Durmus, Aymeric Dieuleveut, Eric Moulines:
QLSD: Quantised Langevin Stochastic Dynamics for Bayesian Federated Learning. AISTATS 2022: 6459-6500 - [c24]Nikita Kotelevskii, Maxime Vono, Alain Durmus, Eric Moulines:
FedPop: A Bayesian Approach for Personalised Federated Learning. NeurIPS 2022 - [c23]Sergey Samsonov, Evgeny Lagutin, Marylou Gabrié, Alain Durmus, Alexey Naumov, Eric Moulines:
Local-Global MCMC kernels: the best of both worlds. NeurIPS 2022 - [i30]Alain Durmus, Éric Moulines:
On the geometric convergence for MALA under verifiable conditions. CoRR abs/2201.01951 (2022) - [i29]Randal Douc, Alain Durmus, Aurélien Enfroy, Jimmy Olsson:
Boost your favorite Markov Chain Monte Carlo sampler using Kac's theorem: the Kick-Kac teleportation algorithm. CoRR abs/2201.05002 (2022) - [i28]Rémi Laumont, Valentin De Bortoli, Andrés Almansa, Julie Delon, Alain Durmus, Marcelo Pereyra:
On Maximum-a-Posteriori estimation with Plug & Play priors and stochastic gradient descent. CoRR abs/2201.06133 (2022) - [i27]Nikita Kotelevskii, Maxime Vono, Eric Moulines, Alain Durmus:
FedPop: A Bayesian Approach for Personalised Federated Learning. CoRR abs/2206.03611 (2022) - [i26]Tom Huix, Szymon Majewski, Alain Durmus, Eric Moulines, Anna Korba:
Variational Inference of overparameterized Bayesian Neural Networks: a theoretical and empirical study. CoRR abs/2207.03859 (2022) - [i25]Alain Durmus, Eric Moulines, Alexey Naumov, Sergey Samsonov:
Finite-time High-probability Bounds for Polyak-Ruppert Averaged Iterates of Linear Stochastic Approximation. CoRR abs/2207.04475 (2022) - [i24]Maxence Noble, Valentin De Bortoli, Alain Durmus:
Barrier Hamiltonian Monte Carlo. CoRR abs/2210.11925 (2022) - [i23]Vincent Plassier, Alain Durmus, Eric Moulines:
Federated Averaging Langevin Dynamics: Toward a unified theory and new algorithms. CoRR abs/2211.00100 (2022) - 2021
- [j8]Valentin De Bortoli, Alain Durmus, Marcelo Pereyra, Ana Fernandez Vidal:
Efficient stochastic optimisation by unadjusted Langevin Monte Carlo. Stat. Comput. 31(3): 29 (2021) - [j7]Valentin De Bortoli, Agnès Desolneux, Alain Durmus, Bruno Galerne, Arthur Leclaire:
Maximum Entropy Methods for Texture Synthesis: Theory and Practice. SIAM J. Math. Data Sci. 3(1): 52-82 (2021) - [c22]Alain Durmus, Pablo Jiménez, Eric Moulines, Salem Said:
On Riemannian Stochastic Approximation Schemes with Fixed Step-Size. AISTATS 2021: 1018-1026 - [c21]Alain Durmus, Eric Moulines, Alexey Naumov, Sergey Samsonov, Hoi-To Wai:
On the Stability of Random Matrix Product with Markovian Noise: Application to Linear Stochastic Approximation and TD Learning. COLT 2021: 1711-1752 - [c20]Xavier Fontaine, Valentin De Bortoli, Alain Durmus:
Convergence rates and approximation results for SGD and its continuous-time counterpart. COLT 2021: 1965-2058 - [c19]Vincent Plassier, Maxime Vono, Alain Durmus, Eric Moulines:
DG-LMC: A Turn-key and Scalable Synchronous Distributed MCMC Algorithm via Langevin Monte Carlo within Gibbs. ICML 2021: 8577-8587 - [c18]Achille Thin, Nikita Kotelevskii, Arnaud Doucet, Alain Durmus, Eric Moulines, Maxim Panov:
Monte Carlo Variational Auto-Encoders. ICML 2021: 10247-10257 - [c17]Kimia Nadjahi, Alain Durmus, Pierre E. Jacob, Roland Badeau, Umut Simsekli:
Fast Approximation of the Sliced-Wasserstein Distance Using Concentration of Random Projections. NeurIPS 2021: 12411-12424 - [c16]Achille Thin, Yazid Janati El Idrissi, Sylvain Le Corff, Charles Ollion, Eric Moulines, Arnaud Doucet, Alain Durmus, Christian X. Robert:
NEO: Non Equilibrium Sampling on the Orbits of a Deterministic Transform. NeurIPS 2021: 17060-17071 - [c15]Alain Durmus, Eric Moulines, Alexey Naumov, Sergey Samsonov, Kevin Scaman, Hoi-To Wai:
Tight High Probability Bounds for Linear Stochastic Approximation with Fixed Stepsize. NeurIPS 2021: 30063-30074 - [c14]Ana Fernandez Vidal, Marcelo Pereyra, Alain Durmus, Jean-François Giovannelli:
Fast Bayesian Model Selection in Imaging Inverse Problems Using Residuals. SSP 2021: 91-95 - [i22]Alain Durmus, Eric Moulines, Alexey Naumov, Sergey Samsonov, Hoi-To Wai:
On the Stability of Random Matrix Product with Markovian Noise: Application to Linear Stochastic Approximation and TD Learning. CoRR abs/2102.00185 (2021) - [i21]Alain Durmus, Pablo Jiménez, Éric Moulines, Salem Said:
On Riemannian Stochastic Approximation Schemes with Fixed Step-Size. CoRR abs/2102.07586 (2021) - [i20]Rémi Laumont, Valentin De Bortoli, Andrés Almansa, Julie Delon, Alain Durmus, Marcelo Pereyra:
Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie. CoRR abs/2103.04715 (2021) - [i19]Maxime Vono, Vincent Plassier, Alain Durmus, Aymeric Dieuleveut, Eric Moulines:
QLSD: Quantised Langevin stochastic dynamics for Bayesian federated learning. CoRR abs/2106.00797 (2021) - [i18]Alain Durmus, Eric Moulines, Alexey Naumov, Sergey Samsonov, Kevin Scaman, Hoi-To Wai:
Tight High Probability Bounds for Linear Stochastic Approximation with Fixed Stepsize. CoRR abs/2106.01257 (2021) - [i17]Vincent Plassier, Maxime Vono, Alain Durmus, Eric Moulines:
DG-LMC: A Turn-key and Scalable Synchronous Distributed MCMC Algorithm. CoRR abs/2106.06300 (2021) - [i16]Kimia Nadjahi, Alain Durmus, Pierre E. Jacob, Roland Badeau, Umut Simsekli:
Fast Approximation of the Sliced-Wasserstein Distance Using Concentration of Random Projections. CoRR abs/2106.15427 (2021) - [i15]Achille Thin, Nikita Kotelevskii, Arnaud Doucet, Alain Durmus, Eric Moulines, Maxim Panov:
Monte Carlo Variational Auto-Encoders. CoRR abs/2106.15921 (2021) - [i14]Alain Durmus, Aurélien Enfroy, Éric Moulines, Gabriel Stoltz:
Uniform minorization condition and convergence bounds for discretizations of kinetic Langevin dynamics. CoRR abs/2107.14542 (2021) - [i13]Alain Durmus, Andreas Eberle:
Asymptotic bias of inexact Markov Chain Monte Carlo methods in high dimension. CoRR abs/2108.00682 (2021) - 2020
- [j6]Ana Fernandez Vidal, Valentin De Bortoli, Marcelo Pereyra, Alain Durmus:
Maximum Likelihood Estimation of Regularization Parameters in High-Dimensional Inverse Problems: An Empirical Bayesian Approach Part I: Methodology and Experiments. SIAM J. Imaging Sci. 13(4): 1945-1989 (2020) - [j5]Valentin De Bortoli, Alain Durmus, Marcelo Pereyra, Ana Fernandez Vidal:
Maximum Likelihood Estimation of Regularization Parameters in High-Dimensional Inverse Problems: An Empirical Bayesian Approach. Part II: Theoretical Analysis. SIAM J. Imaging Sci. 13(4): 1990-2028 (2020) - [c13]Kimia Nadjahi, Valentin De Bortoli, Alain Durmus, Roland Badeau, Umut Simsekli:
Approximate Bayesian Computation with the Sliced-Wasserstein Distance. ICASSP 2020: 5470-5474 - [c12]Valentin De Bortoli, Alain Durmus, Xavier Fontaine, Umut Simsekli:
Quantitative Propagation of Chaos for SGD in Wide Neural Networks. NeurIPS 2020 - [c11]Kimia Nadjahi, Alain Durmus, Lénaïc Chizat, Soheil Kolouri, Shahin Shahrampour, Umut Simsekli:
Statistical and Topological Properties of Sliced Probability Divergences. NeurIPS 2020 - [i12]Achille Thin, Nikita Kotelevskii, Jean-Stanislas Denain, Léo Grinsztajn, Alain Durmus, Maxim Panov, Eric Moulines:
MetFlow: A New Efficient Method for Bridging the Gap between Markov Chain Monte Carlo and Variational Inference. CoRR abs/2002.12253 (2020) - [i11]Kimia Nadjahi, Alain Durmus, Lénaïc Chizat, Soheil Kolouri, Shahin Shahrampour, Umut Simsekli:
Statistical and Topological Properties of Sliced Probability Divergences. CoRR abs/2003.05783 (2020) - [i10]Alain Durmus, Pablo Jiménez, Éric Moulines, Salem Said, Hoi-To Wai:
Convergence Analysis of Riemannian Stochastic Approximation Schemes. CoRR abs/2005.13284 (2020) - [i9]Valentin De Bortoli, Alain Durmus, Xavier Fontaine, Umut Simsekli:
Quantitative Propagation of Chaos for SGD in Wide Neural Networks. CoRR abs/2007.06352 (2020)
2010 – 2019
- 2019
- [j4]Alain Durmus, Szymon Majewski, Blazej Miasojedow:
Analysis of Langevin Monte Carlo via Convex Optimization. J. Mach. Learn. Res. 20: 73:1-73:46 (2019) - [c10]Firas Jarboui, Célya Gruson-Daniel, Alain Durmus, Vincent Rocchisani, Sophie-Helene Goulet Ebongue, Anneliese Depoux, Wilfried Kirschenmann, Vianney Perchet:
Markov Decision Process for MOOC Users Behavioral Inference. EMOOCs 2019: 70-80 - [c9]Antoine Liutkus, Umut Simsekli, Szymon Majewski, Alain Durmus, Fabian-Robert Stöter:
Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal Transport and Diffusions. ICML 2019: 4104-4113 - [c8]Kimia Nadjahi, Alain Durmus, Umut Simsekli, Roland Badeau:
Asymptotic Guarantees for Learning Generative Models with the Sliced-Wasserstein Distance. NeurIPS 2019: 250-260 - [c7]Marcel Hirt, Petros Dellaportas, Alain Durmus:
Copula-like Variational Inference. NeurIPS 2019: 2955-2967 - [i8]Marcel Hirt, Petros Dellaportas, Alain Durmus:
Copula-like Variational Inference. CoRR abs/1904.07153 (2019) - [i7]Kimia Nadjahi, Alain Durmus, Umut Simsekli, Roland Badeau:
Asymptotic Guarantees for Learning Generative Models with the Sliced-Wasserstein Distance. CoRR abs/1906.04516 (2019) - [i6]Firas Jarboui, Célya Gruson-Daniel, Alain Durmus, Vincent Rocchisani, Sophie-Helene Goulet Ebongue, Anneliese Depoux, Wilfried Kirschenmann, Vianney Perchet:
Markov Decision Process for MOOC users behavioral inference. CoRR abs/1907.04723 (2019) - [i5]Valentin De Bortoli, Agnès Desolneux, Alain Durmus, Bruno Galerne, Arthur Leclaire:
Maximum entropy methods for texture synthesis: theory and practice. CoRR abs/1912.01691 (2019) - 2018
- [j3]Alain Durmus, Eric Moulines, Marcelo Pereyra:
Efficient Bayesian Computation by Proximal Markov Chain Monte Carlo: When Langevin Meets Moreau. SIAM J. Imaging Sci. 11(1): 473-506 (2018) - [c6]Nicolas Brosse, Alain Durmus, Eric Moulines:
The promises and pitfalls of Stochastic Gradient Langevin Dynamics. NeurIPS 2018: 8278-8288 - [i4]Umut Simsekli, Antoine Liutkus, Szymon Majewski, Alain Durmus:
Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal Transport and Diffusions. CoRR abs/1806.08141 (2018) - [i3]Nicolas Brosse, Alain Durmus, Eric Moulines:
The promises and pitfalls of Stochastic Gradient Langevin Dynamics. CoRR abs/1811.10072 (2018) - 2017
- [j2]Alain Durmus, Sylvain Le Corff, Eric Moulines, Gareth O. Roberts:
Optimal scaling of the random walk Metropolis algorithm under L p mean differentiability. J. Appl. Probab. 54(4): 1233-1260 (2017) - [c5]Nicolas Brosse, Alain Durmus, Eric Moulines, Marcelo Pereyra:
Sampling from a log-concave distribution with compact support with proximal Langevin Monte Carlo. COLT 2017: 319-342 - [c4]Umut Simsekli, Alain Durmus, Roland Badeau, Gaël Richard, Eric Moulines, A. Taylan Cemgil:
Parallelized Stochastic Gradient Markov Chain Monte Carlo algorithms for non-negative matrix factorization. ICASSP 2017: 2242-2246 - 2016
- [c3]Alain Durmus, Umut Simsekli, Eric Moulines, Roland Badeau, Gaël Richard:
Stochastic Gradient Richardson-Romberg Markov Chain Monte Carlo. NIPS 2016: 2047-2055 - 2015
- [j1]Alain Durmus, Eric Moulines:
Quantitative bounds of convergence for geometrically ergodic Markov chain in the Wasserstein distance with application to the Metropolis Adjusted Langevin Algorithm. Stat. Comput. 25(1): 5-19 (2015) - 2013
- [c2]Léo Ducas, Alain Durmus, Tancrède Lepoint, Vadim Lyubashevsky:
Lattice Signatures and Bimodal Gaussians. CRYPTO (1) 2013: 40-56 - [i2]Léo Ducas, Alain Durmus, Tancrède Lepoint, Vadim Lyubashevsky:
Lattice Signatures and Bimodal Gaussians. IACR Cryptol. ePrint Arch. 2013: 383 (2013) - 2012
- [c1]Léo Ducas, Alain Durmus:
Ring-LWE in Polynomial Rings. Public Key Cryptography 2012: 34-51 - [i1]Léo Ducas, Alain Durmus:
Ring-LWE in Polynomial Rings. IACR Cryptol. ePrint Arch. 2012: 235 (2012)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-22 21:15 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint