default search action
Ling Ren 0001
Person information
- affiliation: University of Illinois, Urbana-Champaign, UIUC, USA
- affiliation (former): VMware Research
- affiliation (former): Massachusetts Institute of Technology, MA, USA
- affiliation (former): Tsinghua University, Beijing, China
Other persons with the same name
- Ling Ren 0002 — Julong Co., Ltd, Anshan, China
- Ling Ren 0003 — Hunan University, College of Mathematics and Econometrics, Changsha, China
- Ling Ren 0004 — Tianjin University, School of Electrical and Information Engineering, China
- Ling Ren 0005 — Nanjing University of Aeronautics and Astronautics, China
- Ling Ren 0006 — Shihezi University, Xinjiang Production and Construction Corps Key Laboratory of Modern Agricultural Machinery, China
- Ling Ren 0007 — University of Science and Technology Liaoning, School of Innovation and Entrepreneurship, Anshan, China
- Ling Ren 0008 — Qingdao University of Technology, School of Information and Control Engineering, China
- Ling Ren 0009 — Chongqing University of Posts and Telecommunications, School of Software Engineering, China
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j10]Jeremiah Blocki, Peiyuan Liu, Ling Ren, Samson Zhou:
Bandwidth-Hard Functions: Reductions and Lower Bounds. J. Cryptol. 37(2): 16 (2024) - [c60]Sourav Das, Ling Ren:
Adaptively Secure BLS Threshold Signatures from DDH and co-CDH. CRYPTO (7) 2024: 251-284 - [c59]Sourav Das, Zhuolun Xiang, Ling Ren:
Powers of Tau in Asynchrony. NDSS 2024 - [c58]Neil Giridharan, Ittai Abraham, Natacha Crooks, Kartik Nayak, Ling Ren:
Granular Synchrony. DISC 2024: 30:1-30:22 - [i67]Neil Giridharan, Ittai Abraham, Natacha Crooks, Kartik Nayak, Ling Ren:
Granular Synchrony. CoRR abs/2408.12853 (2024) - [i66]Xiaohai Dai, Chaozheng Ding, Hai Jin, Julian Loss, Ling Ren:
Ipotane: Achieving the Best of All Worlds in Asynchronous BFT. IACR Cryptol. ePrint Arch. 2024: 653 (2024) - [i65]Sourav Das, Sisi Duan, Shengqi Liu, Atsuki Momose, Ling Ren, Victor Shoup:
Asynchronous Consensus without Trusted Setup or Public-Key Cryptography. IACR Cryptol. ePrint Arch. 2024: 677 (2024) - [i64]Ananya Appan, David Heath, Ling Ren:
Oblivious Single Access Machines: A New Model for Oblivious Computation. IACR Cryptol. ePrint Arch. 2024: 1029 (2024) - [i63]Renas Bacho, Sourav Das, Julian Loss, Ling Ren:
Glacius: Threshold Schnorr Signatures from DDH with Full Adaptive Security. IACR Cryptol. ePrint Arch. 2024: 1628 (2024) - 2023
- [j9]Ittai Abraham, T.-H. Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling Ren, Elaine Shi:
Communication complexity of byzantine agreement, revisited. Distributed Comput. 36(1): 3-28 (2023) - [c57]Sourav Das, Philippe Camacho, Zhuolun Xiang, Javier Nieto, Benedikt Bünz, Ling Ren:
Threshold Signatures from Inner Product Argument: Succinct, Weighted, and Multi-threshold. CCS 2023: 356-370 - [c56]Dahlia Malkhi, Atsuki Momose, Ling Ren:
Towards Practical Sleepy BFT. CCS 2023: 490-503 - [c55]Xiaohai Dai, Bolin Zhang, Hai Jin, Ling Ren:
ParBFT: Faster Asynchronous BFT Consensus with a Parallel Optimistic Path. CCS 2023: 504-518 - [c54]Atsuki Momose, Sourav Das, Ling Ren:
On the Security of KZG Commitment for VSS. CCS 2023: 2561-2575 - [c53]Peter Gazi, Ling Ren, Alexander Russell:
Practical Settlement Bounds for Longest-Chain Consensus. CRYPTO (1) 2023: 107-138 - [c52]Jun Wan, Atsuki Momose, Ling Ren, Elaine Shi, Zhuolun Xiang:
On the Amortized Communication Complexity of Byzantine Broadcast. PODC 2023: 253-261 - [c51]Muhammad Haris Mughees, Ling Ren:
Vectorized Batch Private Information Retrieval. SP 2023: 437-452 - [c50]Sourav Das, Zhuolun Xiang, Lefteris Kokoris-Kogias, Ling Ren:
Practical Asynchronous High-threshold Distributed Key Generation and Distributed Polynomial Sampling. USENIX Security Symposium 2023: 5359-5376 - [i62]Atsuki Momose, Ling Ren, Elaine Shi, Jun Wan, Zhuolun Xiang:
On the Amortized Communication Complexity of Byzantine Broadcast. IACR Cryptol. ePrint Arch. 2023: 38 (2023) - [i61]Sourav Das, Philippe Camacho, Zhuolun Xiang, Javier Nieto, Benedikt Bünz, Ling Ren:
Threshold Signatures from Inner Product Argument: Succinct, Weighted, and Multi-threshold. IACR Cryptol. ePrint Arch. 2023: 598 (2023) - [i60]Xiaohai Dai, Bolin Zhang, Hai Jin, Ling Ren:
ParBFT: Faster Asynchronous BFT Consensus with a Parallel Optimistic Path. IACR Cryptol. ePrint Arch. 2023: 679 (2023) - [i59]Muhammad Haris Mughees, Ling Ren:
Simple and Practical Single-Server Sublinear Private Information Retrieval. IACR Cryptol. ePrint Arch. 2023: 1072 (2023) - [i58]Sourav Das, Zhuolun Xiang, Alin Tomescu, Alexander Spiegelman, Benny Pinkas, Ling Ren:
A New Paradigm for Verifiable Secret Sharing. IACR Cryptol. ePrint Arch. 2023: 1196 (2023) - [i57]Atsuki Momose, Sourav Das, Ling Ren:
On the Security of KZG Commitment for VSS. IACR Cryptol. ePrint Arch. 2023: 1350 (2023) - [i56]Sourav Das, Ling Ren:
Adaptively Secure BLS Threshold Signatures from DDH and co-CDH. IACR Cryptol. ePrint Arch. 2023: 1553 (2023) - 2022
- [j8]Gilad Asharov, T.-H. Hubert Chan, Kartik Nayak, Rafael Pass, Ling Ren, Elaine Shi:
Locality-Preserving Oblivious RAM. J. Cryptol. 35(2): 6 (2022) - [c49]Dongning Guo, Ling Ren:
Bitcoin's Latency-Security Analysis Made Simple. AFT 2022: 244-253 - [c48]Peter Gazi, Ling Ren, Alexander Russell:
Practical Settlement Bounds for Proof-of-Work Blockchains. CCS 2022: 1217-1230 - [c47]Atsuki Momose, Ling Ren:
Constant Latency in Sleepy Consensus. CCS 2022: 2295-2308 - [c46]Nicolas Alhaddad, Sourav Das, Sisi Duan, Ling Ren, Mayank Varia, Zhuolun Xiang, Haibin Zhang:
Balanced Byzantine Reliable Broadcast with Near-Optimal Communication and Improved Computation. PODC 2022: 399-417 - [c45]Nicolas Alhaddad, Sourav Das, Sisi Duan, Ling Ren, Mayank Varia, Zhuolun Xiang, Haibin Zhang:
Brief Announcement: Asynchronous Verifiable Information Dispersal with Near-Optimal Communication. PODC 2022: 418-420 - [c44]Sourav Das, Nitin Awathare, Ling Ren, Vinay J. Ribeiro, Umesh Bellur:
Tuxedo: Maximizing Smart Contract Computation in PoW Blockchains. SIGMETRICS (Abstracts) 2022: 63-64 - [c43]Sourav Das, Vinith Krishnan, Irene Miriam Isaac, Ling Ren:
Spurt: Scalable Distributed Randomness Beacon with Transparent Setup. SP 2022: 2502-2517 - [c42]Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew Miller, Lefteris Kokoris-Kogias, Ling Ren:
Practical Asynchronous Distributed Key Generation. SP 2022: 2518-2534 - [i55]Dongning Guo, Ling Ren:
Bitcoin's Latency-Security Analysis Made Simple. CoRR abs/2203.06357 (2022) - [i54]Sourav Das, Zhuolun Xiang, Ling Ren:
Balanced Quadratic Reliable Broadcast and Improved Asynchronous Verifiable Information Dispersal. IACR Cryptol. ePrint Arch. 2022: 52 (2022) - [i53]Atsuki Momose, Ling Ren:
Constant Latency in Sleepy Consensus. IACR Cryptol. ePrint Arch. 2022: 404 (2022) - [i52]Nicolas Alhaddad, Sourav Das, Sisi Duan, Ling Ren, Mayank Varia, Zhuolun Xiang, Haibin Zhang:
Asynchronous Verifiable Information Dispersal with Near-Optimal Communication. IACR Cryptol. ePrint Arch. 2022: 775 (2022) - [i51]Nicolas Alhaddad, Sourav Das, Sisi Duan, Ling Ren, Mayank Varia, Zhuolun Xiang, Haibin Zhang:
Balanced Byzantine Reliable Broadcast with Near-Optimal Communication and Improved Computation. IACR Cryptol. ePrint Arch. 2022: 776 (2022) - [i50]Muhammad Haris Mughees, Ling Ren:
Vectorized Batch Private Information Retrieval. IACR Cryptol. ePrint Arch. 2022: 1262 (2022) - [i49]Sourav Das, Zhuolun Xiang, Lefteris Kokoris-Kogias, Ling Ren:
Practical Asynchronous High-threshold Distributed Key Generation and Distributed Polynomial Sampling. IACR Cryptol. ePrint Arch. 2022: 1389 (2022) - [i48]Dahlia Malkhi, Atsuki Momose, Ling Ren:
Byzantine Consensus under Fully Fluctuating Participation. IACR Cryptol. ePrint Arch. 2022: 1448 (2022) - [i47]Peter Gazi, Ling Ren, Alexander Russell:
Practical Settlement Bounds for Longest-Chain Consensus. IACR Cryptol. ePrint Arch. 2022: 1571 (2022) - [i46]Sourav Das, Zhuolun Xiang, Ling Ren:
Powers of Tau in Asynchrony. IACR Cryptol. ePrint Arch. 2022: 1683 (2022) - 2021
- [j7]Sourav Das, Nitin Awathare, Ling Ren, Vinay J. Ribeiro, Umesh Bellur:
Tuxedo: Maximizing Smart Contract Computation in PoW Blockchains. Proc. ACM Meas. Anal. Comput. Syst. 5(3): 41:1-41:30 (2021) - [c41]Jing Li, Dongning Guo, Ling Ren:
Close latency-security trade-off for the Nakamoto consensus. AFT 2021: 100-113 - [c40]Atsuki Momose, Ling Ren:
Multi-Threshold Byzantine Fault Tolerance. CCS 2021: 1686-1699 - [c39]Muhammad Haris Mughees, Hao Chen, Ling Ren:
OnionPIR: Response Efficient Single-Server PIR. CCS 2021: 2292-2306 - [c38]Sourav Das, Zhuolun Xiang, Ling Ren:
Asynchronous Data Dissemination and its Applications. CCS 2021: 2705-2721 - [c37]Zhuolun Xiang, Dahlia Malkhi, Kartik Nayak, Ling Ren:
Strengthened Fault Tolerance in Byzantine Fault Tolerant Replication. ICDCS 2021: 205-215 - [c36]Ittai Abraham, Ling Ren, Zhuolun Xiang:
Good-Case and Bad-Case Latency of Unauthenticated Byzantine Broadcast: A Complete Categorization. OPODIS 2021: 5:1-5:20 - [c35]Ittai Abraham, Kartik Nayak, Ling Ren, Zhuolun Xiang:
Good-case Latency of Byzantine Broadcast: a Complete Categorization. PODC 2021: 331-341 - [c34]Atsuki Momose, Ling Ren:
Optimal Communication Complexity of Authenticated Byzantine Agreement. DISC 2021: 32:1-32:16 - [i45]Zhuolun Xiang, Dahlia Malkhi, Kartik Nayak, Ling Ren:
Strengthened Fault Tolerance in Byzantine Fault Tolerant Replication. CoRR abs/2101.03715 (2021) - [i44]Ittai Abraham, Kartik Nayak, Ling Ren, Zhuolun Xiang:
Good-case Latency of Byzantine Broadcast: a Complete Categorization. CoRR abs/2102.07240 (2021) - [i43]Ittai Abraham, Kartik Nayak, Ling Ren, Zhuolun Xiang:
Brief Note: Fast Authenticated Byzantine Consensus. CoRR abs/2102.07932 (2021) - [i42]Ittai Abraham, Ling Ren, Zhuolun Xiang:
Good-case and Bad-case Latency of Unauthenticated Byzantine Broadcast: A Complete Categorization. CoRR abs/2109.12454 (2021) - [i41]Sourav Das, Vinith Krishnan, Irene Miriam Isaac, Ling Ren:
SPURT: Scalable Distributed Randomness Beacon with Transparent Setup. IACR Cryptol. ePrint Arch. 2021: 100 (2021) - [i40]Atsuki Momose, Ling Ren:
Multi-Threshold Byzantine Fault Tolerance. IACR Cryptol. ePrint Arch. 2021: 671 (2021) - [i39]Sourav Das, Zhuolun Xiang, Ling Ren:
Asynchronous Data Dissemination and its Applications. IACR Cryptol. ePrint Arch. 2021: 777 (2021) - [i38]Peter Gazi, Ling Ren, Alexander Russell:
Practical Settlement Bounds for Proof-of-Work Blockchains. IACR Cryptol. ePrint Arch. 2021: 805 (2021) - [i37]Muhammad Haris Mughees, Hao Chen, Ling Ren:
OnionPIR: Response Efficient Single-Server PIR. IACR Cryptol. ePrint Arch. 2021: 1081 (2021) - [i36]Sourav Das, Tom Yurek, Zhuolun Xiang, Andrew Miller, Lefteris Kokoris-Kogias, Ling Ren:
Practical Asynchronous Distributed Key Generation. IACR Cryptol. ePrint Arch. 2021: 1591 (2021) - 2020
- [j6]Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren, Xiangyao Yu, Srinivas Devadas:
A Retrospective on Path ORAM. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39(8): 1572-1576 (2020) - [c33]Nibesh Shrestha, Ittai Abraham, Ling Ren, Kartik Nayak:
On the Optimality of Optimistic Responsiveness. CCS 2020: 839-857 - [c32]Gilad Asharov, T.-H. Hubert Chan, Kartik Nayak, Rafael Pass, Ling Ren, Elaine Shi:
Bucket Oblivious Sort: An Extremely Simple Oblivious Sort. SOSA 2020: 8-14 - [c31]Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, Maofan Yin:
Sync HotStuff: Simple and Practical Synchronous State Machine Replication. SP 2020: 106-118 - [c30]Kartik Nayak, Ling Ren, Elaine Shi, Nitin H. Vaidya, Zhuolun Xiang:
Improved Extension Protocols for Byzantine Broadcast and Agreement. DISC 2020: 28:1-28:17 - [c29]Ittai Abraham, Kartik Nayak, Ling Ren, Zhuolun Xiang:
Brief Announcement: Byzantine Agreement, Broadcast and State Machine Replication with Optimal Good-Case Latency. DISC 2020: 47:1-47:3 - [i35]Kartik Nayak, Ling Ren, Elaine Shi, Nitin H. Vaidya, Zhuolun Xiang:
Improved Extension Protocols for Byzantine Broadcast and Agreement. CoRR abs/2002.11321 (2020) - [i34]Ittai Abraham, Kartik Nayak, Ling Ren, Zhuolun Xiang:
Optimal Good-case Latency for Byzantine Broadcast and State Machine Replication. CoRR abs/2003.13155 (2020) - [i33]Sourav Das, Nitin Awathare, Ling Ren, Vinay Joseph Ribeiro, Umesh Bellur:
Better Late than Never; Scaling Computation in Blockchains by Delaying Execution. CoRR abs/2005.11791 (2020) - [i32]Atsuki Momose, Ling Ren:
Optimal Communication Complexity of Byzantine Consensus under Honest Majority. CoRR abs/2007.13175 (2020) - [i31]Sourav Das, Vinith Krishnan, Ling Ren:
Efficient Cross-Shard Transaction Execution in Sharded Blockchains. CoRR abs/2007.14521 (2020) - [i30]Gilad Asharov, T.-H. Hubert Chan, Kartik Nayak, Rafael Pass, Ling Ren, Elaine Shi:
Bucket Oblivious Sort: An Extremely Simple Oblivious Sort. CoRR abs/2008.01765 (2020) - [i29]Jing Li, Dongning Guo, Ling Ren:
Close Latency-Security Trade-off for the Nakamoto Consensus. CoRR abs/2011.14051 (2020) - [i28]Ittai Abraham, Kartik Nayak, Ling Ren, Nibesh Shrestha:
On the Optimality of Optimistic Responsiveness. IACR Cryptol. ePrint Arch. 2020: 458 (2020) - [i27]Atsuki Momose, Ling Ren:
Optimal Communication Complexity of Byzantine Agreement, Revisited. IACR Cryptol. ePrint Arch. 2020: 1569 (2020)
2010 – 2019
- 2019
- [j5]Ling Ren, Christopher W. Fletcher, Albert Kwon, Marten van Dijk, Srinivas Devadas:
Design and Implementation of the Ascend Secure Processor. IEEE Trans. Dependable Secur. Comput. 16(2): 204-216 (2019) - [c28]Hao Chen, Ilaria Chillotti, Ling Ren:
Onion Ring ORAM: Efficient Constant Bandwidth Oblivious RAM from (Leveled) TFHE. CCS 2019: 345-360 - [c27]Dahlia Malkhi, Kartik Nayak, Ling Ren:
Flexible Byzantine Fault Tolerance. CCS 2019: 1041-1053 - [c26]Gilad Asharov, T.-H. Hubert Chan, Kartik Nayak, Rafael Pass, Ling Ren, Elaine Shi:
Locality-Preserving Oblivious RAM. EUROCRYPT (2) 2019: 214-243 - [c25]Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, Ling Ren:
Synchronous Byzantine Agreement with Expected O(1) Rounds, Expected O(n2) Communication, and Optimal Resilience. Financial Cryptography 2019: 320-334 - [c24]Ittai Abraham, T.-H. Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling Ren, Elaine Shi:
Communication Complexity of Byzantine Agreement, Revisited. PODC 2019: 317-326 - [i26]Dahlia Malkhi, Kartik Nayak, Ling Ren:
Flexible Byzantine Fault Tolerance. CoRR abs/1904.10067 (2019) - [i25]Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, Maofan Yin:
Sync HotStuff: Synchronous SMR with 2∆ Latency and Optimistic Responsiveness. IACR Cryptol. ePrint Arch. 2019: 270 (2019) - [i24]Hao Chen, Ilaria Chillotti, Ling Ren:
Onion Ring ORAM: Efficient Constant Bandwidth Oblivious RAM from (Leveled) TFHE. IACR Cryptol. ePrint Arch. 2019: 736 (2019) - [i23]Ling Ren:
Analysis of Nakamoto Consensus. IACR Cryptol. ePrint Arch. 2019: 943 (2019) - 2018
- [b1]Ling Ren:
Efficient and egalitarian consensus. Massachusetts Institute of Technology, Cambridge, USA, 2018 - [j4]Emil Stefanov, Marten van Dijk, Elaine Shi, T.-H. Hubert Chan, Christopher W. Fletcher, Ling Ren, Xiangyao Yu, Srinivas Devadas:
Path ORAM: An Extremely Simple Oblivious RAM Protocol. J. ACM 65(4): 18:1-18:26 (2018) - [c23]Jeremiah Blocki, Ling Ren, Samson Zhou:
Bandwidth-Hard Functions: Reductions and Lower Bounds. CCS 2018: 1820-1836 - [c22]Hamza Omar, Syed Kamran Haider, Ling Ren, Marten van Dijk, Omer Khan:
Breaking the Oblivious-RAM Bandwidth Wall. ICCD 2018: 115-122 - [i22]Jeremiah Blocki, Ling Ren, Samson Zhou:
Bandwidth-Hard Functions: Reductions and Lower Bounds. IACR Cryptol. ePrint Arch. 2018: 221 (2018) - [i21]Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, Ling Ren:
Synchronous Byzantine Agreement with Expected O(1) Rounds, Expected O(n2) Communication, and Optimal Resilience. IACR Cryptol. ePrint Arch. 2018: 1028 (2018) - [i20]Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren:
Dfinity Consensus, Explored. IACR Cryptol. ePrint Arch. 2018: 1153 (2018) - 2017
- [j3]Chenglu Jin, Charles Herder, Ling Ren, Phuong Ha Nguyen, Benjamin Fuller, Srinivas Devadas, Marten van Dijk:
FPGA Implementation of a Cryptographically-Secure PUF Based on Learning Parity with Noise. Cryptogr. 1(3): 23 (2017) - [j2]Charles Herder, Ling Ren, Marten van Dijk, Meng-Day (Mandel) Yu, Srinivas Devadas:
Trapdoor Computational Fuzzy Extractors and Stateless Cryptographically-Secure Physical Unclonable Functions. IEEE Trans. Dependable Secur. Comput. 14(1): 65-82 (2017) - [c21]Leo Alcock, Ling Ren:
A Note on the Security of Equihash. CCSW 2017: 51-55 - [c20]Kartik Nayak, Christopher W. Fletcher, Ling Ren, Nishanth Chandran, Satya V. Lokam, Elaine Shi, Vipul Goyal:
HOP: Hardware makes Obfuscation Practical. NDSS 2017 - [c19]Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, Alexander Spiegelman:
Solida: A Blockchain Protocol Based on Reconfigurable Byzantine Consensus. OPODIS 2017: 25:1-25:19 - [c18]Ittai Abraham, Christopher W. Fletcher, Kartik Nayak, Benny Pinkas, Ling Ren:
Asymptotically Tight Bounds for Composing ORAM with PIR. Public Key Cryptography (1) 2017: 91-120 - [c17]Ling Ren, Srinivas Devadas:
Bandwidth Hard Functions for ASIC Resistance. TCC (1) 2017: 466-492 - [c16]Srinivas Devadas, Ling Ren, Hanshen Xiao:
On Iterative Collision Search for LPN and Subset Sum. TCC (2) 2017: 729-746 - [c15]Ittai Abraham, Srinivas Devadas, Kartik Nayak, Ling Ren:
Brief Announcement: Practical Synchronous Byzantine Consensus. DISC 2017: 41:1-41:4 - [i19]Ling Ren, Kartik Nayak, Ittai Abraham, Srinivas Devadas:
Practical Synchronous Byzantine Consensus. CoRR abs/1704.02397 (2017) - [i18]Ling Ren, Srinivas Devadas:
Bandwidth Hard Functions for ASIC Resistance. IACR Cryptol. ePrint Arch. 2017: 225 (2017) - [i17]Ling Ren, Kartik Nayak, Ittai Abraham, Srinivas Devadas:
Practical Synchronous Byzantine Consensus. IACR Cryptol. ePrint Arch. 2017: 307 (2017) - [i16]Gilad Asharov, T.-H. Hubert Chan, Kartik Nayak, Rafael Pass, Ling Ren, Elaine Shi:
Oblivious Computation with Data Locality. IACR Cryptol. ePrint Arch. 2017: 772 (2017) - [i15]Srinivas Devadas, Ling Ren, Hanshen Xiao:
On Iterative Collision Search for LPN and Subset Sum. IACR Cryptol. ePrint Arch. 2017: 904 (2017) - [i14]Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, Alexander Spiegelman:
Solida: A Blockchain Protocol Based on Reconfigurable Byzantine Consensus. IACR Cryptol. ePrint Arch. 2017: 1118 (2017) - 2016
- [c14]Srinivas Devadas, Marten van Dijk, Christopher W. Fletcher, Ling Ren, Elaine Shi, Daniel Wichs:
Onion ORAM: A Constant Bandwidth Blowup Oblivious RAM. TCC (A2) 2016: 145-174 - [c13]Ling Ren, Srinivas Devadas:
Proof of Space from Stacked Expanders. TCC (B1) 2016: 262-285 - [i13]Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, Alexander Spiegelman:
Solidus: An Incentive-compatible Cryptocurrency Based on Permissionless Byzantine Consensus. CoRR abs/1612.02916 (2016) - [i12]Ling Ren, Srinivas Devadas:
Proof of Space from Stacked Bipartite Graphs. IACR Cryptol. ePrint Arch. 2016: 333 (2016) - [i11]Kartik Nayak, Ling Ren, Ittai Abraham, Benny Pinkas:
An Oblivious RAM with Sub-logarithmic Bandwidth Blowup. IACR Cryptol. ePrint Arch. 2016: 849 (2016) - 2015
- [j1]Xiaoming Chen, Ling Ren, Yu Wang, Huazhong Yang:
GPU-Accelerated Sparse LU Factorization for Circuit Simulation with Performance Modeling. IEEE Trans. Parallel Distributed Syst. 26(3): 786-795 (2015) - [c12]Christopher W. Fletcher, Ling Ren, Albert Kwon, Marten van Dijk, Srinivas Devadas:
Freecursive ORAM: [Nearly] Free Recursion and Integrity Verification for Position-based Oblivious RAM. ASPLOS 2015: 103-116 - [c11]Christopher W. Fletcher, Ling Ren, Albert Kwon, Marten van Dijk, Emil Stefanov, Dimitrios N. Serpanos, Srinivas Devadas:
A Low-Latency, Low-Area Hardware Oblivious RAM Controller. FCCM 2015: 215-222 - [c10]Xiangyao Yu, Syed Kamran Haider, Ling Ren, Christopher W. Fletcher, Albert Kwon, Marten van Dijk, Srinivas Devadas:
PrORAM: dynamic prefetcher for oblivious RAM. ISCA 2015: 616-628 - [c9]Ling Ren, Christopher W. Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten van Dijk, Srinivas Devadas:
Constants Count: Practical Improvements to Oblivious RAM. USENIX Security Symposium 2015: 415-430 - [i10]Nathan Wolfe, Ethan Zou, Ling Ren, Xiangyao Yu:
Optimizing Path ORAM for Cloud Storage Applications. CoRR abs/1501.01721 (2015) - [i9]Srinivas Devadas, Marten van Dijk, Christopher W. Fletcher, Ling Ren:
Onion ORAM: A Constant Bandwidth and Constant Client Storage ORAM (without FHE or SWHE). IACR Cryptol. ePrint Arch. 2015: 5 (2015) - [i8]Christopher W. Fletcher, Muhammad Naveed, Ling Ren, Elaine Shi, Emil Stefanov:
Bucket ORAM: Single Online Roundtrip, Constant Bandwidth Oblivious RAM. IACR Cryptol. ePrint Arch. 2015: 1065 (2015) - 2014
- [c8]Christopher W. Fletcher, Ling Ren, Xiangyao Yu, Marten van Dijk, Omer Khan, Srinivas Devadas:
Suppressing the Oblivious RAM timing channel while making information leakage and program efficiency trade-offs. HPCA 2014: 213-224 - [i7]Ling Ren, Christopher W. Fletcher, Xiangyao Yu, Albert Kwon, Marten van Dijk, Srinivas Devadas:
Unified Oblivious-RAM: Improving Recursive ORAM with Locality and Pseudorandomness. IACR Cryptol. ePrint Arch. 2014: 205 (2014) - [i6]Xiangyao Yu, Ling Ren, Christopher W. Fletcher, Albert Kwon, Marten van Dijk, Srinivas Devadas:
Enhancing Oblivious RAM Performance Using Dynamic Prefetching. IACR Cryptol. ePrint Arch. 2014: 234 (2014) - [i5]Christopher W. Fletcher, Ling Ren, Albert Kwon, Marten van Dijk, Emil Stefanov, Srinivas Devadas:
RAW Path ORAM: A Low-Latency, Low-Area Hardware ORAM Controller with Integrity Verification. IACR Cryptol. ePrint Arch. 2014: 431 (2014) - [i4]Charles Herder, Ling Ren, Marten van Dijk, Meng-Day (Mandel) Yu, Srinivas Devadas:
Trapdoor Computational Fuzzy Extractors. IACR Cryptol. ePrint Arch. 2014: 938 (2014) - [i3]Ling Ren, Christopher W. Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten van Dijk, Srinivas Devadas:
Ring ORAM: Closing the Gap Between Small and Large Client Storage Oblivious RAM. IACR Cryptol. ePrint Arch. 2014: 997 (2014) - 2013
- [c7]Xiangyao Yu, Christopher W. Fletcher, Ling Ren, Marten van Dijk, Srinivas Devadas:
Generalized external interaction with tamper-resistant hardware with bounded information leakage. CCSW 2013: 23-34 - [c6]Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren, Xiangyao Yu, Srinivas Devadas:
Path ORAM: an extremely simple oblivious RAM protocol. CCS 2013: 299-310 - [c5]Ling Ren, Christopher W. Fletcher, Xiangyao Yu, Marten van Dijk, Srinivas Devadas:
Integrity verification for path Oblivious-RAM. HPEC 2013: 1-6 - [c4]Ling Ren, Xiangyao Yu, Christopher W. Fletcher, Marten van Dijk, Srinivas Devadas:
Design space exploration and optimization of path oblivious RAM in secure processors. ISCA 2013: 571-582 - [i2]Ling Ren, Xiangyao Yu, Christopher W. Fletcher, Marten van Dijk, Srinivas Devadas:
Design Space Exploration and Optimization of Path Oblivious RAM in Secure Processors. IACR Cryptol. ePrint Arch. 2013: 76 (2013) - [i1]Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren, Xiangyao Yu, Srinivas Devadas:
Path ORAM: An Extremely Simple Oblivious RAM Protocol. IACR Cryptol. ePrint Arch. 2013: 280 (2013) - 2012
- [c3]Ling Ren, Xiaoming Chen, Yu Wang, Chenxi Zhang, Huazhong Yang:
Sparse LU factorization for parallel circuit simulation on GPU. DAC 2012: 1125-1130 - [c2]Mo Xu, Xiaorui Zhang, Yu Wang, Ling Ren, Ziyu Wen, Yi Xu, Gaolang Gong, Ningyi Xu, Huazhong Yang:
Probabilistic Brain Fiber Tractography on GPUs. IPDPS Workshops 2012: 742-751 - 2011
- [c1]Yu Wang, Mo Xu, Ling Ren, Xiaorui Zhang, Di Wu, Yong He, Ningyi Xu, Huazhong Yang:
A heterogeneous accelerator platform for multi-subject voxel-based brain network analysis. ICCAD 2011: 339-344
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-08 21:28 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint