


default search action
16th ICML 1999: Bled, Slovenia
- Ivan Bratko, Saso Dzeroski:

Proceedings of the Sixteenth International Conference on Machine Learning (ICML 1999), Bled, Slovenia, June 27 - 30, 1999. Morgan Kaufmann 1999, ISBN 1-55860-612-2 - Naoki Abe, Philip M. Long:

Associative Reinforcement Learning using Linear Probabilistic Concepts. ICML 1999: 3-11 - Naoki Abe, Atsuyoshi Nakamura:

Learning to Optimally Schedule Internet Banner Advertisements. ICML 1999: 12-21 - Enrico Blanzieri, Francesco Ricci:

A Minimum Risk Metric for Nearest Neighbor Classification. ICML 1999: 22-31 - Gianluca Bontempi, Mauro Birattari, Hugues Bersini:

Local Learning for Iterated Time-Series Prediction. ICML 1999: 32-38 - Antal van den Bosch:

Instance-Family Abstraction in Memory-Based Language Learning. ICML 1999: 39-48 - Justin A. Boyan:

Least-Squares Temporal Difference Learning. ICML 1999: 49-56 - Mark Brodie, Gerald DeJong:

Learning to Ride a Bicycle using Iterated Phantom Induction. ICML 1999: 57-66 - Wolfram Burgard, Dieter Fox, Hauke Jans, Christian Matenar, Sebastian Thrun:

Sonar-Based Mapping of Large-Scale Mobile Robot Environments using EM. ICML 1999: 67-76 - Igor V. Cadez, Christine E. McLaren, Padhraic Smyth, Geoffrey J. McLachlan:

Hierarchical Models for Screening of Iron Deficiency Anemia. ICML 1999: 77-86 - Claire Cardie, Scott Anthony Mardis, David R. Pierce:

Combining Error-Driven Pruning and Classification for Partial Parsing. ICML 1999: 87-96 - Wei Fan, Salvatore J. Stolfo, Junxin Zhang, Philip K. Chan:

AdaCost: Misclassification Cost-Sensitive Boosting. ICML 1999: 97-105 - Laura Firoiu, Paul R. Cohen:

Abstracting from Robot Sensor Data using Hidden Markov Models. ICML 1999: 106-114 - Eibe Frank, Ian H. Witten:

Making Better Use of Global Discretization. ICML 1999: 115-123 - Yoav Freund, Llew Mason:

The Alternating Decision Tree Learning Algorithm. ICML 1999: 124-133 - João Gama:

Discriminant Trees. ICML 1999: 134-142 - Dragan Gamberger, Nada Lavrac, Ciril Groselj:

Experiments with Noise Filtering in a Medical Domain. ICML 1999: 143-151 - Melinda T. Gervasio, Wayne Iba, Pat Langley:

Learning User Evaluation Functions for Adaptive Scheduling Assistance. ICML 1999: 152-161 - Attilio Giordana, Roberto Piola:

On Some Misbehaviour of Back-Propagation with Non-Normalized RBFNs and a Solution. ICML 1999: 162-170 - Michael Bonnell Harries:

Boosting a Strong Learner: Evidence Against the Minimum Margin. ICML 1999: 171-180 - Yuh-Jyh Hu, Suzanne B. Sandmeyer, Dennis F. Kibler:

Detecting Motifs from Sequences. ICML 1999: 181-190 - Daisuke Iijima, Wenwei Yu, Hiroshi Yokoi, Yukinori Kakazu:

Distributed Robotic Learning: Adaptive Behavior Acquisition for Distributed Autonomous Swimming Robot in Real World. ICML 1999: 191-199 - Thorsten Joachims:

Transductive Inference for Text Classification using Support Vector Machines. ICML 1999: 200-209 - Hajime Kimura, Shigenobu Kobayashi:

Efficient Non-Linear Control by Combining Q-learning with Local Linear Controllers. ICML 1999: 210-219 - Pat Langley, Stephanie Sage:

Tractable Average-Case Analysis of Naive Bayesian Classifiers. ICML 1999: 220-228 - Michael van Lent, John E. Laird:

Learning Hierarchical Performance Knowledge by Observation. ICML 1999: 229-238 - Choh Man Teng:

Correcting Noisy Data. ICML 1999: 239-248 - Marina Meila:

An Accelerated Chow and Liu Algorithm: Fitting Tree Distributions to High-Dimensional Sparse Data. ICML 1999: 249-257 - Dunja Mladenic, Marko Grobelnik:

Feature Selection for Unbalanced Class Distribution and Naive Bayes. ICML 1999: 258-267 - Katharina Morik, Peter Brockhausen, Thorsten Joachims:

Combining Statistical Learning with a Knowledge-Based Approach - A Case Study in Intensive Care Monitoring. ICML 1999: 268-277 - Andrew Y. Ng, Daishi Harada, Stuart Russell:

Policy Invariance Under Reward Transformations: Theory and Application to Reward Shaping. ICML 1999: 278-287 - Maziar Palhang, Arcot Sowmya:

Learning Discriminatory and Descriptive Rules by an Inductive Logic Programming System. ICML 1999: 288-297 - Rajesh Parekh, Vasant G. Honavar:

Simple DFA are Polynomially Probably Exactly Learnable from Simple Examples. ICML 1999: 298-306 - Leonid Peshkin, Nicolas Meuleau, Leslie Pack Kaelbling:

Learning Policies with External Memory. ICML 1999: 307-314 - Uros Pompe:

Noise-Tolerant Recursive Best-First Induction. ICML 1999: 315-324 - Bob Price, Craig Boutilier:

Implicit Imitation in Multiagent Reinforcement Learning. ICML 1999: 325-334 - Jason Rennie, Andrew Kachites McCallum:

Using Reinforcement Learning to Spider the Web Efficiently. ICML 1999: 335-343 - Marko Robnik-Sikonja, Igor Kononenko:

Attribute Dependencies, Understandability and Split Selection in Tree Based Models. ICML 1999: 344-353 - Yasubumi Sakakibara, Mitsuhiro Kondo:

GA-based Learning of Context-Free Grammars using Tabular Representations. ICML 1999: 354-360 - Tobias Scheffer, Thorsten Joachims:

Expected Error Analysis for Model Selection. ICML 1999: 361-370 - Jeff G. Schneider, Weng-Keen Wong, Andrew W. Moore, Martin A. Riedmiller:

Distributed Value Functions. ICML 1999: 371-378 - Sam Scott, Stan Matwin:

Feature Engineering for Text Classification. ICML 1999: 379-388 - Luis Talavera:

Feature Selection as a Preprocessing Step for Hierarchical Clustering. ICML 1999: 389-397 - Douglas A. Talbert, Douglas H. Fisher:

OPT-KD: An Algorithm for Optimizing Kd-Trees. ICML 1999: 398-405 - Cynthia A. Thompson, Mary Elaine Califf, Raymond J. Mooney:

Active Learning for Natural Language Parsing and Information Extraction. ICML 1999: 406-414 - Sebastian Thrun, John Langford, Dieter Fox:

Monte Carlo Hidden Markov Models: Learning Non-Parametric Models of Partially Observable Stochastic Processes. ICML 1999: 415-424 - Paul E. Utgoff, David J. Stracuzzi:

Approximation Via Value Unification. ICML 1999: 425-432 - Shivakumar Vaithyanathan, Byron Dom:

Model Selection in Unsupervised Learning with Applications To Document Clustering. ICML 1999: 433-443 - Volodya Vovk, Alexander Gammerman, Craig Saunders:

Machine-Learning Applications of Algorithmic Randomness. ICML 1999: 444-453 - Mohammed Waleed Kadous:

Learning Comprehensible Descriptions of Multivariate Time Series. ICML 1999: 454-463 - Gang Wang, Sridhar Mahadevan:

Hierarchical Optimization of Policy-Coupled Semi-Markov Decision Processes. ICML 1999: 464-473 - Donghui Wu, Kristin P. Bennett, Nello Cristianini, John Shawe-Taylor:

Large Margin Trees for Induction and Transduction. ICML 1999: 474-483 - Wei Zhang:

An Region-Based Learning Approach to Discovering Temporal Structures in Data. ICML 1999: 484-492 - Zijian Zheng, Geoffrey I. Webb, Kai Ming Ting:

Lazy Bayesian Rules: A Lazy Semi-Naive Bayesian Learning Technique Competitive to Boosting Decision Trees. ICML 1999: 493-502 - Yuanhui Zhou, Carla E. Brodley:

A Hybrid Lazy-Eager Approach to Reducing the Computation and Memory Requirements of Local Parametric Learning Algorithms. ICML 1999: 503-

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














