


default search action
Sebastian Pokutta
Person information
- affiliation: Zuse Institute Berlin (ZIB), Berlin, Germany
- affiliation: Technische Universität Berlin, Berlin, Germany
- award (2023): Gödel Prize
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j54]Antoine Deza, Sebastian Pokutta, Lionel Pournin
:
The complexity of geometric scaling. Oper. Res. Lett. 52: 107057 (2024) - [j53]Antoine Deza, Shmuel Onn, Sebastian Pokutta, Lionel Pournin:
Kissing Polytopes. SIAM J. Discret. Math. 38(4): 2643-2664 (2024) - [j52]Alejandro Carderera, Mathieu Besançon
, Sebastian Pokutta:
Scalable Frank-Wolfe on Generalized Self-Concordant Functions via Simple Steps. SIAM J. Optim. 34(3): 2231-2258 (2024) - [j51]Gábor Braun, Cristóbal Guzmán
, Sebastian Pokutta
:
Corrections to "Lower Bounds on the Oracle Complexity of Nonsmooth Convex Optimization via Information Theory". IEEE Trans. Inf. Theory 70(7): 5408-5409 (2024) - [c58]Stephan Wäldchen, Kartikey Sharma, Berkant Turan, Max Zimmer, Sebastian Pokutta:
Interpretability Guarantees with Merlin-Arthur Classifiers. AISTATS 2024: 1963-1971 - [c57]Max Zimmer, Christoph Spiegel, Sebastian Pokutta:
Sparse Model Soups: A Recipe for Improved Pruning via Model Averaging. ICLR 2024 - [c56]David Martínez-Rubio, Christophe Roux, Sebastian Pokutta:
Convergence and Trade-Offs in Riemannian Gradient Descent and Riemannian Proximal Point. ICML 2024 - [c55]Jan Pauls, Max Zimmer, Una M. Kelly, Martin Schwartz, Sassan Saatchi, Philippe Ciais, Sebastian Pokutta, Martin Brandt, Fabian Gieseke:
Estimating Canopy Height at Scale. ICML 2024 - [c54]Deborah Hendrych, Mathieu Besançon, Sebastian Pokutta:
Solving the Optimal Experiment Design Problem with Mixed-Integer Convex Methods. SEA 2024: 16:1-16:22 - [i71]Christophe Roux, Max Zimmer, Sebastian Pokutta:
On the Byzantine-Resilience of Distillation-Based Federated Learning. CoRR abs/2402.12265 (2024) - [i70]Konrad Mundinger, Max Zimmer, Sebastian Pokutta:
Neural Parameter Regression for Explicit Representations of PDE Solution Operators. CoRR abs/2403.12764 (2024) - [i69]Jan Pauls, Max Zimmer, Una M. Kelly, Martin Schwartz, Sassan Saatchi, Philippe Ciais, Sebastian Pokutta, Martin Brandt, Fabian Gieseke:
Estimating Canopy Height at Scale. CoRR abs/2406.01076 (2024) - [i68]Grzegorz Gluch, Berkant Turan, Sai Ganesh Nagarajan, Sebastian Pokutta:
The Good, the Bad and the Ugly: Watermarks, Transferable Attacks and Adversarial Defenses. CoRR abs/2410.08864 (2024) - [i67]Shpresim Sadiku, Moritz Wagner, Sai Ganesh Nagarajan, Sebastian Pokutta:
S-CFE: Simple Counterfactual Explanations. CoRR abs/2410.15723 (2024) - [i66]Jennifer Haase, Sebastian Pokutta:
Human-AI Co-Creativity: Exploring Synergies Across Levels of Creative Collaboration. CoRR abs/2411.12527 (2024) - 2023
- [j50]Daniel Bienstock, Gonzalo Muñoz
, Sebastian Pokutta:
Principled deep neural network training through linear programming. Discret. Optim. 49: 100795 (2023) - [j49]Kevin-Martin Aigner
, Andreas Bärmann, Kristin Braun, Frauke Liers, Sebastian Pokutta, Oskar Schneider, Kartikey Sharma, Sebastian Tschuppik:
Data-Driven Distributionally Robust Optimization over Time. INFORMS J. Optim. 5(4): 376-394 (2023) - [j48]Cyrille W. Combettes
, Sebastian Pokutta:
Revisiting the approximate Carathéodory problem via the Frank-Wolfe algorithm. Math. Program. 197(1): 191-214 (2023) - [j47]Christoph Hunkenschröder
, Sebastian Pokutta, Robert Weismantel:
Minimizing a Low-Dimensional Convex Function Over a High-Dimensional Cube. SIAM J. Optim. 33(2): 538-552 (2023) - [c53]Olaf Parczyk, Sebastian Pokutta, Christoph Spiegel, Tibor Szabó:
Fully Computer-Assisted Proofs in Extremal Combinatorics. AAAI 2023: 12482-12490 - [c52]Elias Samuel Wirth, Thomas Kerdreux, Sebastian Pokutta:
Acceleration of Frank-Wolfe Algorithms with Open-Loop Step-Sizes. AISTATS 2023: 77-100 - [c51]David Martínez-Rubio
, Sebastian Pokutta:
Accelerated Riemannian Optimization: Handling Constraints with a Prox to Bound Geometric Penalties. COLT 2023: 359-393 - [c50]David Martínez-Rubio
, Elias Samuel Wirth, Sebastian Pokutta:
Accelerated and Sparse Algorithms for Approximate Personalized PageRank and Beyond. COLT 2023: 2852-2876 - [c49]Antonia Chmiela, Ambros M. Gleixner
, Pawel Lichocki, Sebastian Pokutta:
Online Learning for Scheduling MIP Heuristics. CPAIOR 2023: 114-123 - [c48]Elias Samuel Wirth, Hiroshi Kera, Sebastian Pokutta:
Approximate Vanishing Ideal Computations at Scale. ICLR 2023 - [c47]Max Zimmer
, Christoph Spiegel, Sebastian Pokutta:
How I Learned to Stop Worrying and Love Retraining. ICLR 2023 - [c46]Daniel Thuerck, Boro Sofranac, Marc E. Pfetsch, Sebastian Pokutta:
Learning Cuts via Enumeration Oracles. NeurIPS 2023 - [i65]Antonia Chmiela, Ambros M. Gleixner, Pawel Lichocki, Sebastian Pokutta:
Online Learning for Scheduling MIP Heuristics. CoRR abs/2304.03755 (2023) - [i64]David Martínez-Rubio, Christophe Roux, Christopher Criscitiello, Sebastian Pokutta:
Accelerated Methods for Riemannian Min-Max Optimization Ensuring Bounded Geometric Penalties. CoRR abs/2305.16186 (2023) - [i63]Max Zimmer, Christoph Spiegel, Sebastian Pokutta:
Sparse Model Soups: A Recipe for Improved Pruning via Model Averaging. CoRR abs/2306.16788 (2023) - [i62]Shpresim Sadiku, Moritz Wagner, Sebastian Pokutta:
Group-wise Sparse and Explainable Adversarial Attacks. CoRR abs/2311.17434 (2023) - [i61]Max Zimmer, Megi Andoni, Christoph Spiegel, Sebastian Pokutta:
PERP: Rethinking the Prune-Retrain Paradigm in the Era of LLMs. CoRR abs/2312.15230 (2023) - 2022
- [j46]Boro Sofranac
, Ambros M. Gleixner
, Sebastian Pokutta:
An algorithm-independent measure of progress for linear constraint propagation. Constraints An Int. J. 27(4): 432-455 (2022) - [j45]Tabea Kossen
, Manuel A. Hirzel, Vince I. Madai
, Franziska Boenisch, Anja Hennemuth
, Kristian Hildebrand, Sebastian Pokutta, Kartikey Sharma, Adam Hilbert
, Jan Sobesky
, Ivana Galinovic
, Ahmed A. Khalil
, Jochen B. Fiebach
, Dietmar Frey
:
Toward Sharing Brain Images: Differentially Private TOF-MRA Images With Segmentation Labels Using Generative Adversarial Networks. Frontiers Artif. Intell. 5: 813842 (2022) - [j44]Mathieu Besançon
, Alejandro Carderera
, Sebastian Pokutta
:
FrankWolfe.jl: A High-Performance and Flexible Toolbox for Frank-Wolfe Algorithms and Conditional Gradients. INFORMS J. Comput. 34(5): 2611-2620 (2022) - [j43]Thomas Kerdreux, Alexandre d'Aspremont, Sebastian Pokutta:
Restarting Frank-Wolfe: Faster Rates under Hölderian Error Bounds. J. Optim. Theory Appl. 192(3): 799-829 (2022) - [j42]Yuri Faenza, Gonzalo Muñoz
, Sebastian Pokutta:
New limits of treewidth-based tractability in optimization. Math. Program. 191(2): 559-594 (2022) - [j41]Boro Sofranac
, Ambros M. Gleixner
, Sebastian Pokutta:
Accelerating domain propagation: An efficient GPU-parallel algorithm over sparse matrices. Parallel Comput. 109: 102874 (2022) - [c45]Elias Samuel Wirth, Sebastian Pokutta:
Conditional Gradients for the Approximately Vanishing Ideal. AISTATS 2022: 2191-2209 - [c44]Jan MacDonald, Mathieu Besançon, Sebastian Pokutta:
Interpretable Neural Networks with Frank-Wolfe: Sparse Relevance Maps and Relevance Orderings. ICML 2022: 14699-14716 - [c43]Kazuma Tsuji, Ken'ichiro Tanaka, Sebastian Pokutta:
Pairwise Conditional Gradients without Swap Steps and Sparser Kernel Herding. ICML 2022: 21864-21883 - [c42]Stephan Wäldchen, Sebastian Pokutta, Felix Huber:
Training Characteristic Functions with Reinforcement Learning: XAI-methods play Connect Four. ICML 2022: 22457-22474 - [c41]Francisco Criado, David Martínez-Rubio, Sebastian Pokutta:
Fast Algorithms for Packing Proportional Fairness and its Dual. NeurIPS 2022 - [i60]Elias Samuel Wirth, Sebastian Pokutta:
Conditional Gradients for the Approximately Vanishing Ideal. CoRR abs/2202.03349 (2022) - [i59]Stephan Wäldchen, Felix Huber, Sebastian Pokutta:
Training Characteristic Functions with Reinforcement Learning: XAI-methods play Connect Four. CoRR abs/2202.11797 (2022) - [i58]Maxime Gasse, Quentin Cappart, Jonas Charfreitag, Laurent Charlin, Didier Chételat, Antonia Chmiela, Justin Dumouchelle, Ambros M. Gleixner, Aleksandr M. Kazachkov, Elias B. Khalil, Pawel Lichocki, Andrea Lodi, Miles Lubin, Chris J. Maddison, Christopher Morris, Dimitri J. Papageorgiou, Augustin Parjadis, Sebastian Pokutta, Antoine Prouvost, Lara Scavuzzo, Giulia Zarpellon, Linxin Yang, Sha Lai, Akang Wang, Xiaodong Luo, Xiang Zhou, Haohan Huang, Sheng Cheng Shao, Yuanming Zhu, Dong Zhang, Tao Quan, Zixuan Cao, Yang Xu, Zhewei Huang, Shuchang Zhou, Binbin Chen, Minggui He, Hao Hao, Zhiyu Zhang, Zhiwu An, Kun Mao:
The Machine Learning for Combinatorial Optimization Competition (ML4CO): Results and Insights. CoRR abs/2203.02433 (2022) - [i57]Christoph Hunkenschröder, Sebastian Pokutta, Robert Weismantel:
Optimizing a low-dimensional convex function over a high-dimensional cube. CoRR abs/2204.05266 (2022) - [i56]Max Zimmer, Christoph Spiegel, Sebastian Pokutta:
Compression-aware Training of Neural Networks using Frank-Wolfe. CoRR abs/2205.11921 (2022) - [i55]Stephan Wäldchen, Kartikey Sharma, Max Zimmer, Sebastian Pokutta:
Merlin-Arthur Classifiers: Formal Interpretability with Interactive Black Boxes. CoRR abs/2206.00759 (2022) - [i54]Elias Samuel Wirth, Hiroshi Kera, Sebastian Pokutta:
Approximate Vanishing Ideal Computations at Scale. CoRR abs/2207.01236 (2022) - [i53]Deborah Hendrych, Hannah Troppens, Mathieu Besançon, Sebastian Pokutta:
Convex integer optimization with Frank-Wolfe methods. CoRR abs/2208.11010 (2022) - [i52]David Martínez-Rubio, Sebastian Pokutta:
Accelerated Riemannian Optimization: Handling Constraints with a Prox to Bound Geometric Penalties. CoRR abs/2211.14645 (2022) - 2021
- [j40]Alfredo Torrico
, Mohit Singh, Sebastian Pokutta, Nika Haghtalab, Joseph (Seffi) Naor, Nima Anari
:
Structured Robust Submodular Maximization: Offline and Online Algorithms. INFORMS J. Comput. 33(4): 1590-1607 (2021) - [j39]Thomas Kerdreux, Christophe Roux, Alexandre d'Aspremont, Sebastian Pokutta:
Linear Bandits on Uniformly Convex Sets. J. Mach. Learn. Res. 22: 284:1-284:23 (2021) - [j38]Cyrille W. Combettes
, Sebastian Pokutta:
Complexity of linear minimization and projection on some sets. Oper. Res. Lett. 49(4): 565-571 (2021) - [c40]Thomas Kerdreux, Alexandre d'Aspremont, Sebastian Pokutta:
Projection-Free Optimization on Uniformly Convex Sets. AISTATS 2021: 19-27 - [c39]Boro Sofranac, Ambros M. Gleixner
, Sebastian Pokutta:
An Algorithm-Independent Measure of Progress for Linear Constraint Propagation. CP 2021: 52:1-52:17 - [c38]Alejandro Carderera, Jelena Diakonikolas, Cheuk Yin Lin, Sebastian Pokutta:
Parameter-free Locally Accelerated Conditional Gradients. ICML 2021: 1283-1293 - [c37]Maxime Gasse, Simon Bowly, Quentin Cappart, Jonas Charfreitag, Laurent Charlin, Didier Chételat, Antonia Chmiela, Justin Dumouchelle, Ambros M. Gleixner, Aleksandr M. Kazachkov, Elias B. Khalil, Pawel Lichocki, Andrea Lodi, Miles Lubin, Chris J. Maddison, Christopher Morris, Dimitri J. Papageorgiou, Augustin Parjadis, Sebastian Pokutta, Antoine Prouvost, Lara Scavuzzo, Giulia Zarpellon, Linxin Yang, Sha Lai, Akang Wang, Xiaodong Luo, Xiang Zhou, Haohan Huang, Sheng Cheng Shao, Yuanming Zhu, Dong Zhang, Tao Quan, Zixuan Cao, Yang Xu, Zhewei Huang, Shuchang Zhou, Binbin Chen, Minggui He, Hao Hao, Zhiyu Zhang, Zhiwu An, Kun Mao:
The Machine Learning for Combinatorial Optimization Competition (ML4CO): Results and Insights. NeurIPS (Competition and Demos) 2021: 220-231 - [c36]Alejandro Carderera, Mathieu Besançon, Sebastian Pokutta:
Simple steps are all you need: Frank-Wolfe and generalized self-concordant functions. NeurIPS 2021: 5390-5401 - [c35]Antonia Chmiela, Elias B. Khalil, Ambros M. Gleixner, Andrea Lodi, Sebastian Pokutta:
Learning to Schedule Heuristics in Branch and Bound. NeurIPS 2021: 24235-24246 - [i51]Cyrille W. Combettes, Sebastian Pokutta:
Complexity of Linear Minimization and Projection on Some Sets. CoRR abs/2101.10040 (2021) - [i50]Sebastian Pokutta, Huan Xu:
Adversaries in Online Learning Revisited: with applications in Robust Optimization and Adversarial training. CoRR abs/2101.11443 (2021) - [i49]Thomas Kerdreux, Alexandre d'Aspremont, Sebastian Pokutta:
Local and Global Uniform Convexity Conditions. CoRR abs/2102.05134 (2021) - [i48]Alejandro Carderera, Jelena Diakonikolas, Cheuk Yin Lin, Sebastian Pokutta:
Parameter-free Locally Accelerated Conditional Gradients. CoRR abs/2102.06806 (2021) - [i47]Thomas Kerdreux, Christophe Roux, Alexandre d'Aspremont, Sebastian Pokutta:
Linear Bandits on Uniformly Convex Sets. CoRR abs/2103.05907 (2021) - [i46]Antonia Chmiela, Elias B. Khalil, Ambros M. Gleixner, Andrea Lodi, Sebastian Pokutta:
Learning to Schedule Heuristics in Branch-and-Bound. CoRR abs/2103.10294 (2021) - [i45]Alejandro Carderera, Mathieu Besançon, Sebastian Pokutta:
Simple steps are all you need: Frank-Wolfe and generalized self-concordant functions. CoRR abs/2105.13913 (2021) - [i44]Christophe Roux, Elias Samuel Wirth, Sebastian Pokutta, Thomas Kerdreux:
Efficient Online-Bandit Strategies for Minimax Learning Problems. CoRR abs/2105.13939 (2021) - [i43]Jan MacDonald, Mathieu Besançon, Sebastian Pokutta:
Interpretable Neural Networks with Frank-Wolfe: Sparse Relevance Maps and Relevance Orderings. CoRR abs/2110.08105 (2021) - [i42]Max Zimmer, Christoph Spiegel, Sebastian Pokutta:
How I Learned to Stop Worrying and Love Retraining. CoRR abs/2111.00843 (2021) - 2020
- [c34]Jelena Diakonikolas, Alejandro Carderera, Sebastian Pokutta:
Locally Accelerated Conditional Gradients. AISTATS 2020: 1737-1747 - [c33]Sebastian Pokutta:
Restarting Algorithms: Sometimes There Is Free Lunch. CPAIOR 2020: 22-38 - [c32]Cyrille W. Combettes, Sebastian Pokutta:
Boosting Frank-Wolfe by Chasing Gradients. ICML 2020: 2111-2121 - [c31]Marc E. Pfetsch, Sebastian Pokutta:
IPBoost - Non-Convex Boosting via Integer Programming. ICML 2020: 7663-7672 - [c30]Sebastian Pokutta, Mohit Singh, Alfredo Torrico:
On the Unreasonable Effectiveness of the Greedy Algorithm: Greedy Adapts to Sharpness. ICML 2020: 7772-7782 - [c29]Hassan Mortagy, Swati Gupta, Sebastian Pokutta:
Walking in the Shadow: A New Perspective on Descent Directions for Constrained Minimization. NeurIPS 2020 - [c28]Boro Sofranac, Ambros M. Gleixner
, Sebastian Pokutta:
Accelerating Domain Propagation: An Efficient GPU-Parallel Algorithm over Sparse Matrices. IA3@SC 2020: 1-11 - [i41]Alfredo Torrico, Mohit Singh, Sebastian Pokutta:
On the Unreasonable Effectiveness of the Greedy Algorithm: Greedy Adapts to Sharpness. CoRR abs/2002.04063 (2020) - [i40]Marc E. Pfetsch, Sebastian Pokutta:
IPBoost - Non-Convex Boosting via Integer Programming. CoRR abs/2002.04679 (2020) - [i39]Alejandro Carderera, Sebastian Pokutta:
Second-order Conditional Gradients. CoRR abs/2002.08907 (2020) - [i38]Cyrille W. Combettes, Sebastian Pokutta:
Boosting Frank-Wolfe by Chasing Gradients. CoRR abs/2003.06369 (2020) - [i37]Hassan Mortagy, Swati Gupta
, Sebastian Pokutta:
Walking in the Shadow: A New Perspective on Descent Directions for Constrained Minimization. CoRR abs/2006.08426 (2020) - [i36]Boro Sofranac, Ambros M. Gleixner, Sebastian Pokutta:
Accelerating Domain Propagation: an Efficient GPU-Parallel Algorithm over Sparse Matrices. CoRR abs/2009.07785 (2020) - [i35]Cyrille W. Combettes, Christoph Spiegel, Sebastian Pokutta:
Projection-Free Adaptive Gradients for Large-Scale Optimization. CoRR abs/2009.14114 (2020) - [i34]Sebastian Pokutta, Christoph Spiegel, Max Zimmer:
Deep Neural Network Training with Frank-Wolfe. CoRR abs/2010.07243 (2020)
2010 – 2019
- 2019
- [j37]Gábor Braun, Sebastian Pokutta, Daniel Zink:
Lazifying Conditional Gradient Algorithms. J. Mach. Learn. Res. 20: 71:1-71:42 (2019) - [j36]Abbas Bazzi
, Samuel Fiorini, Sebastian Pokutta, Ola Svensson
:
No Small Linear Program Approximates Vertex Cover Within a Factor 2 - ɛ. Math. Oper. Res. 44(1): 147-172 (2019) - [j35]Gábor Braun, Sebastian Pokutta, Daniel Zink:
Affine reductions for LPs and SDPs. Math. Program. 173(1-2): 281-312 (2019) - [c27]Thomas Kerdreux, Alexandre d'Aspremont, Sebastian Pokutta:
Restarting Frank-Wolfe. AISTATS 2019: 1275-1283 - [c26]Nima Anari, Nika Haghtalab, Seffi Naor, Sebastian Pokutta, Mohit Singh, Alfredo Torrico:
Structured Robust Submodular Maximization: Offline and Online Algorithms. AISTATS 2019: 3128-3137 - [c25]Gábor Braun, Sebastian Pokutta, Dan Tu, Stephen J. Wright:
Blended Conditonal Gradients. ICML 2019: 735-743 - [c24]Cyrille W. Combettes, Sebastian Pokutta:
Blended Matching Pursuit. NeurIPS 2019: 2042-2052 - [i33]Cyrille W. Combettes, Sebastian Pokutta:
Blended Matching Pursuit. CoRR abs/1904.12335 (2019) - [i32]Alejandro Carderera, Jelena Diakonikolas, Sebastian Pokutta:
Locally Accelerated Conditional Gradients. CoRR abs/1906.07867 (2019) - [i31]Cyrille W. Combettes, Sebastian Pokutta:
Revisiting the Approximate Carathéodory Problem via the Frank-Wolfe Algorithm. CoRR abs/1911.04415 (2019) - 2018
- [j34]Pierre Le Bodic
, Jeffrey William Pavelka, Marc E. Pfetsch
, Sebastian Pokutta:
Solving MIPs via scaling-based augmentation. Discret. Optim. 27: 1-25 (2018) - [j33]Ruiyang Song, Yao Xie
, Sebastian Pokutta:
On the effect of model mismatch for sequential Info-Greedy Sensing. EURASIP J. Adv. Signal Process. 2018: 32 (2018) - [j32]Merve Bodur
, Alberto Del Pia, Santanu S. Dey
, Marco Molinaro, Sebastian Pokutta:
Aggregation-based cutting-planes for packing and covering integer programs. Math. Program. 171(1-2): 331-359 (2018) - [j31]Gábor Braun, Sebastian Pokutta, Aurko Roy:
Strong reductions for extended formulations. Math. Program. 172(1-2): 591-620 (2018) - [j30]Ben Knueven, Jim Ostrowski
, Sebastian Pokutta:
Detecting almost symmetries of graphs. Math. Program. Comput. 10(2): 143-185 (2018) - [c23]Alireza Inanlouganji, Giulia Pedrielli
, Georgios Fainekos
, Sebastian Pokutta:
Continuous simulation Optimization with Model mismatch using Gaussian Process Regression. WSC 2018: 2131-2142 - [i30]Gábor Braun, Sebastian Pokutta, Dan Tu, Stephen J. Wright:
Blended Conditional Gradients: the unconditioning of conditional gradients. CoRR abs/1805.07311 (2018) - [i29]Yuri Faenza, Gonzalo Muñoz, Sebastian Pokutta:
Limits of Treewidth-based tractability in Optimization. CoRR abs/1807.02551 (2018) - [i28]Sebastian Pokutta, Mohit Singh, Alfredo Torrico:
Efficient algorithms for robust submodular maximization under matroid constraints. CoRR abs/1807.09405 (2018) - [i27]Daniel Bienstock, Gonzalo Muñoz, Sebastian Pokutta:
Principled Deep Neural Network Training through Linear Programming. CoRR abs/1810.03218 (2018) - [i26]Andreas Bärmann, Alexander Martin, Sebastian Pokutta, Oskar Schneider:
An Online-Learning Approach to Inverse Optimization. CoRR abs/1810.12997 (2018) - 2017
- [j29]Gábor Braun, Rahul Jain
, Troy Lee, Sebastian Pokutta:
Information-theoretic approximations of the nonnegative rank. Comput. Complex. 26(1): 147-197 (2017) - [j28]Andreas Bärmann, Andreas Heidt, Alexander Martin
, Sebastian Pokutta, Christoph Thurner:
Erratum to: Polyhedral approximation of ellipsoidal uncertainty sets via extended formulations: a computational case study. Comput. Manag. Sci. 14(2): 293-296 (2017) - [j27]Henrik I. Christensen
, Arindam Khan
, Sebastian Pokutta, Prasad Tetali:
Approximation and online algorithms for multidimensional bin packing: A survey. Comput. Sci. Rev. 24: 63-79 (2017) - [j26]Aurko Roy, Sebastian Pokutta:
Hierarchical Clustering via Spreading Metrics. J. Mach. Learn. Res. 18: 88:1-88:35 (2017) - [j25]Johannes C. Müller, Sebastian Pokutta, Alexander Martin
, Susanne Pape, Andrea Peter, Thomas Winter:
Pricing and clearing combinatorial markets with singleton and swap orders. Math. Methods Oper. Res. 85(2): 155-177 (2017) - [j24]Gábor Braun, Jonah Brown-Cohen, Arefin Huq, Sebastian Pokutta, Prasad Raghavendra, Aurko Roy, Benjamin Weitz, Daniel Zink:
The matching problem has no small symmetric SDP. Math. Program. 165(2): 643-662 (2017) - [j23]Gábor Braun, Cristóbal Guzmán
, Sebastian Pokutta:
Lower Bounds on the Oracle Complexity of Nonsmooth Convex Optimization via Information Theory. IEEE Trans. Inf. Theory 63(7): 4709-4724 (2017) - [c22]Keerthi Suria Kumar Arumugam
, Ishaque Ashar Kadampot, Mehrdad Tahmasbi, Shaswat Shah, Matthieu R. Bloch, Sebastian Pokutta:
Modulation recognition using side information and hybrid learning. DySPAN 2017: 1-2 - [c21]Andreas Bärmann, Sebastian Pokutta, Oskar Schneider:
Emulating the Expert: Inverse Optimization through Online Learning. ICML 2017: 400-410 - [c20]Gábor Braun, Sebastian Pokutta, Daniel Zink:
Lazifying Conditional Gradient Algorithms. ICML 2017: 566-575 - [c19]Guanghui Lan, Sebastian Pokutta, Yi Zhou, Daniel Zink:
Conditional Accelerated Lazy Stochastic Gradient Descent. ICML 2017: 1965-1974 - [c18]Aurko Roy, Huan Xu, Sebastian Pokutta:
Reinforcement Learning under Model Mismatch. NIPS 2017: 3043-3052 - [i25]Guanghui Lan, Sebastian Pokutta, Yi Zhou, Daniel Zink:
Conditional Accelerated Lazy Stochastic Gradient Descent. CoRR abs/1703.05840 (2017) - [i24]Aurko Roy, Huan Xu, Sebastian Pokutta:
Reinforcement Learning under Model Mismatch. CoRR abs/1706.04711 (2017) - [i23]Nima Anari, Nika Haghtalab, Joseph Naor, Sebastian Pokutta, Mohit Singh, Alfredo Torrico:
Robust Submodular Maximization: Offline and Online Algorithms. CoRR abs/1710.04740 (2017) - 2016
- [j22]Gábor Braun, Sebastian Pokutta:
Common Information and Unique Disjointness. Algorithmica 76(3): 597-629 (2016) - [j21]