default search action
Paul Honeine
Person information
- affiliation: Université de Rouen Normandie, France
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j52]Rosana El Jurdi, Ahmed Rida Sekkat, Yohan Dupuis, Pascal Vasseur, Paul Honeine:
Fully residual Unet-based semantic segmentation of automotive fisheye images: a comparison of rectangular and deformable convolutions. Multim. Tools Appl. 83(13): 40269-40291 (2024) - [j51]Paul Honeine:
Theoretical insights on the pre-image resolution in machine learning. Pattern Recognit. 156: 110800 (2024) - [c80]Mohamad Dhaini, Maxime Berar, Paul Honeine, Antonin Van Exem:
Contrastive Learning for Regression on Hyperspectral Data. ICASSP 2024: 5080-5084 - [i16]Mohamad Dhaini, Maxime Berar, Paul Honeine, Antonin Van Exem:
Contrastive Learning for Regression on Hyperspectral Data. CoRR abs/2403.17014 (2024) - 2023
- [j50]Mohamad Dhaini, Maxime Berar, Paul Honeine, Antonin Van Exem:
Unsupervised domain adaptation for regression using dictionary learning. Knowl. Based Syst. 267: 110439 (2023) - [j49]Andrea Daou, Jean-Baptiste Pothin, Paul Honeine, Abdelaziz Bensrhair:
Indoor Scene Recognition Mechanism Based on Direction-Driven Convolutional Neural Networks. Sensors 23(12): 5672 (2023) - [c79]Linlin Jia, Xiao Ning, Benoit Gaüzère, Paul Honeine, Kaspar Riesen:
Bridging Distinct Spaces in Graph-Based Machine Learning. ACPR (2) 2023: 1-14 - [c78]Clément Glédel, Benoit Gaüzère, Paul Honeine:
Graph Normalizing Flows to Pre-image Free Machine Learning for Regression. GbRPR 2023: 92-101 - 2022
- [j48]Linlin Jia, Benoit Gaüzère, Paul Honeine:
Graph kernels based on linear patterns: Theoretical and experimental comparisons. Expert Syst. Appl. 189: 116095 (2022) - [j47]Ahmed Rida Sekkat, Yohan Dupuis, Varun Ravi Kumar, Hazem Rashed, Senthil Kumar Yogamani, Pascal Vasseur, Paul Honeine:
SynWoodScape: Synthetic Surround-View Fisheye Camera Dataset for Autonomous Driving. IEEE Robotics Autom. Lett. 7(3): 8502-8509 (2022) - [j46]Mohamad Dhaini, Maxime Berar, Paul Honeine, Antonin Van Exem:
End-to-End Convolutional Autoencoder for Nonlinear Hyperspectral Unmixing. Remote. Sens. 14(14): 3341 (2022) - [i15]Rosana El Jurdi, Caroline Petitjean, Veronika Cheplygina, Paul Honeine, Fahed Abdallah:
Effect of Prior-based Losses on Segmentation Performance: A Benchmark. CoRR abs/2201.02428 (2022) - [i14]Ahmed Rida Sekkat, Yohan Dupuis, Varun Ravi Kumar, Hazem Rashed, Senthil Kumar Yogamani, Pascal Vasseur, Paul Honeine:
SynWoodScape: Synthetic Surround-view Fisheye Camera Dataset for Autonomous Driving. CoRR abs/2203.05056 (2022) - 2021
- [j45]Rosana El Jurdi, Caroline Petitjean, Paul Honeine, Veronika Cheplygina, Fahed Abdallah:
High-level prior-based loss functions for medical image segmentation: A survey. Comput. Vis. Image Underst. 210: 103248 (2021) - [j44]Linlin Jia, Benoit Gaüzère, Paul Honeine:
graphkit-learn: A Python library for graph kernels based on linear patterns. Pattern Recognit. Lett. 143: 113-121 (2021) - [j43]Guillaume Renton, Muhammet Balcilar, Pierre Héroux, Benoit Gaüzère, Paul Honeine, Sébastien Adam:
Symbols Detection and Classification using Graph Neural Networks. Pattern Recognit. Lett. 152: 391-397 (2021) - [c77]Muhammet Balcilar, Guillaume Renton, Pierre Héroux, Benoit Gaüzère, Sébastien Adam, Paul Honeine:
Analyzing the Expressive Power of Graph Neural Networks in a Spectral Perspective. ICLR 2021 - [c76]Muhammet Balcilar, Pierre Héroux, Benoit Gaüzère, Pascal Vasseur, Sébastien Adam, Paul Honeine:
Breaking the Limits of Message Passing Graph Neural Networks. ICML 2021: 599-608 - [c75]Rosana El Jurdi, Caroline Petitjean, Paul Honeine, Veronika Cheplygina, Fahed Abdallah:
A Surprisingly Effective Perimeter-based Loss for Medical Image Segmentation. MIDL 2021: 158-167 - [i13]Muhammet Balcilar, Pierre Héroux, Benoit Gaüzère, Pascal Vasseur, Sébastien Adam, Paul Honeine:
Breaking the Limits of Message Passing Graph Neural Networks. CoRR abs/2106.04319 (2021) - 2020
- [j42]Thi Phuong Thao Tran, Ahlame Douzal Chouakria, Saeed Varasteh Yazdi, Paul Honeine, Patrick Gallinari:
Interpretable time series kernel analytics by pre-image estimation. Artif. Intell. 286: 103342 (2020) - [j41]Yuan Liu, Stéphane Canu, Paul Honeine, Su Ruan:
Incoherent dictionary learning via mixed-integer programming and hybrid augmented Lagrangian. Digit. Signal Process. 101: 102703 (2020) - [j40]Nour El Mawass, Paul Honeine, Laurent Vercouter:
SimilCatch: Enhanced social spammers detection on Twitter using Markov Random Fields. Inf. Process. Manag. 57(6): 102317 (2020) - [j39]Rosana El Jurdi, Caroline Petitjean, Paul Honeine, Fahed Abdallah:
BB-UNet: U-Net With Bounding Box Prior. IEEE J. Sel. Top. Signal Process. 14(6): 1189-1198 (2020) - [j38]Daniel AlShamaa, Farah Mourad-Chehade, Paul Honeine, Aly Chkeir:
An Evidential Framework for Localization of Sensors in Indoor Environments. Sensors 20(1): 318 (2020) - [j37]Daniel AlShamaa, Farah Mourad-Chehade, Paul Honeine, Aly Chkeir:
Fusion of Multiple Mobility and Observation Models for Indoor Zoning-Based Sensor Tracking. IEEE Trans. Aerosp. Electron. Syst. 56(6): 4315-4326 (2020) - [c74]Fei Zhu, Paul Honeine, Jie Chen:
Pixel-Wise Linear/Nonlinear Nonnegative Matrix Factorization for Unmixing of Hyperspectral Data. ICASSP 2020: 4737-4741 - [c73]Ahmed Rida Sekkat, Yohan Dupuis, Pascal Vasseur, Paul Honeine:
The OmniScape Dataset. ICRA 2020: 1603-1608 - [c72]Rosana El Jurdi, Thomas Dargent, Caroline Petitjean, Paul Honeine, Fahed Abdallah:
Investigating CoordConv for Fully and Weakly Supervised Medical Image Segmentation. IPTA 2020: 1-5 - [c71]Linlin Jia, Benoit Gaüzère, Paul Honeine:
A Graph Pre-image Method Based on Graph Edit Distances. S+SSPR 2020: 216-226 - [c70]Linlin Jia, Benoit Gaüzère, Florian Yger, Paul Honeine:
A Metric Learning Approach to Graph Edit Costs for Regression. S+SSPR 2020: 238-247 - [i12]Muhammet Balcilar, Guillaume Renton, Pierre Héroux, Benoit Gaüzère, Sébastien Adam, Paul Honeine:
Bridging the Gap Between Spectral and Spatial Domains in Graph Neural Networks. CoRR abs/2003.11702 (2020) - [i11]Daniel AlShamaa, Farah Chehade, Paul Honeine:
Statistical learning for sensor localization in wireless networks. CoRR abs/2005.05097 (2020) - [i10]Rosana El Jurdi, Caroline Petitjean, Paul Honeine, Veronika Cheplygina, Fahed Abdallah:
High-level Prior-based Loss Functions for Medical Image Segmentation: A Survey. CoRR abs/2011.08018 (2020)
2010 – 2019
- 2019
- [j36]P. J. Sudharshan, Caroline Petitjean, Fabio A. Spanhol, Luiz Eduardo Soares de Oliveira, Laurent Heutte, Paul Honeine:
Multiple instance learning for histopathological breast cancer image classification. Expert Syst. Appl. 117: 103-111 (2019) - [j35]Yuan Liu, Stéphane Canu, Paul Honeine, Su Ruan:
Mixed Integer Programming For Sparse Coding: Application to Image Denoising. IEEE Trans. Computational Imaging 5(3): 354-365 (2019) - [c69]Silvère Konlambigue, Jean-Baptiste Pothin, Paul Honeine, Abdelaziz Bensrhair:
Performance Evaluation of State-of-the-Art Filtering Criteria Applied to SIFT Features. ISSPIT 2019: 1-6 - [c68]Daniel AlShamaa, Aly Chkeir, Farah Mourad-Chehade, Paul Honeine:
A Hidden Markov Model for Indoor Trajectory Tracking of Elderly People. SAS 2019: 1-6 - 2018
- [j34]Daniel AlShamaa, Farah Mourad-Chehade, Paul Honeine:
A hierarchical classification method using belief functions. Signal Process. 148: 68-77 (2018) - [j33]Patric Nader, Paul Honeine, Pierre Beauseroy:
One-Class Classification Framework Based on Shrinkage Methods. J. Signal Process. Syst. 90(3): 341-356 (2018) - [c67]Daniel AlShamaa, Farah Mourad-Chehade, Paul Honeine:
The Belief Functions Theory for Sensors Localization in Indoor Wireless Networks. BELIEF 2018: 10-13 - [c66]Silvère Konlambigue, Jean-Baptiste Pothin, Paul Honeine, Abdelaziz Bensrhair:
Fast and Accurate Gaussian Pyramid Construction by Extended Box Filtering. EUSIPCO 2018: 400-404 - [c65]Daniel AlShamaa, Farah Mourad-Chehade, Paul Honeine:
Decentralized Sensor Localization by Decision Fusion of RSSI and Mobility in Indoor Environments. EUSIPCO 2018: 2300-2304 - [c64]Nour El Mawass, Paul Honeine, Laurent Vercouter:
Supervised Classification of Social Spammers using a Similarity-based Markov Random Field Approach. MISNC 2018: 14:1-14:8 - [c63]Yuan Liu, Stéphane Canu, Paul Honeine, Su Ruan:
K-SVD with a Real ℓ0 Optimization: Application to Image Denoising. MLSP 2018: 1-6 - [c62]Daniel AlShamaa, Farah Mourad-Chehade, Paul Honeine:
Localization of Sensors in Indoor Wireless Networks: An Observation Model Using WiFi RSS. NTMS 2018: 1-5 - [c61]Daniel AlShamaa, Farah Mourad-Chehade, Paul Honeine:
Mobility-based Tracking Using WiFi RSS in Indoor Wireless Sensor Networks. NTMS 2018: 1-5 - [c60]Daniel AlShamaa, Farah Mourad-Chehade, Paul Honeine:
A Weighted Kernel-Based Hierarchical Classification Method for Zoning of Sensors in Indoor Wireless Networks. SPAWC 2018: 1-5 - 2017
- [j32]Xi Liu, Badong Chen, Bin Xu, Zongze Wu, Paul Honeine:
Maximum correntropy unscented filter. Int. J. Syst. Sci. 48(8): 1607-1615 (2017) - [j31]Fei Zhu, Paul Honeine:
Online kernel nonnegative matrix factorization. Signal Process. 131: 143-153 (2017) - [j30]Abderrahim Halimi, Gerald S. Buller, Stephen McLaughlin, Paul Honeine:
Denoising Smooth Signals Using a Bayesian Approach: Application to Altimetry. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 10(4): 1278-1289 (2017) - [j29]Fei Zhu, Abderrahim Halimi, Paul Honeine, Badong Chen, Nanning Zheng:
Correntropy Maximization via ADMM: Application to Robust Hyperspectral Unmixing. IEEE Trans. Geosci. Remote. Sens. 55(9): 4944-4955 (2017) - [i9]Yuan Liu, Stéphane Canu, Paul Honeine, Su Ruan:
Une véritable approche $\ell_0$ pour l'apprentissage de dictionnaire. CoRR abs/1709.05937 (2017) - 2016
- [j28]Nisrine Ghadban, Paul Honeine, Farah Mourad-Chehade, Clovis Francis, Joumana Farah:
In-Network Principal Component Analysis with Diffusion Strategies. Int. J. Wirel. Inf. Networks 23(2): 97-111 (2016) - [j27]Abderrahim Halimi, Paul Honeine, Malika Kharouf, Cédric Richard, Jean-Yves Tourneret:
Estimating the Intrinsic Dimension of Hyperspectral Images Using a Noise-Whitened Eigengap Approach. IEEE Trans. Geosci. Remote. Sens. 54(7): 3811-3821 (2016) - [j26]Fei Zhu, Paul Honeine:
Biobjective Nonnegative Matrix Factorization: Linear Versus Kernel-Based Models. IEEE Trans. Geosci. Remote. Sens. 54(7): 4012-4022 (2016) - [j25]Abderrahim Halimi, Paul Honeine, José M. Bioucas-Dias:
Hyperspectral Unmixing in Presence of Endmember Variability, Nonlinearity, or Mismodeling Effects. IEEE Trans. Image Process. 25(10): 4565-4579 (2016) - [c59]Abderrahim Halimi, Gerald S. Buller, Steve McLaughlin, Paul Honeine:
Filtering smooth altimetric signals using a Bayesian algorithm. EUSIPCO 2016: 2385-2389 - [c58]Fei Zhu, Abderrahim Halimi, Paul Honeine, Badong Chen, Nanning Zheng:
ADMM for maximum correntropy criterion. IJCNN 2016: 1420-1427 - [c57]Daniel AlShamaa, Farah Mourad-Chehade, Paul Honeine:
Zoning-based localization in indoor sensor networks using belief functions theory. SPAWC 2016: 1-5 - [c56]Abderrahim Halimi, Paul Honeine, José M. Bioucas-Dias:
Robust hyperspectral unmixing accounting for residual components. SSP 2016: 1-5 - [c55]Abderrahim Halimi, Paul Honeine, José M. Bioucas-Dias, Gerald S. Buller, Steve McLaughlin:
Nonlinear hyperspectral unmixing accounting for spatial illumination variability. WHISPERS 2016: 1-5 - [i8]Fei Zhu, Abderrahim Halimi, Paul Honeine, Badong Chen, Nanning Zheng:
Correntropy Maximization via ADMM - Application to Robust Hyperspectral Unmixing. CoRR abs/1602.01729 (2016) - 2015
- [j24]Tian Wang, Jie Chen, Paul Honeine, Hichem Snoussi:
Abnormal Event Detection via Multikernel Learning for Distributed Camera Networks. Int. J. Distributed Sens. Networks 11: 989450:1-989450:9 (2015) - [j23]Sandy Mahfouz, Farah Mourad-Chehade, Paul Honeine, Joumana Farah, Hichem Snoussi:
Kernel-based machine learning using radio-fingerprints for localization in wsns. IEEE Trans. Aerosp. Electron. Syst. 51(2): 1324-1336 (2015) - [j22]Paul Honeine:
Approximation Errors of Online Sparsification Criteria. IEEE Trans. Signal Process. 63(17): 4700-4709 (2015) - [j21]Paul Honeine:
Analyzing Sparse Dictionaries for Online Learning With Kernels. IEEE Trans. Signal Process. 63(23): 6343-6353 (2015) - [c54]Patric Nader, Paul Honeine, Pierre Beauseroy:
Online One-class Classification for Intrusion Detection Based on the Mahalanobis Distance. ESANN 2015 - [c53]Fei Zhu, Paul Honeine:
Pareto front of bi-objective kernel-based nonnegative matrix factorization. ESANN 2015 - [c52]Patric Nader, Paul Honeine, Pierre Beauseroy:
Shrinkage methods for one-class classification. EUSIPCO 2015: 135-139 - [c51]Abderrahim Halimi, Nicolas Dobigeon, Jean-Yves Tourneret, Steve McLaughlin, Paul Honeine:
Unmixing multitemporal hyperspectral images accounting for endmember variability. EUSIPCO 2015: 1656-1660 - [c50]Nisrine Ghadban, Paul Honeine, Farah Mourad-Chehade, Joumana Farah, Clovis Francis:
Gossip algorithms for principal component analysis in networks. EUSIPCO 2015: 2366-2370 - [c49]Fei Zhu, Paul Honeine:
Online nonnegative matrix factorization based on kernel machines. EUSIPCO 2015: 2381-2385 - [c48]Abderrahim Halimi, Nicolas Dobigeon, Jean-Yves Tourneret, Paul Honeine:
A new Bayesian unmixing algorithm for hyperspectral images mitigating endmember variability. ICASSP 2015: 2469-2473 - [c47]Abderrahim Halimi, Nicolas Dobigeon, Jean-Yves Tourneret, Paul Honeine:
Hyperspectral unmixing accounting for spatial correlations and endmember variability. WHISPERS 2015: 1-4 - [i7]Abderrahim Halimi, Paul Honeine, Malika Kharouf, Cédric Richard, Jean-Yves Tourneret:
Estimating the Intrinsic Dimension of Hyperspectral Images Using an Eigen-Gap Approach. CoRR abs/1501.05552 (2015) - [i6]Paul Honeine, Fei Zhu:
Bi-Objective Nonnegative Matrix Factorization: Linear Versus Kernel-Based Models. CoRR abs/1501.05684 (2015) - 2014
- [j20]Jie Chen, Cédric Richard, Paul Honeine:
Nonlinear Estimation of Material Abundances in Hyperspectral Images With ℓ1-Norm Spatial Regularization. IEEE Trans. Geosci. Remote. Sens. 52(5): 2654-2665 (2014) - [j19]Patric Nader, Paul Honeine, Pierre Beauseroy:
lp-norms in One-Class Classification for Intrusion Detection in SCADA Systems. IEEE Trans. Ind. Informatics 10(4): 2308-2317 (2014) - [j18]Jie Chen, Cédric Richard, José Carlos M. Bermudez, Paul Honeine:
Variants of Non-Negative Least-Mean-Square Algorithm and Convergence Analysis. IEEE Trans. Signal Process. 62(15): 3990-4005 (2014) - [c46]Sandy Mahfouz, Paul Honeine, Farah Mourad-Chehade, Joumana Farah, Hichem Snoussi:
Combining a physical model with a nonlinear fluctuation for signal propagation modeling in WSNs. AICCSA 2014: 413-419 - [c45]Patric Nader, Paul Honeine, Pierre Beauseroy:
The Role of One-Class Classification in Detecting Cyberattacks in Critical Infrastructures. CRITIS 2014: 244-255 - [c44]Nisrine Ghadban, Paul Honeine, Clovis Francis, Farah Mourad-Chehade, Joumana Farah:
Strategies for principal component analysis in wireless sensor networks. SAM 2014: 233-236 - [c43]Sandy Mahfouz, Farah Mourad-Chehade, Paul Honeine, Joumana Farah, Hichem Snoussi:
Ridge regression and Kalman filtering for target tracking in wireless sensor networks. SAM 2014: 237-240 - [c42]Rita Ammanouil, Jean Abou Melhem, Joumana Farah, Paul Honeine:
Spectral partitioning and fusion techniques for hyperspectral data classification and unmixing. ISCCSP 2014: 550-553 - [c41]Nisrine Ghadban, Paul Honeine, Farah Mourad-Chehade, Clovis Francis, Joumana Farah:
Mobility using first and second derivatives for kernel-based regression in wireless sensor networks. IWSSIP 2014: 203-206 - [c40]Nisrine Ghadban, Paul Honeine, Farah Mourad-Chehade, Clovis Francis, Joumana Farah:
Diffusion strategies for in-network principal component analysis. MLSP 2014: 1-6 - [c39]Patric Nader, Paul Honeine, Pierre Beauseroy:
Mahalanobis-based one-class classification. MLSP 2014: 1-6 - [c38]Fei Zhu, Paul Honeine, Maya Kallas:
Kernel nonnegative matrix factorization without the pre-image problem. MLSP 2014: 1-6 - [i5]Paul Honeine:
An eigenanalysis of data centering in machine learning. CoRR abs/1407.2904 (2014) - [i4]Fei Zhu, Paul Honeine, Maya Kallas:
Kernel nonnegative matrix factorization without the curse of the pre-image. CoRR abs/1407.4420 (2014) - [i3]Paul Honeine:
Analyzing sparse dictionaries for online learning with kernels. CoRR abs/1409.6045 (2014) - [i2]Paul Honeine:
Approximation errors of online sparsification criteria. CoRR abs/1409.6046 (2014) - [i1]Paul Honeine:
Entropy of Overcomplete Kernel Dictionaries. CoRR abs/1411.0161 (2014) - 2013
- [b2]Paul Honeine:
Contributions en traitement du signal par méthodes d'apprentissage à noyaux. (Contributions to signal processing with kernel-based machine learning). University of Technology of Compiègne, France, 2013 - [j17]Maya Kallas, Paul Honeine, Cédric Richard, Clovis Francis, Hassan Amoud:
Non-negativity constraints on the pre-image for pattern recognition with kernel machines. Pattern Recognit. 46(11): 3066-3080 (2013) - [j16]Paul Honeine, Zineb Noumir, Cédric Richard:
Multiclass classification machines with the complexity of a single binary classifier. Signal Process. 93(5): 1013-1026 (2013) - [j15]Maya Kallas, Paul Honeine, Clovis Francis, Hassan Amoud:
Kernel autoregressive models using Yule-Walker equations. Signal Process. 93(11): 3053-3061 (2013) - [j14]Chafic Saidé, Régis Lengellé, Paul Honeine, Roger Achkar:
Online Kernel Adaptive Algorithms With Dictionary Adaptation for MIMO Models. IEEE Signal Process. Lett. 20(5): 535-538 (2013) - [j13]Farah Mourad, Paul Honeine, Hichem Snoussi:
Polar-Interval-Based Localization in Mobile Sensor Networks. IEEE Trans. Aerosp. Electron. Syst. 49(4): 2310-2322 (2013) - [j12]Paul Honeine, Cédric Richard, Nguyen Hoang Nguyen:
Approches géométriques pour l'estimation des fractions d'abondance en traitement de données hyperspectrales. Extensions aux modèles de mélange non linéaires. Traitement du Signal 30(1-2): 61-86 (2013) - [j11]Jie Chen, Cédric Richard, Paul Honeine:
Nonlinear Unmixing of Hyperspectral Data Based on a Linear-Mixture/Nonlinear-Fluctuation Model. IEEE Trans. Signal Process. 61(2): 480-492 (2013) - [c37]Jie Chen, Cédric Richard, José Carlos M. Bermudez, Paul Honeine:
Non-stationary analysis of the convergence of the Non-Negative Least-Mean-Square algorithm. EUSIPCO 2013: 1-5 - [c36]Paul Honeine, Henri Lantéri, Cédric Richard:
Constrained Kaczmarz's cyclic projections for unmixing hyperspectral data. EUSIPCO 2013: 1-5 - [c35]Sandy Mahfouz, Farah Mourad-Chehade, Paul Honeine, Joumana Farah, Hichem Snoussi:
Decentralized localization using fingerprinting and kernel methods inwireless sensor networks. EUSIPCO 2013: 1-5 - [c34]Patric Nader, Paul Honeine, Pierre Beauseroy:
Intrusion detection in scada systems using one-class classification. EUSIPCO 2013: 1-5 - [c33]Jie Chen, Cédric Richard, André Ferrari, Paul Honeine:
Nonlinear unmixing of hyperspectral data with partially linear least-squares support vector regression. ICASSP 2013: 2174-2178 - [c32]Sandy Mahfouz, Farah Mourad-Chehade, Paul Honeine, Hichem Snoussi, Joumana Farah:
Kernel-based localization using fingerprinting in wireless sensor networks. SPAWC 2013: 744-748 - [c31]Jie Chen, Cédric Richard, Paul Honeine:
Estimating abundance fractions of materials in hyperspectral images by fitting a post-nonlinear mixing model. WHISPERS 2013: 1-4 - [c30]Paul Honeine, Henri Lantéri:
Constrained reflect-then-combine methods for unmixing hyperspectral data. WHISPERS 2013: 1-4 - 2012
- [j10]Paul Honeine:
Online Kernel Principal Component Analysis: A Reduced-Order Model. IEEE Trans. Pattern Anal. Mach. Intell. 34(9): 1814-1826 (2012) - [j9]Paul Honeine, Cédric Richard:
Geometric Unmixing of Large Hyperspectral Images: A Barycentric Coordinate Approach. IEEE Trans. Geosci. Remote. Sens. 50(6): 2185-2195 (2012) - [c29]Zineb Noumir, Paul Honeine, Cédric Richard:
Online one-class machines based on the coherence criterion. EUSIPCO 2012: 664-668 - [c28]Maya Kallas, Paul Honeine, Cédric Richard, Clovis Francis, Hassan Amoud:
Prediction of time series using Yule-Walker equations with kernels. ICASSP 2012: 2185-2188 - [c27]Pierre-Olivier Amblard, Olivier J. J. Michel, Cédric Richard, Paul Honeine:
A Gaussian process regression approach for testing Granger causality between time series data. ICASSP 2012: 3357-3360 - [c26]Maya Kallas, Clovis Francis, Paul Honeine, Hassan Amoud, Cédric Richard:
Modeling electrocardiogram using Yule-Walker equations and kernel machines. ICT 2012: 1-5 - [c25]Maya Kallas, Clovis Francis, Lara Kanaan, Dalia Merheb, Paul Honeine, Hassan Amoud:
Multi-class SVM classification combined with kernel PCA feature extraction of ECG signals. ICT 2012: 1-5 - [c24]Farah Mourad, Paul Honeine, Hichem Snoussi:
Indoor localization using polar intervals in wireless sensor networks. ICT 2012: 1-6 - [c23]Jie Chen, Cédric Richard, Paul Honeine, Jean-Yves Tourneret:
Prediction of rain attenuation series based on discretized spectral model. IGARSS 2012: 2407-2410 - [c22]Nguyen Hoang Nguyen, Cédric Richard, Paul Honeine, Céline Theys:
Hyperspectral image unmixing using manifold learning methods derivations and comparative tests. IGARSS 2012: 3086-3089 - [c21]Zineb Noumir, Paul Honeine, Cedue Richard:
On simple one-class classification methods. ISIT 2012: 2022-2026 - [c20]Zineb Noumir, Paul Honeine, Cédric Richard:
Kernels for time series of exponential decay/growth processes. MLSP 2012: 1-6 - [c19]Zineb Noumir, Paul Honeine, Cédric Richard:
One-class machines based on the coherence criterion. SSP 2012: 600-603 - [c18]Chafic Saidé, Régis Lengellé, Paul Honeine, Cédric Richard, Roger Achkar:
Dictionary adaptation for online prediction of time series data with kernels. SSP 2012: 604-607 - [c17]Jie Chen, Cédric Richard, Paul Honeine:
Nonlinear unmixing of hyperspectral images based on multi-kernel learning. WHISPERS 2012: 1-4 - 2011
- [j8]Paul Honeine, Cédric Richard:
Preimage Problem in Kernel-Based Machine Learning. IEEE Signal Process. Mag. 28(2): 77-88 (2011) - [j7]Patrick Flandrin, Cédric Richard, Pierre-Olivier Amblard, Pierre Borgnat, Paul Honeine, Hassan Amoud, André Ferrari, Jun Xiao, Azadeh Moghtaderi, Pepa Ramírez-Cobo:
Stationnarité relative et approches connexes. Traitement du Signal 28(6): 691-716 (2011) - [j6]Jie Chen, Cédric Richard, José Carlos M. Bermudez, Paul Honeine:
Nonnegative Least-Mean-Square Algorithm. IEEE Trans. Signal Process. 59(11): 5225-5235 (2011) - [j5]Paul Honeine, Cédric Richard:
A Closed-form Solution for the Pre-image Problem in Kernel-based Machines. J. Signal Process. Syst. 65(3): 289-299 (2011) - [c16]Jie Chen, Cédric Richard, José Carlos M. Bermudez, Paul Honeine:
A modified non-negative LMS algorithm and its stochastic behavior analysis. ACSCC 2011: 542-546 - [c15]Jie Chen, Cédric Richard, Paul Honeine:
A novel kernel-based nonlinear unmixing scheme of hyperspectral images. ACSCC 2011: 1898-1902 - [c14]Maya Kallas, Paul Honeine, Cédric Richard, Clovis Francis, Hassan Amoud:
Non-negative pre-image in machine learning for pattern recognition. EUSIPCO 2011: 931-935 - [c13]Jie Chen, Cédric Richard, Henri Lantéri, Céline Theys, Paul Honeine:
Online system identification under non-negativity and ℓ1-norm constraints algorithm and weight behavior analysis. EUSIPCO 2011: 1919-1923 - [c12]Lara Kanaan, Dalia Merheb, Maya Kallas, Clovis Francis, Hassan Amoud, Paul Honeine:
PCA and KPCA of ECG signals with binary SVM classification. SiPS 2011: 344-348 - [c11]Maya Kallas, Paul Honeine, Clovis Francis, Hassan Amoud:
A comparative study of pre-image techniques: The kernel autoregressive case. SiPS 2011: 379-384 - 2010
- [j4]Paul Honeine, Cédric Richard, José Carlos M. Bermudez, Jie Chen, Hichem Snoussi:
A Decentralized Approach for Nonlinear Prediction of Time Series Data in Sensor Networks. EURASIP J. Wirel. Commun. Netw. 2010 (2010) - [j3]Pierre Borgnat, Patrick Flandrin, Paul Honeine, Cédric Richard, Jun Xiao:
Testing stationarity with surrogates: a time-frequency approach. IEEE Trans. Signal Process. 58(7): 3459-3470 (2010) - [c10]Jie Chen, Cédric Richard, Paul Honeine, Henri Lantéri, Céline Theys:
System identification under non-negativity constraints. EUSIPCO 2010: 1728-1732 - [c9]Cédric Richard, André Ferrari, Hassan Amoud, Paul Honeine, Patrick Flandrin, Pierre Borgnat:
Statistical hypothesis testing with time-frequency surrogates to check signal stationarity. ICASSP 2010: 3666-3669 - [c8]Paul Honeine, Cédric Richard:
A simple scheme for unmixing hyperspectral data based on the geometry of the N-dimensional simplex. IGARSS 2010: 2271-2274 - [c7]Paul Honeine, Cédric Richard:
The angular kernel in machine learning for hyperspectral data classification. WHISPERS 2010: 1-4
2000 – 2009
- 2009
- [j2]Cédric Richard, José Carlos M. Bermudez, Paul Honeine:
Online Prediction of Time Series Data With Kernels. IEEE Trans. Signal Process. 57(3): 1058-1067 (2009) - [c6]Paul Honeine, Cédric Richard, José Carlos M. Bermudez, Hichem Snoussi, Mehdi Essoloh, François Vincent:
Functional estimation in Hilbert space for distributed learning in wireless sensor networks. ICASSP 2009: 2861-2864 - 2008
- [c5]Paul Honeine, Cédric Richard, José Carlos M. Bermudez, Hichem Snoussi:
Distributed prediction of time series data with kernels and adaptive filtering techniques in sensor networks. ACSCC 2008: 246-250 - [c4]Mehdi Essoloh, Cédric Richard, Hichem Snoussi, Paul Honeine:
Distributed localization in wireless sensor networks as a pre-image problem in a Reproducing Kernel Hilbert Space. EUSIPCO 2008: 1-5 - [c3]Paul Honeine, Mehdi Essoloh, Cédric Richard, Hichem Snoussi:
Distributed Regression in Sensor Networks with a Reduced-Order Kernel Model. GLOBECOM 2008: 112-116 - 2007
- [b1]Paul Honeine:
Méthodes à noyau pour l'analyse et la décision en environnement non-stationnaire. (Kernel Machines for analysis and decision-making in a non-stationary environment). Ecole doctoral SSTO - UTT, Troyes, France, 2007 - [j1]Paul Honeine, Cédric Richard, Patrick Flandrin:
Time-Frequency Learning Machines. IEEE Trans. Signal Process. 55(7-2): 3930-3936 (2007) - [c2]Paul Honeine, Cédric Richard, José Carlos M. Bermudez:
On-line Nonlinear Sparse Approximation of Functions. ISIT 2007: 956-960 - 2006
- [c1]Paul Honeine, Cédric Richard, Patrick Flandrin, Jean-Baptiste Pothin:
Optimal Selection of Time-Frequency Representations for Signal Classification: a Kernel-Target Alignment Approach. ICASSP (3) 2006: 476-479
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-08-14 23:15 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint