


Остановите войну!
for scientists:


default search action
Thomas Zeugmann
Person information

Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2021
- [j49]Sanjay Jain, Frank Stephan, Thomas Zeugmann:
On the amount of nonconstructivity in learning formal languages from text. Inf. Comput. 281: 104668 (2021) - 2020
- [c66]Thomas Zeugmann:
On the Interplay Between Inductive Inference of Recursive Functions, Complexity Theory and Recursive Numberings. CiE 2020: 124-136
2010 – 2019
- 2018
- [j48]Thomas Zeugmann:
Guest Editor's Foreword. Theor. Comput. Sci. 733: 1-3 (2018) - [c65]Ziyuan Gao, Sanjay Jain, Frank Stephan, Thomas Zeugmann:
On the Help of Bounded Shot Verifiers, Comparators and Standardisers for Learnability in Inductive Inference. ALT 2018: 413-437 - 2017
- [r10]Thomas Zeugmann:
Epsilon Cover. Encyclopedia of Machine Learning and Data Mining 2017: 408-409 - [r9]Thomas Zeugmann:
Epsilon Nets. Encyclopedia of Machine Learning and Data Mining 2017: 409-410 - [r8]Thomas Zeugmann:
PAC Learning. Encyclopedia of Machine Learning and Data Mining 2017: 949-959 - [r7]Thomas Zeugmann:
Stochastic Finite Learning. Encyclopedia of Machine Learning and Data Mining 2017: 1187-1191 - [r6]Thomas Zeugmann:
VC Dimension. Encyclopedia of Machine Learning and Data Mining 2017: 1323-1327 - 2016
- [b2]Werner Römisch, Thomas Zeugmann:
Mathematical Analysis and the Mathematics of Computation. Springer 2016, ISBN 978-3-319-42753-9, pp. 1-703 - [j47]Charles Jordan, Thomas Zeugmann:
The Kahr-Moore-Wang Class Contains Untestable Properties. Balt. J. Mod. Comput. 4(4) (2016) - [j46]Thomas Zeugmann:
Obituary Rūsiņš Mārtiņš Freivalds (1942-2016). Bull. EATCS 118 (2016) - [j45]Sanjay Jain, Rémi Munos, Frank Stephan
, Thomas Zeugmann:
Guest Editors' foreword. Theor. Comput. Sci. 620: 1-3 (2016) - [j44]Peter Auer
, Alexander Clark, Thomas Zeugmann:
Guest editors' foreword. Theor. Comput. Sci. 650: 1-3 (2016) - 2015
- [c64]Yu Zhu, Thomas Zeugmann:
Image Analysis in a Parameter-Free Setting. ISCIS 2015: 285-294 - 2014
- [j43]Ilja Kucevalovs, Ojars Krasts, Rusins Freivalds, Thomas Zeugmann:
On the Influence of Technology on Learning Processes. Parallel Process. Lett. 24(2) (2014) - [j42]Jyrki Kivinen
, Csaba Szepesvári, Thomas Zeugmann:
Guest Editors' introduction. Theor. Comput. Sci. 519: 1-3 (2014) - [j41]Nader H. Bshouty, Gilles Stoltz, Nicolas Vayatis, Thomas Zeugmann:
Guest Editors' foreword. Theor. Comput. Sci. 558: 1-4 (2014) - [c63]Peter Auer, Alexander Clark, Thomas Zeugmann, Sandra Zilles:
Editors' Introduction. ALT 2014: 1-7 - [c62]Rusins Freivalds, Thomas Zeugmann:
Active Learning of Recursive Functions by Ultrametric Algorithms. SOFSEM 2014: 246-257 - [e11]Peter Auer
, Alexander Clark, Thomas Zeugmann, Sandra Zilles:
Algorithmic Learning Theory - 25th International Conference, ALT 2014, Bled, Slovenia, October 8-10, 2014. Proceedings. Lecture Notes in Computer Science 8776, Springer 2014, ISBN 978-3-319-11661-7 [contents] - 2013
- [j40]Marcus Hutter
, Frank Stephan
, Vladimir Vovk
, Thomas Zeugmann:
Guest Editors' foreword. Theor. Comput. Sci. 473: 1-3 (2013) - [c61]Sanjay Jain, Rémi Munos, Frank Stephan
, Thomas Zeugmann:
Editors' Introduction. ALT 2013: 1-12 - [c60]Rusins Freivalds, Thomas Zeugmann, Grant R. Pogosyan:
On the Size Complexity of Deterministic Frequency Automata. LATA 2013: 287-298 - [e10]Sanjay Jain, Rémi Munos, Frank Stephan, Thomas Zeugmann:
Algorithmic Learning Theory - 24th International Conference, ALT 2013, Singapore, October 6-9, 2013. Proceedings. Lecture Notes in Computer Science 8139, Springer 2013, ISBN 978-3-642-40934-9 [contents] - 2012
- [j39]Charles Jordan, Thomas Zeugmann:
Testable and untestable classes of first-order formulae. J. Comput. Syst. Sci. 78(5): 1557-1578 (2012) - [c59]Nader H. Bshouty, Gilles Stoltz, Nicolas Vayatis, Thomas Zeugmann:
Editors' Introduction. ALT 2012: 1-11 - [c58]Sanjay Jain, Frank Stephan
, Thomas Zeugmann:
On the Amount of Nonconstructivity in Learning Formal Languages from Positive Data. TAMC 2012: 423-434 - [e9]Nader H. Bshouty, Gilles Stoltz, Nicolas Vayatis, Thomas Zeugmann:
Algorithmic Learning Theory - 23rd International Conference, ALT 2012, Lyon, France, October 29-31, 2012. Proceedings. Lecture Notes in Computer Science 7568, Springer 2012, ISBN 978-3-642-34105-2 [contents] - 2011
- [j38]Frank J. Balbach, Thomas Zeugmann:
Teaching randomized learners with feedback. Inf. Comput. 209(3): 296-319 (2011) - [c57]Jyrki Kivinen, Csaba Szepesvári, Esko Ukkonen, Thomas Zeugmann:
Editors' Introduction. ALT 2011: 1-13 - [c56]Frank Stephan, Ryo Yoshinaka, Thomas Zeugmann:
On the Parameterised Complexity of Learning Patterns. ISCIS 2011: 277-281 - [c55]Rusins Freivalds, Thomas Zeugmann:
On the Amount of Nonconstructivity in Learning Recursive Functions. TAMC 2011: 332-343 - [c54]Charles Jordan, Thomas Zeugmann:
Untestable Properties in the Kahr-Moore-Wang Class. WoLLIC 2011: 176-186 - [e8]Jyrki Kivinen
, Csaba Szepesvári, Esko Ukkonen
, Thomas Zeugmann:
Algorithmic Learning Theory - 22nd International Conference, ALT 2011, Espoo, Finland, October 5-7, 2011. Proceedings. Lecture Notes in Computer Science 6925, Springer 2011, ISBN 978-3-642-24411-7 [contents] - 2010
- [j37]László Györfi, György Turán, Thomas Zeugmann:
Guest editors' foreword. Theor. Comput. Sci. 411(29-30): 2629-2631 (2010) - [c53]Marcus Hutter
, Frank Stephan
, Vladimir Vovk
, Thomas Zeugmann:
Editors' Introduction. ALT 2010: 1-10 - [c52]Kimihito Ito
, Thomas Zeugmann, Yu Zhu:
Clustering the Normalized Compression Distance for Influenza Virus Data. Algorithms and Applications 2010: 130-146 - [c51]Kimihito Ito
, Thomas Zeugmann, Yu Zhu:
Recent Experiences in Parameter-Free Data Mining. ISCIS 2010: 365-371 - [c50]Charles Jordan, Thomas Zeugmann:
Untestable Properties Expressible with Four First-Order Quantifiers. LATA 2010: 333-343 - [c49]Charles Jordan, Thomas Zeugmann:
A Note on the Testability of Ramsey's Class. TAMC 2010: 296-307 - [e7]Marcus Hutter
, Frank Stephan, Vladimir Vovk, Thomas Zeugmann:
Algorithmic Learning Theory, 21st International Conference, ALT 2010, Canberra, Australia, October 6-8, 2010. Proceedings. Lecture Notes in Computer Science 6331, Springer 2010, ISBN 978-3-642-16107-0 [contents] - [r5]Thomas Zeugmann:
Epsilon Covers. Encyclopedia of Machine Learning 2010: 326 - [r4]Thomas Zeugmann:
Epsilon Nets. Encyclopedia of Machine Learning 2010: 326-327 - [r3]Thomas Zeugmann:
PAC Learning. Encyclopedia of Machine Learning 2010: 745-753 - [r2]Thomas Zeugmann:
Stochastic Finite Learning. Encyclopedia of Machine Learning 2010: 925-928 - [r1]Thomas Zeugmann:
VC Dimension. Encyclopedia of Machine Learning 2010: 1021-1024
2000 – 2009
- 2009
- [c48]Frank J. Balbach, Thomas Zeugmann:
Recent Developments in Algorithmic Teaching. LATA 2009: 1-18 - [c47]Charles Jordan, Thomas Zeugmann:
Relational Properties Expressible with One Universal Quantifier Are Testable. SAGA 2009: 141-155 - [e6]Ricard Gavaldà, Gábor Lugosi, Thomas Zeugmann, Sandra Zilles:
Algorithmic Learning Theory, 20th International Conference, ALT 2009, Porto, Portugal, October 3-5, 2009. Proceedings. Lecture Notes in Computer Science 5809, Springer 2009, ISBN 978-3-642-04413-7 [contents] - [e5]Osamu Watanabe, Thomas Zeugmann:
Stochastic Algorithms: Foundations and Applications, 5th International Symposium, SAGA 2009, Sapporo, Japan, October 26-28, 2009. Proceedings. Lecture Notes in Computer Science 5792, Springer 2009, ISBN 978-3-642-04943-9 [contents] - 2008
- [j36]Yohji Akama
, Thomas Zeugmann:
Consistent and coherent learning with delta-delay. Inf. Comput. 206(11): 1362-1374 (2008) - [j35]John Case, Takeshi Shinohara, Thomas Zeugmann, Sandra Zilles:
Foreword. Theor. Comput. Sci. 397(1-3): 1-3 (2008) - [j34]Thomas Zeugmann, Sandra Zilles:
Learning recursive functions: A survey. Theor. Comput. Sci. 397(1-3): 4-56 (2008) - [j33]Steffen Lange, Thomas Zeugmann, Sandra Zilles:
Learning indexed families of recursive languages from positive data: A survey. Theor. Comput. Sci. 397(1-3): 194-232 (2008) - [c46]Skip Jordan, Thomas Zeugmann:
Indistinguishability and First-Order Logic. TAMC 2008: 94-104 - [e4]Yoav Freund, László Györfi, György Turán, Thomas Zeugmann:
Algorithmic Learning Theory, 19th International Conference, ALT 2008, Budapest, Hungary, October 13-16, 2008. Proceedings. Lecture Notes in Computer Science 5254, Springer 2008, ISBN 978-3-540-87986-2 [contents] - 2007
- [j32]Shai Ben-David, John Case, Thomas Zeugmann:
Foreword. Theor. Comput. Sci. 382(3): 167-169 (2007) - 2006
- [j31]Nicolò Cesa-Bianchi, Rüdiger Reischuk, Thomas Zeugmann:
Foreword. Theor. Comput. Sci. 350(1): 1-2 (2006) - [j30]Thomas Zeugmann:
From learning in the limit to stochastic finite learning. Theor. Comput. Sci. 364(1): 77-97 (2006) - [j29]John Case, Sanjay Jain, Rüdiger Reischuk, Frank Stephan
, Thomas Zeugmann:
Learning a subclass of regular patterns in polynomial time. Theor. Comput. Sci. 364(1): 115-131 (2006) - [c45]Frank J. Balbach, Thomas Zeugmann:
Teaching Memoryless Randomized Learners Without Feedback. ALT 2006: 93-108 - [c44]Frank J. Balbach, Thomas Zeugmann:
Teaching Randomized Learners. COLT 2006: 229-243 - [c43]Jan Poland, Thomas Zeugmann:
Clustering Pairwise Distances with Missing Data: Maximum Cuts Versus Normalized Cuts. Discovery Science 2006: 197-208 - [c42]Yohji Akama, Thomas Zeugmann:
Consistency Conditions for Inductive Inference of Recursive Functions. JSAI 2006: 251-264 - [c41]Ryutaro Kurai, Shin-ichi Minato, Thomas Zeugmann:
N-Gram Analysis Based on Zero-Suppressed BDDs. JSAI 2006: 289-300 - [c40]Thomas Zeugmann:
Inductive Inference and Language Learning. TAMC 2006: 464-473 - [i3]Frank J. Balbach, Thomas Zeugmann:
On the Teachability of Randomized Learners. Complexity of Boolean Functions 2006 - 2005
- [j28]Steffen Lange, Gunter Grieser, Thomas Zeugmann:
Inductive inference of approximations for recursive concepts. Theor. Comput. Sci. 348(1): 15-40 (2005) - [c39]Frank J. Balbach, Thomas Zeugmann:
Teaching Learners with Restricted Mind Changes. ALT 2005: 474-489 - [c38]Björn Hoffmeister, Thomas Zeugmann:
Text Mining Using Markov Chains of Variable Length. Federation over the Web 2005: 1-24 - 2004
- [i2]John Case, Sanjay Jain, Rüdiger Reischuk, Frank Stephan, Thomas Zeugmann:
A Polynomial Time Learner for a Subclass of Regular Patterns. Electron. Colloquium Comput. Complex. TR04 (2004) - 2003
- [j27]Sanjay Jain, Efim B. Kinber, Rolf Wiehagen, Thomas Zeugmann:
On learning of functions refutably. Theor. Comput. Sci. 298(1): 111-143 (2003) - [c37]Thomas Zeugmann:
Can Learning in the Limit Be Done Efficiently? ALT 2003: 17-38 - [c36]John Case, Sanjay Jain, Rüdiger Reischuk, Frank Stephan, Thomas Zeugmann:
Learning a Subclass of Regular Patterns in Polynomial Time. ALT 2003: 234-246 - [c35]Thomas Zeugmann:
Can Learning in the Limit Be Done Efficiently? Discovery Science 2003: 46 - 2002
- [j26]Frank Stephan
, Thomas Zeugmann:
Learning classes of approximations to non-recursive function. Theor. Comput. Sci. 288(2): 309-341 (2002) - 2001
- [j25]Peter Rossmanith, Thomas Zeugmann:
Stochastic Finite Learning of the Pattern Languages. Mach. Learn. 44(1/2): 67-91 (2001) - [j24]Thomas Erlebach
, Peter Rossmanith, Hans Stadtherr, Angelika Steger, Thomas Zeugmann:
Learning one-variable pattern languages very efficiently on average, in parallel, and by asking queries. Theor. Comput. Sci. 261(1): 119-156 (2001) - [j23]Rolf Wiehagen, Thomas Zeugmann:
Foreword. Theor. Comput. Sci. 268(2): 175-177 (2001) - [c34]Naoki Abe, Roni Khardon, Thomas Zeugmann:
Editors' Introduction. ALT 2001: 1-8 - [c33]Sanjay Jain, Efim B. Kinber, Rolf Wiehagen, Thomas Zeugmann:
Learning Recursive Functions Refutably. ALT 2001: 283-298 - [c32]Thomas Zeugmann:
Stochastic Finite Learning. SAGA 2001: 155-172 - [e3]Naoki Abe, Roni Khardon, Thomas Zeugmann:
Algorithmic Learning Theory, 12th International Conference, ALT 2001, Washington, DC, USA, November 25-28, 2001, Proceedings. Lecture Notes in Computer Science 2225, Springer 2001, ISBN 3-540-42875-5 [contents] - 2000
- [j22]Rüdiger Reischuk, Thomas Zeugmann:
An Average-Case Optimal One-Variable Pattern Language Learner. J. Comput. Syst. Sci. 60(2): 302-335 (2000) - [j21]Sanjay Jain, Efim B. Kinber, Steffen Lange, Rolf Wiehagen, Thomas Zeugmann:
Learning languages and functions by erasing. Theor. Comput. Sci. 241(1-2): 143-189 (2000) - [c31]Gunter Grieser, Steffen Lange, Thomas Zeugmann:
Learning Recursive Concepts with Anomalies. ALT 2000: 101-115 - [c30]Frank Stephan, Thomas Zeugmann:
Average-Case Complexity of Learning Polynomials. COLT 2000: 59-68
1990 – 1999
- 1999
- [j20]John Case, Sanjay Jain, Steffen Lange, Thomas Zeugmann:
Incremental Concept Learning for Bounded Data Mining. Inf. Comput. 152(1): 74-110 (1999) - [c29]Frank Stephan, Thomas Zeugmann:
On the Uniform Learnability of Approximations to Non-Recursive Functions. ALT 1999: 276-290 - [c28]Rüdiger Reischuk, Thomas Zeugmann:
A Complete and Tight Average-Case Analysis of Learning Monomials. STACS 1999: 414-423 - 1998
- [j19]Thomas Zeugmann:
Lange and Wiehagen's Pattern Language Learning Algorithm: An Average-Case Analysis with Respect to its Total Learning Time. Ann. Math. Artif. Intell. 23(1-2): 117-145 (1998) - [c27]Michael M. Richter, Carl H. Smith, Rolf Wiehagen, Thomas Zeugmann:
Editor's Introduction. ALT 1998: 1-10 - [c26]Rüdiger Reischuk, Thomas Zeugmann:
Learning One-Variable Pattern Languages in Linear Average Time. COLT 1998: 198-208 - [c25]Peter Rossmanith, Thomas Zeugmann:
Learning k-Variable Pattern Languages Efficiently Stochastically Finite on Average from Positive Data. ICGI 1998: 13-24 - [e2]Michael M. Richter, Carl H. Smith, Rolf Wiehagen, Thomas Zeugmann:
Algorithmic Learning Theory, 9th International Conference, ALT '98, Otzenhausen, Germany, October 8-10, 1998, Proceedings. Lecture Notes in Computer Science 1501, Springer 1998, ISBN 3-540-65013-X [contents] - [i1]Rüdiger Reischuk, Thomas Zeugmann:
An Average-Case Optimal One-Variable Pattern Language Learner. Electron. Colloquium Comput. Complex. TR98 (1998) - 1997
- [j18]Carl H. Smith, Rolf Wiehagen, Thomas Zeugmann:
Classifying Predicates and Languages. Int. J. Found. Comput. Sci. 8(1): 15-42 (1997) - [c24]Thomas Erlebach, Peter Rossmanith, Hans Stadtherr, Angelika Steger, Thomas Zeugmann:
Learning One-Variable Pattern Languages Very Efficiently on Average, in Parallel, and by Asking Queries. ALT 1997: 260-276 - 1996
- [j17]Steffen Lange, Thomas Zeugmann:
Incremental Learning from Positive Data. J. Comput. Syst. Sci. 53(1): 88-103 (1996) - [j16]Steffen Lange, Thomas Zeugmann:
Set-Driven and Rearrangement-Independent Learning of Recursive Languages. Math. Syst. Theory 29(6): 599-634 (1996) - [j15]Steffen Lange, Thomas Zeugmann, Shyam Kapur:
Monotonic and Dual Monotonic Language Learning. Theor. Comput. Sci. 155(2): 365-410 (1996) - [c23]Steffen Lange, Rolf Wiehagen, Thomas Zeugmann:
Learning by Erasing. ALT 1996: 228-241 - [c22]Rusins Freivalds, Thomas Zeugmann:
Co-Learning of Recursive Languages from Positive Data. Ershov Memorial Conference 1996: 122-133 - 1995
- [j14]William I. Gasarch, Efim B. Kinber, Mark G. Pleszkoch, Carl H. Smith, Thomas Zeugmann:
Learning via Queries with Teams and Anomalies. Fundam. Informaticae 23(1): 67-89 (1995) - [j13]Thomas Zeugmann, Steffen Lange, Shyam Kapur:
Characterizations of Monotonic and Dual Monotonic Language Learning. Inf. Comput. 120(2): 155-173 (1995) - [c21]Klaus P. Jantke, Takeshi Shinohara, Thomas Zeugmann:
Editor's Introduction. ALT 1995: ix-xv - [c20]Steffen Lange, Thomas Zeugmann:
Trading monotonicity demands versus mind changes. EuroCOLT 1995: 125-139 - [c19]Rolf Wiehagen, Thomas Zeugmann:
Learning and Consistency. GOSLER Final Report 1995: 1-24 - [c18]Rolf Wiehagen, Carl H. Smith, Thomas Zeugmann:
Classifying Recursive Predicates and Languages. GOSLER Final Report 1995: 174-189 - [c17]Thomas Zeugmann, Steffen Lange:
A Guided Tour Across the Boundaries of Learning Recursive Languages. GOSLER Final Report 1995: 190-258 - [e1]Klaus P. Jantke, Takeshi Shinohara, Thomas Zeugmann:
Algorithmic Learning Theory, 6th International Conference, ALT '95, Fukuoka, Japan, October 18-20, 1995, Proceedings. Lecture Notes in Computer Science 997, Springer 1995, ISBN 3-540-60454-5 [contents] - 1994
- [j12]Steffen Lange, Thomas Zeugmann:
Characterization of language learning front informant under various monotonicity constraints. J. Exp. Theor. Artif. Intell. 6(1): 73-94 (1994) - [j11]Rolf Wiehagen, Thomas Zeugmann:
Ignoring data may be the only way to learn efficiently. J. Exp. Theor. Artif. Intell. 6(1): 131-144 (1994) - [j10]Thomas Zeugmann:
Report on COLT 1994. SIGACT News 25(4): 88-95 (1994) - [c16]Thomas Zeugmann:
Average Case Analysis of Pattern Language Learning Algorithms (Abstract). AII/ALT 1994: 8-9 - [c15]Steffen Lange, Thomas Zeugmann:
Set-Driven and Rearrangement-Independent Learning of Recursive Languages. AII/ALT 1994: 453-468 - 1993
- [j9]Steffen Lange, Thomas Zeugmann:
Learning Recursive Languages with Bounded Mind Changes. Int. J. Found. Comput. Sci. 4(2): 157-178 (1993) - [c14]Steffen Lange, Thomas Zeugmann:
Language Learning in Dependence on the Space of Hypotheses. COLT 1993: 127-136 - [c13]Rolf Wiehagen, Carl H. Smith, Thomas Zeugmann:
Classification of predicates and languages. EuroCOLT 1993: 171-181 - [c12]Steffen Lange, Thomas Zeugmann:
Language Learning with a Bounded Number of Mind Changes. STACS 1993: 682-691 - 1992
- [j8]Thomas Zeugmann:
Highly Parallel Computations Modulo a Number Having Only Small Prime Factors. Inf. Comput. 96(1): 95-114 (1992) - [c11]Rolf Wiehagen, Thomas Zeugmann:
Too Much Can be Too Much for Learning Efficiently. AII 1992: 72-86 - [c10]Steffen Lange, Thomas Zeugmann:
A Unifying Approach to Monotonic Language Learning on Informant. AII 1992: 244-259