default search action
Aurélie C. Lozano
Person information
- affiliation: IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
Journal Articles
- 2023
- [j10]Aurélie C. Lozano, Hantian Ding, Naoki Abe, Alexander E. Lipka:
Regularized multi-trait multi-locus linear mixed models for genome-wide association studies and genomic selection in crops. BMC Bioinform. 24(1): 399 (2023) - 2019
- [j9]Sounak Chakraborty, Aurélie C. Lozano:
A graph Laplacian prior for Bayesian variable selection and grouping. Comput. Stat. Data Anal. 136: 72-91 (2019) - [j8]Ming Yu, Karthikeyan Natesan Ramamurthy, Addie M. Thompson, Aurélie C. Lozano:
Simultaneous Parameter Learning and Bi-clustering for Multi-Response Models. Frontiers Big Data 2: 27 (2019) - 2017
- [j7]Aleksandr Y. Aravkin, James V. Burke, Lennart Ljung, Aurélie C. Lozano, Gianluigi Pillonetto:
Generalized Kalman smoothing: Modeling and algorithms. Autom. 86: 63-86 (2017) - [j6]Caitlin Kuhlman, Karthikeyan Natesan Ramamurthy, Prasanna Sattigeri, Aurélie C. Lozano, Lei Cao, C. Reddy, Aleksandra Mojsilovic, Kush R. Varshney:
How to foster innovation: A data-driven approach to measuring economic competitiveness. IBM J. Res. Dev. 61(6): 11:1-11:12 (2017) - 2016
- [j5]Seunghak Lee, Aurélie C. Lozano, Prabhanjan Kambadur, Eric P. Xing:
An Efficient Nonlinear Regression Approach for Genome-wide Detection of Marginal and Interacting Genetic Variations. J. Comput. Biol. 23(5): 372-389 (2016) - 2014
- [j4]Aurélie C. Lozano, Sanjeev R. Kulkarni, Robert E. Schapire:
Convergence and Consistency of Regularized Boosting With Weakly Dependent Observations. IEEE Trans. Inf. Theory 60(1): 651-660 (2014) - 2011
- [j3]Yan Liu, Alexandru Niculescu-Mizil, Aurélie C. Lozano, Yong Lu:
Temporal Graphical Models for Cross-Species Gene Regulatory Network Discovery. J. Bioinform. Comput. Biol. 9(2): 231-250 (2011) - 2009
- [j2]Aurélie C. Lozano, Naoki Abe, Yan Liu, Saharon Rosset:
Grouped graphical Granger modeling for gene expression regulatory networks discovery. Bioinform. 25(12) (2009) - 2007
- [j1]Aurélie C. Lozano, Sanjeev R. Kulkarni, Pramod Viswanath:
Throughput scaling in wireless networks with restricted mobility. IEEE Trans. Wirel. Commun. 6(2): 670-679 (2007)
Conference and Workshop Papers
- 2024
- [c44]Amit Dhurandhar, Tejaswini Pedapati, Ronny Luss, Soham Dan, Aurélie C. Lozano, Payel Das, Georgios Kollias:
NeuroPrune: A Neuro-inspired Topological Sparse Training Algorithm for Large Language Models. ACL (Findings) 2024: 2416-2430 - [c43]Dongxia Wu, Tsuyoshi Idé, Georgios Kollias, Jirí Navrátil, Aurélie C. Lozano, Naoki Abe, Yi-An Ma, Rose Yu:
Learning Granger Causality from Instance-wise Self-attentive Hawkes Processes. AISTATS 2024: 415-423 - [c42]Payel Das, Subhajit Chaudhury, Elliot Nelson, Igor Melnyk, Sarathkrishna Swaminathan, Sihui Dai, Aurélie C. Lozano, Georgios Kollias, Vijil Chenthamarakshan, Jirí Navrátil, Soham Dan, Pin-Yu Chen:
Larimar: Large Language Models with Episodic Memory Control. ICML 2024 - 2023
- [c41]Yonas Sium, Georgios Kollias, Tsuyoshi Idé, Payel Das, Naoki Abe, Aurélie C. Lozano, Qi Li:
Direction Aware Positional and Structural Encoding for Directed Graph Neural Networks. ICASSP 2023: 1-5 - [c40]Zuobai Zhang, Minghao Xu, Arian Rokkum Jamasb, Vijil Chenthamarakshan, Aurélie C. Lozano, Payel Das, Jian Tang:
Protein Representation Learning by Geometric Structure Pretraining. ICLR 2023 - [c39]Zuobai Zhang, Minghao Xu, Aurélie C. Lozano, Vijil Chenthamarakshan, Payel Das, Jian Tang:
Pre-Training Protein Encoder via Siamese Sequence-Structure Diffusion Trajectory Prediction. NeurIPS 2023 - 2022
- [c38]Georgios Kollias, Vasileios Kalantzis, Tsuyoshi Idé, Aurélie C. Lozano, Naoki Abe:
Directed Graph Auto-Encoders. AAAI 2022: 7211-7219 - [c37]Jihun Yun, Aurélie C. Lozano, Eunho Yang:
AdaBlock: SGD with Practical Block Diagonal Matrix Adaptation for Deep Learning. AISTATS 2022: 2574-2606 - 2021
- [c36]Jihun Yun, Aurélie C. Lozano, Eunho Yang:
Adaptive Proximal Gradient Methods for Structured Neural Networks. NeurIPS 2021: 24365-24378 - 2019
- [c35]Jihun Yun, Peng Zheng, Eunho Yang, Aurélie C. Lozano, Aleksandr Y. Aravkin:
Trimming the $\ell_1$ Regularizer: Statistical Analysis, Optimization, and Applications to Deep Learning. ICML 2019: 7242-7251 - 2018
- [c34]Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Aurélie C. Lozano, Cho-Jui Hsieh, Luca Daniel:
On Extensions of Clever: A Neural Network Robustness Evaluation Algorithm. GlobalSIP 2018: 1159-1163 - 2017
- [c33]Sahil Garg, Irina Rish, Guillermo A. Cecchi, Aurélie C. Lozano:
Neurogenesis-Inspired Dictionary Learning: Online Model Adaption in a Changing World. ICLR (Workshop) 2017 - [c32]Eunho Yang, Aurélie C. Lozano:
Sparse + Group-Sparse Dirty Models: Statistical Guarantees without Unreasonable Conditions and a Case for Non-Convexity. ICML 2017: 3911-3920 - [c31]Sahil Garg, Irina Rish, Guillermo A. Cecchi, Aurélie C. Lozano:
Neurogenesis-Inspired Dictionary Learning: Online Model Adaption in a Changing World. IJCAI 2017: 1696-1702 - [c30]Meghana Kshirsagar, Eunho Yang, Aurélie C. Lozano:
Learning Task Clusters via Sparsity Grouped Multitask Learning. ECML/PKDD (2) 2017: 673-689 - 2016
- [c29]Jialei Wang, Peder A. Olsen, Andrew R. Conn, Aurélie C. Lozano:
Removing Clouds and Recovering Ground Observations in Satellite Image Sequences via Temporally Contiguous Robust Matrix Completion. CVPR 2016: 2754-2763 - [c28]Aurélie C. Lozano, Prasanna Sattigeri, Aleksandra Mojsilovic, Kush R. Varshney:
Stable estimation of Granger-causal factors of country-level innovation. GlobalSIP 2016: 1290-1294 - 2015
- [c27]Eunho Yang, Aurélie C. Lozano, Pradeep Ravikumar:
Closed-form Estimators for High-dimensional Generalized Linear Models. NIPS 2015: 586-594 - [c26]Eunho Yang, Aurélie C. Lozano:
Robust Gaussian Graphical Modeling with the Trimmed Graphical Lasso. NIPS 2015: 2602-2610 - [c25]Seunghak Lee, Aurélie C. Lozano, Prabhanjan Kambadur, Eric P. Xing:
An Efficient Nonlinear Regression Approach for Genome-Wide Detection of Marginal and Interacting Genetic Variations. RECOMB 2015: 167-187 - 2014
- [c24]Aleksandr Y. Aravkin, Aurélie C. Lozano, Ronny Luss, Prabhanjan Kambadur:
Orthogonal Matching Pursuit for Sparse Quantile Regression. ICDM 2014: 11-19 - [c23]Eunho Yang, Aurélie C. Lozano, Pradeep Ravikumar:
Elementary Estimators for High-Dimensional Linear Regression. ICML 2014: 388-396 - [c22]Eunho Yang, Aurélie C. Lozano, Pradeep Ravikumar:
Elementary Estimators for Sparse Covariance Matrices and other Structured Moments. ICML 2014: 397-405 - [c21]Eunho Yang, Aurélie C. Lozano, Pradeep Ravikumar:
Elementary Estimators for Graphical Models. NIPS 2014: 2159-2167 - 2013
- [c20]Prabhanjan Kambadur, Aurélie C. Lozano:
A Parallel, Block Greedy Method for Sparse Inverse Covariance Estimation for Ultra-high Dimensions. AISTATS 2013: 351-359 - [c19]Aurélie C. Lozano, Huijing Jiang, Xinwei Deng:
Robust sparse estimation of multiresponse regression and inverse covariance matrix via the L2 distance. KDD 2013: 293-301 - [c18]Vikas Sindhwani, Ha Quang Minh, Aurélie C. Lozano:
Scalable Matrix-valued Kernel Learning for High-dimensional Nonlinear Multivariate Regression and Granger Causality. UAI 2013 - 2012
- [c17]Aurélie C. Lozano, Grzegorz Swirszcz:
Multi-level Lasso for Sparse Multi-task Regression. ICML 2012 - [c16]Huijing Jiang, Aurélie C. Lozano, Fei Liu:
A Bayesian Markov-switching Model for Sparse Dynamic Network Estimation. SDM 2012: 506-515 - 2011
- [c15]Vikas Sindhwani, Aurélie C. Lozano:
Non-parametric Group Orthogonal Matching Pursuit for Sparse Learning with Multiple Kernels. NIPS 2011: 2519-2527 - [c14]Aurélie C. Lozano, Grzegorz Swirszcz, Naoki Abe:
Group Orthogonal Matching Pursuit for Logistic Regression. AISTATS 2011: 452-460 - 2010
- [c13]Yan Liu, Alexandru Niculescu-Mizil, Aurélie C. Lozano, Yong Lu:
Learning Temporal Causal Graphs for Relational Time-Series Analysis. ICML 2010: 687-694 - [c12]Aurélie C. Lozano, Vikas Sindhwani:
Block Variable Selection in Multivariate Regression and High-dimensional Causal Inference. NIPS 2010: 1486-1494 - 2009
- [c11]Aurélie C. Lozano:
A data modeling approach to climate change attribution. KDD Workshop on Knowledge Discovery from Sensor Data 2009: 9 - [c10]Aurélie C. Lozano, Naoki Abe, Yan Liu, Saharon Rosset:
Grouped graphical Granger modeling methods for temporal causal modeling. KDD 2009: 577-586 - [c9]Aurélie C. Lozano, Hongfei Li, Alexandru Niculescu-Mizil, Yan Liu, Claudia Perlich, Jonathan R. M. Hosking, Naoki Abe:
Spatial-temporal causal modeling for climate change attribution. KDD 2009: 587-596 - [c8]Aurélie C. Lozano, Grzegorz Swirszcz, Naoki Abe:
Grouped Orthogonal Matching Pursuit for Variable Selection and Prediction. NIPS 2009: 1150-1158 - [c7]Tsuyoshi Idé, Aurélie C. Lozano, Naoki Abe, Yan Liu:
Proximity-Based Anomaly Detection Using Sparse Structure Learning. SDM 2009: 97-108 - 2008
- [c6]Aurélie C. Lozano, Naoki Abe:
Multi-class cost-sensitive boosting with p-norm loss functions. KDD 2008: 506-514 - 2006
- [c5]Aurélie C. Lozano, Sanjeev R. Kulkarni:
Convergence and Consistency of Recursive Boosting. ISIT 2006: 2185-2189 - 2005
- [c4]Aurélie C. Lozano, Sanjeev R. Kulkarni:
A wireless network can achieve maximum throughput without each node meeting all others. ISIT 2005: 2119-2123 - [c3]Aurélie C. Lozano, Sanjeev R. Kulkarni, Robert E. Schapire:
Convergence and Consistency of Regularized Boosting Algorithms with Stationary B-Mixing Observations. NIPS 2005: 819-826 - 2004
- [c2]Aurélie C. Lozano, Sanjeev R. Kulkarni, Pramod Viswanath:
Throughput scaling in wireless networks with restricted mobility. ISIT 2004: 437 - 2002
- [c1]Aurélie C. Lozano, Jelena Kovacevic, Mike Andrews:
Quantized Frame Expansions In A Wireless Environment. DCC 2002: 232-241
Informal and Other Publications
- 2024
- [i21]Dongxia Wu, Tsuyoshi Idé, Aurélie C. Lozano, Georgios Kollias, Jirí Navrátil, Naoki Abe, Yi-An Ma, Rose Yu:
Learning Granger Causality from Instance-wise Self-attentive Hawkes Processes. CoRR abs/2402.03726 (2024) - [i20]Zuobai Zhang, Jiarui Lu, Vijil Chenthamarakshan, Aurélie C. Lozano, Payel Das, Jian Tang:
Structure-Informed Protein Language Model. CoRR abs/2402.05856 (2024) - [i19]Zuobai Zhang, Jiarui Lu, Vijil Chenthamarakshan, Aurélie C. Lozano, Payel Das, Jian Tang:
ProtIR: Iterative Refinement between Retrievers and Predictors for Protein Function Annotation. CoRR abs/2402.07955 (2024) - [i18]Payel Das, Subhajit Chaudhury, Elliot Nelson, Igor Melnyk, Sarath Swaminathan, Sihui Dai, Aurélie C. Lozano, Georgios Kollias, Vijil Chenthamarakshan, Jirí Navrátil, Soham Dan, Pin-Yu Chen:
Larimar: Large Language Models with Episodic Memory Control. CoRR abs/2403.11901 (2024) - [i17]Amit Dhurandhar, Tejaswini Pedapati, Ronny Luss, Soham Dan, Aurélie C. Lozano, Payel Das, Georgios Kollias:
NeuroPrune: A Neuro-inspired Topological Sparse Training Algorithm for Large Language Models. CoRR abs/2404.01306 (2024) - 2023
- [i16]Zuobai Zhang, Minghao Xu, Aurélie C. Lozano, Vijil Chenthamarakshan, Payel Das, Jian Tang:
Physics-Inspired Protein Encoder Pre-Training via Siamese Sequence-Structure Diffusion Trajectory Prediction. CoRR abs/2301.12068 (2023) - [i15]Zuobai Zhang, Minghao Xu, Vijil Chenthamarakshan, Aurélie C. Lozano, Payel Das, Jian Tang:
Enhancing Protein Language Models with Structure-based Encoder and Pre-training. CoRR abs/2303.06275 (2023) - 2022
- [i14]Georgios Kollias, Vasileios Kalantzis, Tsuyoshi Idé, Aurélie C. Lozano, Naoki Abe:
Directed Graph Auto-Encoders. CoRR abs/2202.12449 (2022) - [i13]Zuobai Zhang, Minghao Xu, Arian R. Jamasb, Vijil Chenthamarakshan, Aurélie C. Lozano, Payel Das, Jian Tang:
Protein Representation Learning by Geometric Structure Pretraining. CoRR abs/2203.06125 (2022) - [i12]Igor Melnyk, Aurélie C. Lozano, Payel Das, Vijil Chenthamarakshan:
AlphaFold Distillation for Improved Inverse Protein Folding. CoRR abs/2210.03488 (2022) - 2021
- [i11]Igor Melnyk, Payel Das, Vijil Chenthamarakshan, Aurélie C. Lozano:
Benchmarking deep generative models for diverse antibody sequence design. CoRR abs/2111.06801 (2021) - 2020
- [i10]Jihun Yun, Aurélie C. Lozano, Eunho Yang:
A General Family of Stochastic Proximal Gradient Methods for Deep Learning. CoRR abs/2007.07484 (2020) - 2019
- [i9]Jihun Yun, Aurélie C. Lozano, Eunho Yang:
Stochastic Gradient Methods with Block Diagonal Matrix Adaptation. CoRR abs/1905.10757 (2019) - 2018
- [i8]Ming Yu, Karthikeyan Natesan Ramamurthy, Addie M. Thompson, Aurélie C. Lozano:
Simultaneous Parameter Learning and Bi-Clustering for Multi-Response Models. CoRR abs/1804.10961 (2018) - [i7]Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Aurélie C. Lozano, Cho-Jui Hsieh, Luca Daniel:
On Extensions of CLEVER: A Neural Network Robustness Evaluation Algorithm. CoRR abs/1810.08640 (2018) - 2017
- [i6]Sahil Garg, Irina Rish, Guillermo A. Cecchi, Aurélie C. Lozano:
Neurogenesis-Inspired Dictionary Learning: Online Model Adaption in a Changing World. CoRR abs/1701.06106 (2017) - 2016
- [i5]Jialei Wang, Peder A. Olsen, Andrew R. Conn, Aurélie C. Lozano:
Removing Clouds and Recovering Ground Observations in Satellite Image Sequences via Temporally Contiguous Robust Matrix Completion. CoRR abs/1604.03915 (2016) - [i4]Prasanna Sattigeri, Aurélie C. Lozano, Aleksandra Mojsilovic, Kush R. Varshney, Mahmoud Naghshineh:
Understanding Innovation to Drive Sustainable Development. CoRR abs/1606.06177 (2016) - 2014
- [i3]Aleksandr Y. Aravkin, Anju Kambadur, Aurélie C. Lozano, Ronny Luss:
Sparse Quantile Huber Regression for Efficient and Robust Estimation. CoRR abs/1402.4624 (2014) - [i2]Vikas Sindhwani, Ha Quang Minh, Aurélie C. Lozano:
Scalable Matrix-valued Kernel Learning for High-dimensional Nonlinear Multivariate Regression and Granger Causality. CoRR abs/1408.2066 (2014) - 2012
- [i1]Vikas Sindhwani, Aurélie C. Lozano, Ha Quang Minh:
Scalable Matrix-valued Kernel Learning and High-dimensional Nonlinear Causal Inference. CoRR abs/1210.4792 (2012)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-09-26 01:51 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint