default search action
Phillip B. Gibbons
Person information
- affiliation: Carnegie Mellon University, Pittsburgh, PA, USA
- affiliation (former): Intel Labs, Pittsburgh, PA, USA
- award (2019): ACM Paris Kanellakis Theory and Practice Award
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [c174]Víctor Mayoral Vilches, Jason Jabbour, Yu-Shun Hsiao, Zishen Wan, Martiño Crespo-Álvarez, Matthew Stewart, Juan Manuel Reina-Muñoz, Prateek Nagras, Gaurav Vikhe, Mohammad Bakhshalipour, Martin Pinzger, Stefan Rass, Smruti Panigrahi, Giulio Corradi, Niladri Roy, Phillip B. Gibbons, Sabrina M. Neuman, Brian Plancher, Vijay Janapa Reddi:
RobotPerf: An Open-Source, Vendor-Agnostic, Benchmarking Suite for Evaluating Robotics Computing System Performance. ICRA 2024: 8288-8297 - [c173]Mohammad Bakhshalipour, Phillip B. Gibbons:
Tartan: Microarchitecting a Robotic Processor. ISCA 2024: 548-565 - [c172]Pratik Fegade, Tianqi Chen, Phillip B. Gibbons, Todd C. Mowry:
ACROBAT: Optimizing Auto-batching of Dynamic Deep Learning at Compile Time. MLSys 2024 - [c171]Mohammad Bakhshalipour, Phillip B. Gibbons:
Agents of Autonomy: A Systematic Study of Robotics on Modern Hardware. SIGMETRICS/Performance (Abstracts) 2024: 25-26 - [e9]Phillip B. Gibbons, Gennady Pekhimenko, Christopher De Sa:
Proceedings of the Seventh Annual Conference on Machine Learning and Systems, MLSys 2024, Santa Clara, CA, USA, May 13-16, 2024. mlsys.org 2024 [contents] - [i27]Siyuan Chen, Zelong Guan, Yudong Liu, Phillip B. Gibbons:
Practical offloading for fine-tuning LLM on commodity GPU via learned subspace projectors. CoRR abs/2406.10181 (2024) - [i26]Yiwei Zhao, Ziyun Li, Win-San Khwa, Xiaoyu Sun, Sai Qian Zhang, Syed Shakib Sarwar, Kleber Hugo Stangherlin, Yi-Lun Lu, Jorge Tomás Gómez, Jae-Sun Seo, Phillip B. Gibbons, Barbara De Salvo, Chiao Liu:
Neural Architecture Search of Hybrid Models for NPU-CIM Heterogeneous AR/VR Devices. CoRR abs/2410.08326 (2024) - 2023
- [j47]Mohammad Bakhshalipour, Phillip B. Gibbons:
Agents of Autonomy: A Systematic Study of Robotics on Modern Hardware. Proc. ACM Meas. Anal. Comput. Syst. 7(3): 43:1-43:31 (2023) - [c170]Mohammad Bakhshalipour, Mohamad Qadri, Dominic Guri, Seyed Borna Ehsani, Maxim Likhachev, Phillip B. Gibbons:
Runahead A*: Speculative Parallelism for A* with Slow Expansions. ICAPS 2023: 31-41 - [c169]Ellango Jothimurugesan, Kevin Hsieh, Jianyu Wang, Gauri Joshi, Phillip B. Gibbons:
Federated Learning under Distributed Concept Drift. AISTATS 2023: 5834-5853 - [c168]Hongbo Kang, Yiwei Zhao, Guy E. Blelloch, Laxman Dhulipala, Yan Gu, Charles McGuffey, Phillip B. Gibbons:
PIM-tree: A Skew-resistant Index for Processing-in-Memory (Abstract). HOPC@SPAA 2023: 13-14 - [c167]Siyuan Chen, Pratik Pramod Fegade, Tianqi Chen, Phillip B. Gibbons, Todd C. Mowry:
ED-Batch: Efficient Automatic Batching of Dynamic Neural Networks via Learned Finite State Machines. ICML 2023: 4514-4528 - [c166]Hongbo Kang, Yiwei Zhao, Guy E. Blelloch, Laxman Dhulipala, Yan Gu, Charles McGuffey, Phillip B. Gibbons:
PIM-trie: A Skew-resistant Trie for Processing-in-Memory. SPAA 2023: 1-14 - [i25]Siyuan Chen, Pratik Fegade, Tianqi Chen, Phillip B. Gibbons, Todd C. Mowry:
ED-Batch: Efficient Automatic Batching of Dynamic Neural Networks via Learned Finite State Machines. CoRR abs/2302.03851 (2023) - [i24]Pratik Fegade, Tianqi Chen, Phillip B. Gibbons, Todd C. Mowry:
ACRoBat: Optimizing Auto-batching of Dynamic Deep Learning at Compile Time. CoRR abs/2305.10611 (2023) - [i23]Víctor Mayoral Vilches, Jason Jabbour, Yu-Shun Hsiao, Zishen Wan, Alejandra Martínez-Fariña, Martiño Crespo-Álvarez, Matthew Stewart, Juan Manuel Reina-Muñoz, Prateek Nagras, Gaurav Vikhe, Mohammad Bakhshalipour, Martin Pinzger, Stefan Rass, Smruti Panigrahi, Giulio Corradi, Niladri Roy, Phillip B. Gibbons, Sabrina M. Neuman, Brian Plancher, Vijay Janapa Reddi:
RobotPerf: An Open-Source, Vendor-Agnostic, Benchmarking Suite for Evaluating Robotics Computing System Performance. CoRR abs/2309.09212 (2023) - 2022
- [j46]Hongbo Kang, Yiwei Zhao, Guy E. Blelloch, Laxman Dhulipala, Yan Gu, Charles McGuffey, Phillip B. Gibbons:
PIM-tree: A Skew-resistant Index for Processing-in-Memory. Proc. VLDB Endow. 16(4): 946-958 (2022) - [j45]Nandita Vijaykumar, Ataberk Olgun, Konstantinos Kanellopoulos, F. Nisa Bostanci, Hasan Hassan, Mehrshad Lotfi, Phillip B. Gibbons, Onur Mutlu:
MetaSys: A Practical Open-source Metadata Management System to Implement and Evaluate Cross-layer Optimizations. ACM Trans. Archit. Code Optim. 19(2): 26:1-26:29 (2022) - [c165]Mohammad Bakhshalipour, Seyed Borna Ehsani, Mohamad Qadri, Dominic Guri, Maxim Likhachev, Phillip B. Gibbons:
RACOD: algorithm/hardware co-design for mobile robot path planning. ISCA 2022: 597-609 - [c164]Mohammad Bakhshalipour, Maxim Likhachev, Phillip B. Gibbons:
RTRBench: A Benchmark Suite for Real-Time Robotics. ISPASS 2022: 175-186 - [c163]Pratik Fegade, Tianqi Chen, Phillip B. Gibbons, Todd C. Mowry:
The CoRa Tensor Compiler: Compilation for Ragged Tensors with Minimal Padding. MLSys 2022 - [c162]Nathan Beckmann, Phillip B. Gibbons, Charles McGuffey:
Brief Announcement: Spatial Locality and Granularity Change in Caching. SPAA 2022: 173-175 - [i22]Nathan Beckmann, Phillip B. Gibbons, Charles McGuffey:
Spatial Locality and Granularity Change in Caching. CoRR abs/2205.14543 (2022) - [i21]Ellango Jothimurugesan, Kevin Hsieh, Jianyu Wang, Gauri Joshi, Phillip B. Gibbons:
Federated Learning under Distributed Concept Drift. CoRR abs/2206.00799 (2022) - [i20]Hongbo Kang, Yiwei Zhao, Guy E. Blelloch, Laxman Dhulipala, Yan Gu, Charles McGuffey, Phillip B. Gibbons:
PIM-tree: A Skew-resistant Index for Processing-in-Memory. CoRR abs/2211.10516 (2022) - 2021
- [j44]Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista A. Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L. D'Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaïd Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konecný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh, Hang Qi, Daniel Ramage, Ramesh Raskar, Mariana Raykova, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, Sen Zhao:
Advances and Open Problems in Federated Learning. Found. Trends Mach. Learn. 14(1-2): 1-210 (2021) - [c161]Guy E. Blelloch, Laxman Dhulipala, Phillip B. Gibbons, Yan Gu, Charles McGuffey, Julian Shun:
The Read-Only Semi-External Model. APOCS 2021: 70-84 - [c160]Daming D. Chen, Wen Shih Lim, Mohammad Bakhshalipour, Phillip B. Gibbons, James C. Hoe, Bryan Parno:
HerQules: securing programs via hardware-enforced message queues. ASPLOS 2021: 773-788 - [c159]Ashraf Tahmasbi, Ellango Jothimurugesan, Srikanta Tirthapura, Phillip B. Gibbons:
DriftSurf: Stable-State / Reactive-State Learning under Concept Drift. ICML 2021: 10054-10064 - [c158]Pratik Fegade, Tianqi Chen, Phillip B. Gibbons, Todd C. Mowry:
Cortex: A Compiler for Recursive Deep Learning Models. MLSys 2021 - [c157]Hongbo Kang, Phillip B. Gibbons, Guy E. Blelloch, Laxman Dhulipala, Yan Gu, Charles McGuffey:
The Processing-in-Memory Model. SPAA 2021: 295-306 - [c156]Nathan Beckmann, Phillip B. Gibbons, Charles McGuffey:
Block-Granularity-Aware Caching. SPAA 2021: 414-416 - [i19]Nandita Vijaykumar, Ataberk Olgun, Konstantinos Kanellopoulos, Nisa Bostanci, Hasan Hassan, Mehrshad Lotfi, Phillip B. Gibbons, Onur Mutlu:
MetaSys: A Practical Open-Source Metadata Management System to Implement and Evaluate Cross-Layer Optimizations. CoRR abs/2105.08123 (2021) - [i18]Pratik Fegade, Tianqi Chen, Phillip B. Gibbons, Todd C. Mowry:
The CoRa Tensor Compiler: Compilation for Ragged Tensors with Minimal Padding. CoRR abs/2110.10221 (2021) - 2020
- [j43]Laxman Dhulipala, Charles McGuffey, Hongbo Kang, Yan Gu, Guy E. Blelloch, Phillip B. Gibbons, Julian Shun:
Sage: Parallel Semi-Asymmetric Graph Algorithms for NVRAMs. Proc. VLDB Endow. 13(9): 1598-1613 (2020) - [c155]Nathan Beckmann, Phillip B. Gibbons, Bernhard Haeupler, Charles McGuffey:
Writeback-Aware Caching. APOCS 2020: 1-15 - [c154]Kevin Hsieh, Amar Phanishayee, Onur Mutlu, Phillip B. Gibbons:
The Non-IID Data Quagmire of Decentralized Machine Learning. ICML 2020: 4387-4398 - [c153]Daming D. Chen, Phillip B. Gibbons, Todd C. Mowry:
TardisTM: incremental repair for transactional memory. PMAM@PPoPP 2020: 3:1-3:10 - [i17]Ashraf Tahmasbi, Ellango Jothimurugesan, Srikanta Tirthapura, Phillip B. Gibbons:
DriftSurf: A Risk-competitive Learning Algorithm under Concept Drift. CoRR abs/2003.06508 (2020) - [i16]Pratik Fegade, Tianqi Chen, Phillip B. Gibbons, Todd C. Mowry:
Cortex: A Compiler for Recursive Deep Learning Models. CoRR abs/2011.01383 (2020)
2010 – 2019
- 2019
- [c152]Jinliang Wei, Garth A. Gibson, Phillip B. Gibbons, Eric P. Xing:
Automating Dependence-Aware Parallelization of Machine Learning Training on Distributed Shared Memory. EuroSys 2019: 42:1-42:17 - [c151]Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R. Devanur, Gregory R. Ganger, Phillip B. Gibbons, Matei Zaharia:
PipeDream: generalized pipeline parallelism for DNN training. SOSP 2019: 1-15 - [c150]Nathan Beckmann, Phillip B. Gibbons, Bernhard Haeupler, Charles McGuffey:
Writeback-Aware Caching (Brief Announcement). SPAA 2019: 345-347 - [i15]Alexander Ratner, Dan Alistarh, Gustavo Alonso, David G. Andersen, Peter Bailis, Sarah Bird, Nicholas Carlini, Bryan Catanzaro, Eric S. Chung, Bill Dally, Jeff Dean, Inderjit S. Dhillon, Alexandros G. Dimakis, Pradeep Dubey, Charles Elkan, Grigori Fursin, Gregory R. Ganger, Lise Getoor, Phillip B. Gibbons, Garth A. Gibson, Joseph E. Gonzalez, Justin Gottschlich, Song Han, Kim M. Hazelwood, Furong Huang, Martin Jaggi, Kevin G. Jamieson, Michael I. Jordan, Gauri Joshi, Rania Khalaf, Jason Knight, Jakub Konecný, Tim Kraska, Arun Kumar, Anastasios Kyrillidis, Jing Li, Samuel Madden, H. Brendan McMahan, Erik Meijer, Ioannis Mitliagkas, Rajat Monga, Derek Gordon Murray, Dimitris S. Papailiopoulos, Gennady Pekhimenko, Theodoros Rekatsinas, Afshin Rostamizadeh, Christopher Ré, Christopher De Sa, Hanie Sedghi, Siddhartha Sen, Virginia Smith, Alex Smola, Dawn Song, Evan Randall Sparks, Ion Stoica, Vivienne Sze, Madeleine Udell, Joaquin Vanschoren, Shivaram Venkataraman, Rashmi Vinayak, Markus Weimer, Andrew Gordon Wilson, Eric P. Xing, Matei Zaharia, Ce Zhang, Ameet Talwalkar:
SysML: The New Frontier of Machine Learning Systems. CoRR abs/1904.03257 (2019) - [i14]Kevin Hsieh, Amar Phanishayee, Onur Mutlu, Phillip B. Gibbons:
The Non-IID Data Quagmire of Decentralized Machine Learning. CoRR abs/1910.00189 (2019) - [i13]Laxman Dhulipala, Charles McGuffey, Hongbo Kang, Yan Gu, Guy E. Blelloch, Phillip B. Gibbons, Julian Shun:
Semi-Asymmetric Parallel Graph Algorithms for NVRAMs. CoRR abs/1910.12310 (2019) - [i12]Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista A. Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L. D'Oliveira, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaïd Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konecný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, Sen Zhao:
Advances and Open Problems in Federated Learning. CoRR abs/1912.04977 (2019) - 2018
- [c149]Naama Ben-David, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, Charles McGuffey, Julian Shun:
Implicit Decomposition for Write-Efficient Connectivity Algorithms. IPDPS 2018: 711-722 - [c148]Nandita Vijaykumar, Abhilasha Jain, Diptesh Majumdar, Kevin Hsieh, Gennady Pekhimenko, Eiman Ebrahimi, Nastaran Hajinazar, Phillip B. Gibbons, Onur Mutlu:
A Case for Richer Cross-Layer Abstractions: Bridging the Semantic Gap with Expressive Memory. ISCA 2018: 207-220 - [c147]Nandita Vijaykumar, Eiman Ebrahimi, Kevin Hsieh, Phillip B. Gibbons, Onur Mutlu:
The Locality Descriptor: A Holistic Cross-Layer Abstraction to Express Data Locality In GPUs. ISCA 2018: 829-842 - [c146]Ellango Jothimurugesan, Ashraf Tahmasbi, Phillip B. Gibbons, Srikanta Tirthapura:
Variance-Reduced Stochastic Gradient Descent on Streaming Data. NeurIPS 2018: 9928-9937 - [c145]Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodík, Shivaram Venkataraman, Paramvir Bahl, Matthai Philipose, Phillip B. Gibbons, Onur Mutlu:
Focus: Querying Large Video Datasets with Low Latency and Low Cost. OSDI 2018: 269-286 - [c144]Guy E. Blelloch, Phillip B. Gibbons, Yan Gu, Charles McGuffey, Julian Shun:
The Parallel Persistent Memory Model. SPAA 2018: 247-258 - [c143]Aaron Harlap, Andrew Chung, Alexey Tumanov, Gregory R. Ganger, Phillip B. Gibbons:
Tributary: spot-dancing for elastic services with latency SLOs. USENIX ATC 2018: 1-14 - [r6]Phillip B. Gibbons:
Data Storage and Indexing in Sensor Networks. Encyclopedia of Database Systems (2nd ed.) 2018 - [r5]Phillip B. Gibbons:
FM Synopsis. Encyclopedia of Database Systems (2nd ed.) 2018 - [r4]Phillip B. Gibbons:
Synopsis Structure. Encyclopedia of Database Systems (2nd ed.) 2018 - [i11]Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodík, Paramvir Bahl, Matthai Philipose, Phillip B. Gibbons, Onur Mutlu:
Focus: Querying Large Video Datasets with Low Latency and Low Cost. CoRR abs/1801.03493 (2018) - [i10]Nandita Vijaykumar, Kevin Hsieh, Gennady Pekhimenko, Samira Manabi Khan, Ashish Shrestha, Saugata Ghose, Phillip B. Gibbons, Onur Mutlu:
Zorua: Enhancing Programming Ease, Portability, and Performance in GPUs by Decoupling Programming Models from Resource Management. CoRR abs/1802.02573 (2018) - [i9]Henggang Cui, Gregory R. Ganger, Phillip B. Gibbons:
MLtuner: System Support for Automatic Machine Learning Tuning. CoRR abs/1803.07445 (2018) - [i8]Nandita Vijaykumar, Kevin Hsieh, Gennady Pekhimenko, Samira Manabi Khan, Ashish Shrestha, Saugata Ghose, Adwait Jog, Phillip B. Gibbons, Onur Mutlu:
Decoupling GPU Programming Models from Resource Management for Enhanced Programming Ease, Portability, and Performance. CoRR abs/1805.02498 (2018) - [i7]Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Phillip B. Gibbons, Michael A. Kozuch, Todd C. Mowry:
RowClone: Accelerating Data Movement and Initialization Using DRAM. CoRR abs/1805.03502 (2018) - [i6]Guy E. Blelloch, Phillip B. Gibbons, Yan Gu, Charles McGuffey, Julian Shun:
The Parallel Persistent Memory Model. CoRR abs/1805.05580 (2018) - [i5]Aaron Harlap, Deepak Narayanan, Amar Phanishayee, Vivek Seshadri, Nikhil R. Devanur, Gregory R. Ganger, Phillip B. Gibbons:
PipeDream: Fast and Efficient Pipeline Parallel DNN Training. CoRR abs/1806.03377 (2018) - 2017
- [c142]Aaron Harlap, Alexey Tumanov, Andrew Chung, Gregory R. Ganger, Phillip B. Gibbons:
Proteus: agile ML elasticity through tiered reliability in dynamic resource markets. EuroSys 2017: 589-604 - [c141]Mahadev Satyanarayanan, Phillip B. Gibbons, Lily B. Mummert, Padmanabhan Pillai, Pieter Simoens, Rahul Sukthankar:
Cloudlet-based just-in-time indexing of IoT video. GIoTS 2017: 1-8 - [c140]Guy E. Blelloch, Phillip B. Gibbons, Harsha Vardhan Simhadri:
Provably Efficient Scheduling of Dynamically Allocating Programs on Parallel Cache Hierarchies. HiPC 2017: 124-133 - [c139]Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali Boroumand, Jeremie S. Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, Todd C. Mowry:
Ambit: in-memory accelerator for bulk bitwise operations using commodity DRAM technology. MICRO 2017: 273-287 - [c138]Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis, Gregory R. Ganger, Phillip B. Gibbons, Onur Mutlu:
Gaia: Geo-Distributed Machine Learning Approaching LAN Speeds. NSDI 2017: 629-647 - [i4]Naama Ben-David, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, Charles McGuffey, Julian Shun:
Implicit Decomposition for Write-Efficient Connectivity Algorithms. CoRR abs/1710.02637 (2017) - 2016
- [j42]Harsha Vardhan Simhadri, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Aapo Kyrola:
Experimental Analysis of Space-Bounded Schedulers. ACM Trans. Parallel Comput. 3(1): 8:1-8:27 (2016) - [c137]Aaron Harlap, Henggang Cui, Wei Dai, Jinliang Wei, Gregory R. Ganger, Phillip B. Gibbons, Garth A. Gibson, Eric P. Xing:
Addressing the straggler problem for iterative convergent parallel ML. SoCC 2016: 98-111 - [c136]Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, Julian Shun:
Efficient Algorithms with Asymmetric Read and Write Costs. ESA 2016: 14:1-14:18 - [c135]Henggang Cui, Hao Zhang, Gregory R. Ganger, Phillip B. Gibbons, Eric P. Xing:
GeePS: scalable deep learning on distributed GPUs with a GPU-specialized parameter server. EuroSys 2016: 4:1-4:16 - [c134]Nandita Vijaykumar, Kevin Hsieh, Gennady Pekhimenko, Samira Manabi Khan, Ashish Shrestha, Saugata Ghose, Adwait Jog, Phillip B. Gibbons, Onur Mutlu:
Zorua: A holistic approach to resource virtualization in GPUs. MICRO 2016: 15:1-15:14 - [c133]Phillip B. Gibbons:
How Emerging Memory Technologies Will Have You Rethinking Algorithm Design. PODC 2016: 303 - [c132]Naama Ben-David, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, Charles McGuffey, Julian Shun:
Parallel Algorithms for Asymmetric Read-Write Costs. SPAA 2016: 145-156 - [p1]Phillip B. Gibbons:
Distinct-Values Estimation over Data Streams. Data Stream Management 2016: 121-147 - [i3]Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, Julian Shun:
Sorting with Asymmetric Read and Write Costs. CoRR abs/1603.03505 (2016) - [i2]Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali Boroumand, Jeremie S. Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, Todd C. Mowry:
Buddy-RAM: Improving the Performance and Efficiency of Bulk Bitwise Operations Using DRAM. CoRR abs/1611.09988 (2016) - 2015
- [j41]Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, Todd C. Mowry:
Fast Bulk Bitwise AND and OR in DRAM. IEEE Comput. Archit. Lett. 14(2): 127-131 (2015) - [j40]Manos Athanassoulis, Shimin Chen, Anastasia Ailamaki, Phillip B. Gibbons, Radu Stoica:
Online Updates on Data Warehouses via Judicious Use of Solid-State Storage. ACM Trans. Database Syst. 40(1): 6:1-6:42 (2015) - [c131]Michelle L. Goodstein, Phillip B. Gibbons, Michael A. Kozuch, Todd C. Mowry:
Tracking and Reducing Uncertainty in Dataflow Analysis-Based Dynamic Parallel Monitoring. PACT 2015: 266-279 - [c130]Chung-Yi Li, Wei-Lun Su, Todd G. McKenzie, Fu-Chun Hsu, Shou-De Lin, Jane Yung-jen Hsu, Phillip B. Gibbons:
Recommending missing sensor values. IEEE BigData 2015: 381-390 - [c129]Chin-Chi Hsu, Perng-Hwa Kung, Mi-Yen Yeh, Shou-De Lin, Phillip B. Gibbons:
Bandwidth-efficient distributed k-nearest-neighbor search with dynamic time warping. IEEE BigData 2015: 551-560 - [c128]Jinliang Wei, Wei Dai, Aurick Qiao, Qirong Ho, Henggang Cui, Gregory R. Ganger, Phillip B. Gibbons, Garth A. Gibson, Eric P. Xing:
Managed communication and consistency for fast data-parallel iterative analytics. SoCC 2015: 381-394 - [c127]Han Xiao, Shou-De Lin, Mi-Yen Yeh, Phillip B. Gibbons, Claudia Eckert:
Learning better while sending less: Communication-efficient online semi-supervised learning in client-server settings. DSAA 2015: 1-10 - [c126]Gennady Pekhimenko, Tyler Huberty, Rui Cai, Onur Mutlu, Phillip B. Gibbons, Michael A. Kozuch, Todd C. Mowry:
Exploiting compressed block size as an indicator of future reuse. HPCA 2015: 51-63 - [c125]Phillip B. Gibbons:
Big data: Scale down, scale up, scale out. IPDPS 2015: 3 - [c124]Vivek Seshadri, Gennady Pekhimenko, Olatunji Ruwase, Onur Mutlu, Phillip B. Gibbons, Michael A. Kozuch, Todd C. Mowry, Trishul M. Chilimbi:
Page overlays: an enhanced virtual memory framework to enable fine-grained memory management. ISCA 2015: 79-91 - [c123]Phillip B. Gibbons:
Living on the Edge with Only Clouds to Fall Back on. MDM (1) 2015: 3 - [c122]Vivek Seshadri, Thomas Mullins, Amirali Boroumand, Onur Mutlu, Phillip B. Gibbons, Michael A. Kozuch, Todd C. Mowry:
Gather-scatter DRAM: in-DRAM address translation to improve the spatial locality of non-unit strided accesses. MICRO 2015: 267-280 - [c121]Julian Shun, Yan Gu, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons:
Sequential Random Permutation, List Contraction and Tree Contraction are Highly Parallel. SODA 2015: 431-448 - [c120]Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, Julian Shun:
Sorting with Asymmetric Read and Write Costs. SPAA 2015: 1-12 - [i1]Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, Julian Shun:
Efficient Algorithms under Asymmetric Read and Write Costs. CoRR abs/1511.01038 (2015) - 2014
- [j39]Binbin Chen, Haifeng Yu, Yuda Zhao, Phillip B. Gibbons:
The Cost of Fault Tolerance in Multi-Party Communication Complexity. J. ACM 61(3): 19:1-19:64 (2014) - [j38]Vivek Seshadri, Samihan Yedkar, Hongyi Xin, Onur Mutlu, Phillip B. Gibbons, Michael A. Kozuch, Todd C. Mowry:
Mitigating Prefetcher-Caused Pollution Using Informed Caching Policies for Prefetched Blocks. ACM Trans. Archit. Code Optim. 11(4): 51:1-51:22 (2014) - [j37]Phillip B. Gibbons:
ACM transactions on parallel computing: An introduction. ACM Trans. Parallel Comput. 1(1): 1:1-1:2 (2014) - [c119]Olatunji Ruwase, Michael A. Kozuch, Phillip B. Gibbons, Todd C. Mowry:
Guardrail: a high fidelity approach to protecting hardware devices from buggy drivers. ASPLOS 2014: 655-670 - [c118]Henggang Cui, Alexey Tumanov, Jinliang Wei, Lianghong Xu, Wei Dai, Jesse Haber-Kucharsky, Qirong Ho, Gregory R. Ganger, Phillip B. Gibbons, Garth A. Gibson, Eric P. Xing:
Exploiting iterative-ness for parallel ML computations. SoCC 2014: 5:1-5:14 - [c117]Vivek Seshadri, Abhishek Bhowmick, Onur Mutlu, Phillip B. Gibbons, Michael A. Kozuch, Todd C. Mowry:
The Dirty-Block Index. ISCA 2014: 157-168 - [c116]Harsha Vardhan Simhadri, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Aapo Kyrola:
Experimental analysis of space-bounded schedulers. SPAA 2014: 30-41 - [c115]Henggang Cui, James Cipar, Qirong Ho, Jin Kyu Kim, Seunghak Lee, Abhimanu Kumar, Jinliang Wei, Wei Dai, Gregory R. Ganger, Phillip B. Gibbons, Garth A. Gibson, Eric P. Xing:
Exploiting Bounded Staleness to Speed Up Big Data Analytics. USENIX ATC 2014: 37-48 - [c114]Xiaoning Ding, Phillip B. Gibbons, Michael A. Kozuch, Jianchen Shan:
Gleaner: Mitigating the Blocked-Waiter Wakeup Problem for Virtualized Multicore Applications. USENIX ATC 2014: 73-84 - [c113]Shun-Hsing Ou, Yu-Chen Lu, Jui-Pin Wang, Shao-Yi Chien, Shou-De Lin, Mi-Yen Yeh, Chia-Han Lee, Phillip B. Gibbons, V. Srinivasa Somayazulu, Yen-Kuang Chen:
Communication-efficient multi-view keyframe extraction in distributed video sensors. VCIP 2014: 13-16 - 2013
- [c112]Xiaoning Ding, Phillip B. Gibbons, Michael A. Kozuch:
A Hidden Cost of Virtualization When Scaling Multicore Applications. HotCloud 2013 - [c111]Jui-Pin Wang, Yu-Chen Lu, Mi-Yen Yeh, Shou-De Lin, Phillip B. Gibbons:
Communication-Efficient Distributed Multiple Reference Pattern Matching for M2M Systems. ICDM 2013: 787-796 - [c110]