default search action
Kuldeep S. Meel
Person information
- affiliation: University of Toronto, Canada
- affiliation (former): National University of Singapore, School of Computing
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j11]Jaroslav Bendík, Kuldeep S. Meel:
Hashing-based approximate counting of minimal unsatisfiable subsets. Formal Methods Syst. Des. 63(1): 5-39 (2024) - [j10]Aduri Pavan, Sourav Chakraborty, N. V. Vinodchandran, Kuldeep S. Meel:
On the Feasibility of Forgetting in Data Streams. Proc. ACM Manag. Data 2(2): 102 (2024) - [j9]Kuldeep S. Meel, Sourav Chakraborty, Umang Mathur:
A faster FPRAS for #NFA. Proc. ACM Manag. Data 2(2): 112 (2024) - [j8]Eduard Baranov, Sourav Chakraborty, Axel Legay, Kuldeep S. Meel, N. Variyam Vinodchandran:
A Scalable $t$t-Wise Coverage Estimator: Algorithms and Applications. IEEE Trans. Software Eng. 50(8): 2021-2039 (2024) - [c109]Arijit Shaw, Brendan Juba, Kuldeep S. Meel:
An Approximate Skolem Function Counter. AAAI 2024: 8108-8116 - [c108]Suwei Yang, Kuldeep S. Meel:
Engineering an Exact Pseudo-Boolean Model Counter. AAAI 2024: 8200-8208 - [c107]Mohimenul Kabir, Supratik Chakraborty, Kuldeep S. Meel:
Exact ASP Counting with Compact Encodings. AAAI 2024: 10571-10580 - [c106]Kuldeep S. Meel, Supratik Chakraborty, S. Akshay:
Auditable Algorithms for Approximate Model Counting. AAAI 2024: 10654-10661 - [c105]Diptarka Chakraborty, Sourav Chakraborty, Gunjan Kumar, Kuldeep S. Meel:
Equivalence Testing: The Power of Bounded Adaptivity. AISTATS 2024: 3592-3600 - [c104]Mridul Nandi, N. V. Vinodchandran, Arijit Ghosh, Kuldeep S. Meel, Soumit Pal, Sourav Chakraborty:
Improved Streaming Algorithm for the Klee's Measure Problem and Generalizations. APPROX/RANDOM 2024: 26:1-26:21 - [c103]Yong Kiam Tan, Jiong Yang, Mate Soos, Magnus O. Myreen, Kuldeep S. Meel:
Formally Certified Approximate Model Counting. CAV (1) 2024: 153-177 - [c102]Yacine Izza, Kuldeep S. Meel, João Marques-Silva:
Locally-Minimal Probabilistic Explanations. ECAI 2024: 1092-1099 - [c101]Antoine Amarilli, Timothy van Bremen, Kuldeep S. Meel:
Conjunctive Queries on Probabilistic Graphs: The Limits of Approximability. ICDT 2024: 15:1-15:20 - [c100]Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S. Meel, Dimitrios Myrisiotis, A. Pavan, N. V. Vinodchandran:
Total Variation Distance Meets Probabilistic Inference. ICML 2024 - [c99]Arijit Shaw, Kuldeep S. Meel:
CSB: A Counting and Sampling Tool for Bit-vectors. SMT@CAV 2024: 36-43 - [i76]Diptarka Chakraborty, Sourav Chakraborty, Gunjan Kumar, Kuldeep S. Meel:
Equivalence Testing: The Power of Bounded Adaptivity. CoRR abs/2403.04230 (2024) - [i75]Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S. Meel, Dimitrios Myrisiotis, A. Pavan, N. V. Vinodchandran:
Total Variation Distance for Product Distributions is #P-Complete. CoRR abs/2405.08255 (2024) - [i74]Yong Kiam Tan, Jiong Yang, Mate Soos, Magnus O. Myreen, Kuldeep S. Meel:
Formally Certified Approximate Model Counting. CoRR abs/2406.11414 (2024) - [i73]Kuldeep S. Meel, Alexis de Colnet:
An FPRAS for #nFBDD. CoRR abs/2406.16515 (2024) - [i72]Kuldeep S. Meel, Alexis de Colnet:
#CFG and #DNNF admit FPRAS. CoRR abs/2406.18224 (2024) - [i71]Mohimenul Kabir, Kuldeep S. Meel:
On Lower Bounding Minimal Model Count. CoRR abs/2407.09744 (2024) - [i70]Anna L. D. Latour, Arunabha Sen, Kaustav Basu, Chenyang Zhou, Kuldeep S. Meel:
The Cardinality of Identifying Code Sets for Soccer Ball Graph with Application to Remote Sensing. CoRR abs/2407.14120 (2024) - [i69]Mate Soos, Uddalok Sarkar, Divesh Aggarwal, Sourav Chakraborty, Kuldeep S. Meel, Maciej Obremski:
Engineering an Efficient Approximate DNF-Counter. CoRR abs/2407.19946 (2024) - [i68]Arijit Shaw, Kuldeep S. Meel:
Model Counting in the Wild. CoRR abs/2408.07059 (2024) - [i67]S. Akshay, Bernd Finkbeiner, Kuldeep S. Meel, Ruzica Piskac, Arijit Shaw:
Automated Synthesis: Functional, Reactive and Beyond (Dagstuhl Seminar 24171). Dagstuhl Reports 14(4): 85-107 (2024) - 2023
- [j7]A. Pavan, N. V. Vinodchandran, Arnab Bhattacharyya, Kuldeep S. Meel:
Model Counting Meets Distinct Elements. Commun. ACM 66(9): 95-102 (2023) - [j6]A. Pavan, N. Variyam Vinodchandran, Arnab Bhattacharyya, Kuldeep S. Meel:
Model Counting Meets F0 Estimation. ACM Trans. Database Syst. 48(3): 7:1-7:28 (2023) - [c98]Yong Lai, Kuldeep S. Meel, Roland H. C. Yap:
Fast Converging Anytime Model Counting. AAAI 2023: 4025-4034 - [c97]Aduri Pavan, Kuldeep S. Meel, N. V. Vinodchandran, Arnab Bhattacharyya:
Constraint Optimization over Semirings. AAAI 2023: 4070-4077 - [c96]Ansuman Banerjee, Shayak Chakraborty, Sourav Chakraborty, Kuldeep S. Meel, Uddalok Sarkar, Sayantan Sen:
Testing of Horn Samplers. AISTATS 2023: 1301-1330 - [c95]Jiong Yang, Kuldeep S. Meel:
Rounding Meets Approximate Model Counting. CAV (2) 2023: 132-162 - [c94]Priyanka Golia, Subhajit Roy, Kuldeep S. Meel:
Synthesis with Explicit Dependencies. DATE 2023: 1-6 - [c93]Bishwamittra Ghosh, Debabrota Basu, Kuldeep S. Meel:
"How Biased are Your Features?": Computing Fairness Influence Functions with Global Sensitivity Analysis. FAccT 2023: 138-148 - [c92]Kuldeep S. Meel:
Distribution Testing: The New Frontier for Formal Methods. FMCAD 2023: 2 - [c91]Diptarka Chakraborty, Sourav Chakraborty, Gunjan Kumar, Kuldeep S. Meel:
Approximate Model Counting: Is SAT Oracle More Powerful Than NP Oracle? ICALP 2023: 123:1-123:17 - [c90]Anna L. D. Latour, Arunabha Sen, Kuldeep S. Meel:
Solving the Identifying Code Set Problem with Grouped Independent Support. IJCAI 2023: 1971-1978 - [c89]Mate Soos, Divesh Aggarwal, Sourav Chakraborty, Kuldeep S. Meel, Maciej Obremski:
Engineering an Efficient Approximate DNF-Counter. IJCAI 2023: 2031-2038 - [c88]Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S. Meel, Dimitrios Myrisiotis, A. Pavan, N. V. Vinodchandran:
On Approximating Total Variation Distance. IJCAI 2023: 3479-3487 - [c87]Suwei Yang, Victor C. Liang, Kuldeep S. Meel:
Scalable Probabilistic Routes. ENIGMA@KR 2023: 64-74 - [c86]Mohimenul Kabir, Kuldeep S. Meel:
A Fast and Accurate ASP Counting Based Network Reliability Estimator. LPAR 2023: 270-287 - [c85]Suwei Yang, Victor C. Liang, Kuldeep S. Meel:
Scalable Probabilistic Routes. LPAR 2023: 457-472 - [c84]Diptarka Chakraborty, Gunjan Kumar, Kuldeep S. Meel:
Support Size Estimation: The Power of Conditioning. MFCS 2023: 33:1-33:13 - [c83]Timothy van Bremen, Kuldeep S. Meel:
Probabilistic Query Evaluation: The Combined FPRAS Landscape. PODS 2023: 339-347 - [c82]Jiong Yang, Arijit Shaw, Teodora Baluta, Mate Soos, Kuldeep S. Meel:
Explaining SAT Solving Using Causal Reasoning. SAT 2023: 28:1-28:19 - [i66]Sourav Chakraborty, N. V. Vinodchandran, Kuldeep S. Meel:
Distinct Elements in Streams: An Algorithm for the (Text) Book. CoRR abs/2301.10191 (2023) - [i65]Priyanka Golia, Subhajit Roy, Kuldeep S. Meel:
Synthesis with Explicit Dependencies. CoRR abs/2301.10556 (2023) - [i64]Aduri Pavan, Kuldeep S. Meel, N. V. Vinodchandran, Arnab Bhattacharyya:
Constraint Optimization over Semirings. CoRR abs/2302.12937 (2023) - [i63]Jiong Yang, Kuldeep S. Meel:
Rounding Meets Approximate Model Counting. CoRR abs/2305.09247 (2023) - [i62]Jiong Yang, Arijit Shaw, Teodora Baluta, Mate Soos, Kuldeep S. Meel:
Explaining SAT Solving Using Causal Reasoning. CoRR abs/2306.06294 (2023) - [i61]Diptarka Chakraborty, Sourav Chakraborty, Gunjan Kumar, Kuldeep S. Meel:
Approximate Model Counting: Is SAT Oracle More Powerful than NP Oracle? CoRR abs/2306.10281 (2023) - [i60]Suwei Yang, Victor C. Liang, Kuldeep S. Meel:
Scalable Probabilistic Routes. CoRR abs/2306.10736 (2023) - [i59]Suwei Yang, Victor C. Liang, Kuldeep S. Meel:
INC: A Scalable Incremental Weighted Sampler. CoRR abs/2306.10824 (2023) - [i58]Yash Pote, Kuldeep S. Meel:
On Scalable Testing of Samplers. CoRR abs/2306.13958 (2023) - [i57]Anna L. D. Latour, Arunabha Sen, Kuldeep S. Meel:
Solving the Identifying Code Set Problem with Grouped Independent Support. CoRR abs/2306.15693 (2023) - [i56]Gunjan Kumar, Kuldeep S. Meel, Yash Pote:
Tolerant Testing of High-Dimensional Samplers with Subcube Conditioning. CoRR abs/2308.04264 (2023) - [i55]Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S. Meel, Dimitrios Myrisiotis, A. Pavan, N. V. Vinodchandran:
Total Variation Distance Estimation Is as Easy as Probabilistic Inference. CoRR abs/2309.09134 (2023) - [i54]Antoine Amarilli, Timothy van Bremen, Kuldeep S. Meel:
Conjunctive Queries on Probabilistic Graphs: The Limits of Approximability. CoRR abs/2309.13287 (2023) - [i53]Yacine Izza, Kuldeep S. Meel, João Marques-Silva:
Locally-Minimal Probabilistic Explanations. CoRR abs/2312.11831 (2023) - [i52]Mohimenul Kabir, Supratik Chakraborty, Kuldeep S. Meel:
Exact ASP Counting with Compact Encodings. CoRR abs/2312.11936 (2023) - [i51]Arijit Shaw, Brendan Juba, Kuldeep S. Meel:
An Approximate Skolem Function Counter. CoRR abs/2312.12026 (2023) - [i50]Suwei Yang, Kuldeep S. Meel:
Engineering an Exact Pseudo-Boolean Model Counter. CoRR abs/2312.12341 (2023) - [i49]Kuldeep S. Meel, Supratik Chakraborty, S. Akshay:
Auditable Algorithms for Approximate Model Counting. CoRR abs/2312.12362 (2023) - [i48]Kuldeep S. Meel, Sourav Chakraborty, Umang Mathur:
A faster FPRAS for #NFA. CoRR abs/2312.13320 (2023) - [i47]Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S. Meel, Dimitrios Myrisiotis, A. Pavan, N. V. Vinodchandran:
Total Variation Distance Estimation Is as Easy as Probabilistic Inference. Electron. Colloquium Comput. Complex. TR23 (2023) - 2022
- [j5]Bishwamittra Ghosh, Dmitry Malioutov, Kuldeep S. Meel:
Efficient Learning of Interpretable Classification Rules. J. Artif. Intell. Res. 74: 1823-1863 (2022) - [j4]Aduri Pavan, N. V. Vinodchandran, Arnab Bhattacharyya, Kuldeep S. Meel:
Model Counting Meets Distinct Elements in a Data Stream. SIGMOD Rec. 51(1): 87-94 (2022) - [c81]Mohimenul Kabir, Flavio O. Everardo, Ankit K. Shukla, Markus Hecher, Johannes Klaus Fichte, Kuldeep S. Meel:
ApproxASP - a Scalable Approximate Answer Set Counter. AAAI 2022: 5755-5764 - [c80]Aditya A. Shrotri, Nina Narodytska, Alexey Ignatiev, Kuldeep S. Meel, João Marques-Silva, Moshe Y. Vardi:
Constraint-Driven Explanations for Black-Box ML Models. AAAI 2022: 8304-8314 - [c79]Bishwamittra Ghosh, Debabrota Basu, Kuldeep S. Meel:
Algorithmic Fairness Verification with Graphical Models. AAAI 2022: 9539-9548 - [c78]Jiong Yang, Supratik Chakraborty, Kuldeep S. Meel:
Projected Model Counting: Beyond Independent Support. ATVA 2022: 171-187 - [c77]Priyanka Golia, Brendan Juba, Kuldeep S. Meel:
A Scalable Shannon Entropy Estimator. CAV (1) 2022: 363-384 - [c76]Mate Soos, Priyanka Golia, Sourav Chakraborty, Kuldeep S. Meel:
On Quantitative Testing of Samplers. CP 2022: 36:1-36:16 - [c75]Sourav Chakraborty, N. V. Vinodchandran, Kuldeep S. Meel:
Distinct Elements in Streams: An Algorithm for the (Text) Book. ESA 2022: 34:1-34:6 - [c74]Suwei Yang, Victor C. Liang, Kuldeep S. Meel:
INC: A Scalable Incremental Weighted Sampler. FMCAD 2022: 205-213 - [c73]Mate Soos, Kuldeep S. Meel:
Arjun: An Efficient Independent Support Computation Technique and its Applications to Counting and Sampling. ICCAD 2022: 71:1-71:9 - [c72]Eduard Baranov, Sourav Chakraborty, Axel Legay, Kuldeep S. Meel, N. Variyam Vinodchandran:
A Scalable t-wise Coverage Estimator. ICSE 2022: 36-47 - [c71]Kuldeep S. Meel:
Counting, Sampling, and Synthesis: The Quest for Scalability. IJCAI 2022: 5816-5820 - [c70]Remi Delannoy, Kuldeep S. Meel:
On Almost-Uniform Generation of SAT Solutions: The power of 3-wise independent hashing. LICS 2022: 17:1-17:10 - [c69]Yash Pote, Kuldeep S. Meel:
On Scalable Testing of Samplers. NeurIPS 2022 - [c68]Kuldeep S. Meel, Sourav Chakraborty, N. V. Vinodchandran:
Estimation of the Size of Union of Delphic Sets: Achieving Independence from Stream Size. PODS 2022: 41-52 - [e1]Kuldeep S. Meel, Ofer Strichman:
25th International Conference on Theory and Applications of Satisfiability Testing, SAT 2022, August 2-5, 2022, Haifa, Israel. LIPIcs 236, Schloss Dagstuhl - Leibniz-Zentrum für Informatik 2022, ISBN 978-3-95977-242-6 [contents] - [i46]Yong Lai, Kuldeep S. Meel, Roland H. C. Yap:
CCDD: A Tractable Representation for Model Counting and Uniform Sampling. CoRR abs/2202.10025 (2022) - [i45]Bishwamittra Ghosh, Dmitry Malioutov, Kuldeep S. Meel:
Efficient Learning of Interpretable Classification Rules. CoRR abs/2205.06936 (2022) - [i44]Bishwamittra Ghosh, Debabrota Basu, Kuldeep S. Meel:
How Biased is Your Feature?: Computing Fairness Influence Functions with Global Sensitivity Analysis. CoRR abs/2206.00667 (2022) - [i43]Priyanka Golia, Brendan Juba, Kuldeep S. Meel:
A Scalable Shannon Entropy Estimator. CoRR abs/2206.00921 (2022) - [i42]Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S. Meel, Dimitrios Myrisiotis, Aduri Pavan, N. V. Vinodchandran:
On Approximating Total Variation Distance. CoRR abs/2206.07209 (2022) - [i41]Diptarka Chakraborty, Gunjan Kumar, Kuldeep S. Meel:
Support Size Estimation: The Power of Conditioning. CoRR abs/2211.11967 (2022) - [i40]Yong Lai, Kuldeep S. Meel, Roland H. C. Yap:
Fast Converging Anytime Model Counting. CoRR abs/2212.09390 (2022) - 2021
- [c67]Jaroslav Bendík, Kuldeep S. Meel:
Counting Maximal Satisfiable Subsets. AAAI 2021: 3651-3660 - [c66]Yong Lai, Kuldeep S. Meel, Roland H. C. Yap:
The Power of Literal Equivalence in Model Counting. AAAI 2021: 3851-3859 - [c65]Timothy van Bremen, Vincent Derkinderen, Shubham Sharma, Subhajit Roy, Kuldeep S. Meel:
Symmetric Component Caching for Model Counting on Combinatorial Instances. AAAI 2021: 3922-3930 - [c64]Bishwamittra Ghosh, Debabrota Basu, Kuldeep S. Meel:
Justicia: A Stochastic SAT Approach to Formally Verify Fairness. AAAI 2021: 7554-7563 - [c63]Suwei Yang, Massimo Lupascu, Kuldeep S. Meel:
Predicting Forest Fire Using Remote Sensing Data And Machine Learning. AAAI 2021: 14983-14990 - [c62]Jaroslav Bendík, Kuldeep S. Meel:
Counting Minimal Unsatisfiable Subsets. CAV (2) 2021: 313-336 - [c61]Jiong Yang, Kuldeep S. Meel:
Engineering an Efficient PB-XOR Solver. CP 2021: 58:1-58:20 - [c60]Gilles Pesant, Kuldeep S. Meel, Mahshid Mohammadalitajrishi:
On the Usefulness of Linear Modular Arithmetic in Constraint Programming. CPAIOR 2021: 248-265 - [c59]Priyanka Golia, Mate Soos, Sourav Chakraborty, Kuldeep S. Meel:
Designing Samplers is Easy: The Boon of Testers. FMCAD 2021: 222-230 - [c58]Priyanka Golia, Friedrich Slivovsky, Subhajit Roy, Kuldeep S. Meel:
Engineering an Efficient Boolean Functional Synthesis Engine. ICCAD 2021: 1-9 - [c57]Teodora Baluta, Zheng Leong Chua, Kuldeep S. Meel, Prateek Saxena:
Scalable Quantitative Verification for Deep Neural Networks. ICSE (Companion Volume) 2021: 248-249 - [c56]Teodora Baluta, Zheng Leong Chua, Kuldeep S. Meel, Prateek Saxena:
Scalable Quantitative Verification For Deep Neural Networks. ICSE 2021: 312-323 - [c55]Priyanka Golia, Subhajit Roy, Kuldeep S. Meel:
Program Synthesis as Dependency Quantified Formula Modulo Theory. IJCAI 2021: 1894-1900 - [c54]Durgesh Agrawal, Yash Pote, Kuldeep S. Meel:
Partition Function Estimation: A Quantitative Study. IJCAI 2021: 4276-4285 - [c53]Mate Soos, Kuldeep S. Meel:
Gaussian Elimination Meets Maximum Satisfiability. KR 2021: 581-587 - [c52]Yash Pote, Kuldeep S. Meel:
Testing Probabilistic Circuits. NeurIPS 2021: 22336-22347 - [c51]Kuldeep S. Meel, N. V. Vinodchandran, Sourav Chakraborty:
Estimating the Size of Union of Sets in Streaming Models. PODS 2021: 126-137 - [c50]Aduri Pavan, N. V. Vinodchandran, Arnab Bhattacharyya, Kuldeep S. Meel:
Model Counting meets F0 Estimation. PODS 2021: 299-311 - [c49]Nicolas Prevot, Mate Soos, Kuldeep S. Meel:
Leveraging GPUs for Effective Clause Sharing in Parallel SAT Solving. SAT 2021: 471-487 - [p1]Supratik Chakraborty, Kuldeep S. Meel, Moshe Y. Vardi:
Approximate Model Counting. Handbook of Satisfiability 2021: 1015-1045 - [i39]Suwei Yang, Massimo Lupascu, Kuldeep S. Meel:
Predicting Forest Fire Using Remote Sensing Data And Machine Learning. CoRR abs/2101.01975 (2021) - [i38]Aduri Pavan, N. V. Vinodchandran, Arnab Bhattacharyya, Kuldeep S. Meel:
Model Counting meets F0 Estimation. CoRR abs/2105.00639 (2021) - [i37]Priyanka Golia, Subhajit Roy, Kuldeep S. Meel:
Program Synthesis as Dependency Quantified Formula Modulo Theory. CoRR abs/2105.09221 (2021) - [i36]Durgesh Agrawal, Yash Pote, Kuldeep S. Meel:
Partition Function Estimation: A Quantitative Study. CoRR abs/2105.11132 (2021) - [i35]Priyanka Golia, Friedrich Slivovsky, Subhajit Roy, Kuldeep S. Meel:
Engineering an Efficient Boolean Functional Synthesis Engine. CoRR abs/2108.05717 (2021) - [i34]Bishwamittra Ghosh, Debabrota Basu, Kuldeep S. Meel:
Algorithmic Fairness Verification with Graphical Models. CoRR abs/2109.09447 (2021) - [i33]Mate Soos, Kuldeep S. Meel:
Arjun: An Efficient Independent Support Computation Technique and its Applications to Counting and Sampling. CoRR abs/2110.09026 (2021) - [i32]Jiong Yang, Supratik Chakraborty, Kuldeep S. Meel:
Projected Model Counting: Beyond Independent Support. CoRR abs/2110.09171 (2021) - [i31]Yash Pote, Kuldeep S. Meel:
Testing Probabilistic Circuits. CoRR abs/2112.04941 (2021) - 2020
- [c48]Lorenzo Ciampiconi, Bishwamittra Ghosh, Jonathan Scarlett, Kuldeep S. Meel:
A MaxSAT-Based Framework for Group Testing. AAAI 2020: 10144-10152 - [c47]Jaroslav Bendík, Kuldeep S. Meel:
Approximate Counting of Minimal Unsatisfiable Subsets. CAV (1) 2020: 439-462 - [c46]Mate Soos, Stephan Gocht, Kuldeep S. Meel:
Tinted, Detached, and Lazy CNF-XOR Solving and Its Applications to Counting and Sampling. CAV (1) 2020: 463-484 - [c45]Priyanka Golia, Subhajit Roy, Kuldeep S. Meel:
Manthan: A Data-Driven Approach for Boolean Function Synthesis. CAV (2) 2020: 611-633 - [c44]Rahul Gupta, Subhajit Roy, Kuldeep S. Meel:
Phase Transition Behavior in Knowledge Compilation. CP 2020: 358-374 - [c43]Bishwamittra Ghosh, Dmitry Malioutov, Kuldeep S. Meel:
Classification Rules in Relaxed Logical Form. ECAI 2020: 2489-2496 - [c42]Kuldeep S. Meel, S. Akshay:
Sparse Hashing for Scalable Approximate Model Counting: Theory and Practice. LICS 2020: 728-741 - [c41]A. Dileep, Kuldeep S. Meel, Ammar Fathin Sabili:
Induction Models on N. LPAR 2020: 169-190 - [c40]Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S. Meel, N. V. Vinodchandran:
Efficient Distance Approximation for Structured High-Dimensional Distributions via Learning. NeurIPS 2020 - [c39]Jeffrey M. Dudek, Dror Fried, Kuldeep S. Meel:
Taming Discrete Integration via the Boon of Dimensionality. NeurIPS 2020 - [c38]Kuldeep S. Meel, Yash Pote, Sourav Chakraborty:
On Testing of Samplers. NeurIPS 2020 - [c37]Arijit Shaw, Kuldeep S. Meel:
Designing New Phase Selection Heuristics. SAT 2020: 72-88 - [c36]Durgesh Agrawal, Bhavishya, Kuldeep S. Meel:
On the Sparsity of XORs in Approximate Model Counting. SAT 2020: 250-266 - [c35]Eduard Baranov, Axel Legay, Kuldeep S. Meel:
Baital: an adaptive weighted sampling approach for improved t-wise coverage. ESEC/SIGSOFT FSE 2020: 1114-1126 - [c34]Wenxi Wang, Muhammad Usman, Alyas Almaawi, Kaiyuan Wang, Kuldeep S. Meel, Sarfraz Khurshid:
A Study of Symmetry Breaking Predicates and Model Counting. TACAS (1) 2020: 115-134 - [d1]S. Akshay, Kuldeep S. Meel:
Dataset for Sparse Hashing for Scalable Approximate Model Counting: Theory and Practice. Zenodo, 2020 - [i30]Bishwamittra Ghosh, Kuldeep S. Meel:
IMLI: An Incremental Framework for MaxSAT-Based Learning of Interpretable Classification Rules. CoRR abs/2001.01891 (2020) - [i29]Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S. Meel, N. V. Vinodchandran:
Efficient Distance Approximation for Structured High-Dimensional Distributions via Learning. CoRR abs/2002.05378 (2020) - [i28]Teodora Baluta, Zheng Leong Chua, Kuldeep S. Meel, Prateek Saxena:
Scalable Quantitative Verification For Deep Neural Networks. CoRR abs/2002.06864 (2020) - [i27]Kuldeep S. Meel, S. Akshay:
Sparse Hashing for Scalable Approximate Model Counting: Theory and Practice. CoRR abs/2004.14692 (2020) - [i26]Arijit Shaw, Kuldeep S. Meel:
Designing New Phase Selection Heuristics. CoRR abs/2005.04850 (2020) - [i25]Priyanka Golia, Subhajit Roy, Kuldeep S. Meel:
Manthan: A Data Driven Approach for Boolean Function Synthesis. CoRR abs/2005.06922 (2020) - [i24]Rahul Gupta, Subhajit Roy, Kuldeep S. Meel:
Phase Transition Behavior in Knowledge Compilation. CoRR abs/2007.10400 (2020) - [i23]A. Dileep, Kuldeep S. Meel, Ammar Fathin Sabili:
Induction Models on \mathbb{N}. CoRR abs/2008.06410 (2020) - [i22]Bishwamittra Ghosh, Debabrota Basu, Kuldeep S. Meel:
Justicia: A Stochastic SAT Approach to Formally Verify Fairness. CoRR abs/2009.06516 (2020) - [i21]Jeffrey M. Dudek, Dror Fried, Kuldeep S. Meel:
Taming Discrete Integration via the Boon of Dimensionality. CoRR abs/2010.10724 (2020) - [i20]Kuldeep S. Meel, Yash Pote, Sourav Chakraborty:
On Testing of Samplers. CoRR abs/2010.12918 (2020)
2010 – 2019
- 2019
- [j3]Kuldeep S. Meel, Aditya A. Shrotri, Moshe Y. Vardi:
Not all FPRASs are equal: demystifying FPRASs for DNF-counting. Constraints An Int. J. 24(3-4): 211-233 (2019) - [j2]Roger Paredes, Leonardo Dueñas-Osorio, Kuldeep S. Meel, Moshe Y. Vardi:
Principled network reliability approximation: A counting-based approach. Reliab. Eng. Syst. Saf. 191 (2019) - [c33]Mate Soos, Kuldeep S. Meel:
BIRD: Engineering an Efficient CNF-XOR SAT Solver and Its Applications to Approximate Model Counting. AAAI 2019: 1592-1599 - [c32]Sourav Chakraborty, Kuldeep S. Meel:
On Testing of Uniform Samplers. AAAI 2019: 7777-7784 - [c31]Supratik Chakraborty, Kuldeep S. Meel, Moshe Y. Vardi:
On the Hardness of Probabilistic Inference Relaxations. AAAI 2019: 7785-7792 - [c30]Bishwamittra Ghosh, Kuldeep S. Meel:
IMLI: An Incremental Framework for MaxSAT-Based Learning of Interpretable Classification Rules. AIES 2019: 203-210 - [c29]Teodora Baluta, Shiqi Shen, Shweta Shinde, Kuldeep S. Meel, Prateek Saxena:
Quantitative Verification of Neural Networks and Its Security Applications. CCS 2019: 1249-1264 - [c28]Alexis de Colnet, Kuldeep S. Meel:
Dual Hashing-Based Algorithms for Discrete Integration. CP 2019: 161-176 - [c27]Davin Choo, Mate Soos, Kian Ming Adam Chai, Kuldeep S. Meel:
Bosphorus: Bridging ANF and CNF Solvers. DATE 2019: 468-473 - [c26]Yash Pote, Saurabh Joshi, Kuldeep S. Meel:
Phase Transition Behavior of Cardinality and XOR Constraints. IJCAI 2019: 1162-1168 - [c25]Shubham Sharma, Subhajit Roy, Mate Soos, Kuldeep S. Meel:
GANAK: A Scalable Probabilistic Exact Model Counter. IJCAI 2019: 1169-1176 - [c24]Kuldeep S. Meel, Aditya A. Shrotri, Moshe Y. Vardi:
Not All FPRASs are Equal: Demystifying FPRASs for DNF-Counting (Extended Abstract). IJCAI 2019: 6211-6215 - [c23]Yaqi Xie, Ziwei Xu, Kuldeep S. Meel, Mohan S. Kankanhalli, Harold Soh:
Embedding Symbolic Knowledge into Deep Networks. NeurIPS 2019: 4235-4245 - [c22]Nina Narodytska, Aditya A. Shrotri, Kuldeep S. Meel, Alexey Ignatiev, João Marques-Silva:
Assessing Heuristic Machine Learning Explanations with Model Counting. SAT 2019: 267-278 - [c21]Mate Soos, Raghav Kulkarni, Kuldeep S. Meel:
CrystalBall: Gazing in the Black Box of SAT Solving. SAT 2019: 371-387 - [c20]Rahul Gupta, Shubham Sharma, Subhajit Roy, Kuldeep S. Meel:
WAPS: Weighted and Projected Sampling. TACAS (1) 2019: 59-76 - [i19]Teodora Baluta, Shiqi Shen, Shweta Shinde, Kuldeep S. Meel, Prateek Saxena:
Quantitative Verification of Neural Networks And its Security Applications. CoRR abs/1906.10395 (2019) - [i18]Yaqi Xie, Ziwei Xu, Kuldeep S. Meel, Mohan S. Kankanhalli, Harold Soh:
Semantically-Regularized Logic Graph Embeddings. CoRR abs/1909.01161 (2019) - [i17]Yash Pote, Saurabh Joshi, Kuldeep S. Meel:
Phase Transition Behavior of Cardinality and XOR Constraints. CoRR abs/1910.09755 (2019) - 2018
- [c19]Dmitry Malioutov, Kuldeep S. Meel:
MLIC: A MaxSAT-Based Framework for Learning Interpretable Classification Rules. CP 2018: 312-327 - [c18]Shubham Sharma, Rahul Gupta, Subhajit Roy, Kuldeep S. Meel:
Knowledge Compilation meets Uniform Sampling. LPAR 2018: 620-636 - [c17]Fabrizio Biondi, Michael A. Enescu, Annelie Heuser, Axel Legay, Kuldeep S. Meel, Jean Quilbeuf:
Scalable Approximation of Quantitative Information Flow in Programs. VMCAI 2018: 71-93 - [i16]Roger Paredes, Leonardo Dueñas-Osorio, Kuldeep S. Meel, Moshe Y. Vardi:
Network Reliability Estimation in Theory and Practice. CoRR abs/1806.00917 (2018) - [i15]Kuldeep S. Meel:
Constrained Counting and Sampling: Bridging the Gap between Theory and Practice. CoRR abs/1806.02239 (2018) - [i14]Dmitry Malioutov, Kuldeep S. Meel:
MLIC: A MaxSAT-Based framework for learning interpretable classification rules. CoRR abs/1812.01843 (2018) - [i13]Davin Choo, Mate Soos, Kian Ming Adam Chai, Kuldeep S. Meel:
BOSPHORUS: Bridging ANF and CNF Solvers. CoRR abs/1812.04580 (2018) - 2017
- [c16]Leonardo Dueñas-Osorio, Kuldeep S. Meel, Roger Paredes, Moshe Y. Vardi:
Counting-Based Reliability Estimation for Power-Transmission Grids. AAAI 2017: 4488-4494 - [c15]Kuldeep S. Meel, Aditya A. Shrotri, Moshe Y. Vardi:
On Hashing-Based Approaches to Approximate DNF-Counting. FSTTCS 2017: 41:1-41:14 - [c14]Jeffrey M. Dudek, Kuldeep S. Meel, Moshe Y. Vardi:
The Hard Problems Are Almost Everywhere For Random CNF-XOR Formulas. IJCAI 2017: 600-606 - [i12]Jeffrey M. Dudek, Kuldeep S. Meel, Moshe Y. Vardi:
Combining the k-CNF and XOR Phase-Transitions. CoRR abs/1702.08392 (2017) - [i11]Kuldeep S. Meel, Aditya A. Shrotri, Moshe Y. Vardi:
On Hashing-Based Approaches to Approximate DNF-Counting. CoRR abs/1710.05247 (2017) - [i10]Jeffrey M. Dudek, Kuldeep S. Meel, Moshe Y. Vardi:
The Hard Problems Are Almost Everywhere For Random CNF-XOR Formulas. CoRR abs/1710.06378 (2017) - 2016
- [j1]Alexander Ivrii, Sharad Malik, Kuldeep S. Meel, Moshe Y. Vardi:
On computing minimal independent support and its applications to sampling and counting. Constraints An Int. J. 21(1): 41-58 (2016) - [c13]Supratik Chakraborty, Kuldeep S. Meel, Rakesh Mistry, Moshe Y. Vardi:
Approximate Probabilistic Inference via Word-Level Counting. AAAI 2016: 3218-3224 - [c12]Kuldeep S. Meel, Moshe Y. Vardi, Supratik Chakraborty, Daniel J. Fremont, Sanjit A. Seshia, Dror Fried, Alexander Ivrii, Sharad Malik:
Constrained Sampling and Counting: Universal Hashing Meets SAT Solving. AAAI Workshop: Beyond NP 2016 - [c11]Deepak Majeti, Kuldeep S. Meel, Rajkishore Barik, Vivek Sarkar:
Automatic data layout generation and kernel mapping for CPU+GPU architectures. CC 2016: 240-250 - [c10]Karthik Murthy, Sri Raj Paul, Kuldeep S. Meel, Tiago Cogumbreiro, John M. Mellor-Crummey:
Design and Verification of Distributed Phasers. Euro-Par 2016: 405-418 - [c9]Jeffrey M. Dudek, Kuldeep S. Meel, Moshe Y. Vardi:
Combining the k-CNF and XOR Phase-Transitions. IJCAI 2016: 727-734 - [c8]Supratik Chakraborty, Kuldeep S. Meel, Moshe Y. Vardi:
Algorithmic Improvements in Approximate Counting for Probabilistic Inference: From Linear to Logarithmic SAT Calls. IJCAI 2016: 3569-3576 - 2015
- [c7]Supratik Chakraborty, Dror Fried, Kuldeep S. Meel, Moshe Y. Vardi:
From Weighted to Unweighted Model Counting. IJCAI 2015: 689-695 - [c6]Supratik Chakraborty, Daniel J. Fremont, Kuldeep S. Meel, Sanjit A. Seshia, Moshe Y. Vardi:
On Parallel Scalable Uniform SAT Witness Generation. TACAS 2015: 304-319 - [i9]Supratik Chakraborty, Kuldeep S. Meel, Rakesh Mistry, Moshe Y. Vardi:
Approximate Probabilistic Inference via Word-Level Counting. CoRR abs/1511.07663 (2015) - [i8]Kuldeep S. Meel, Moshe Y. Vardi, Supratik Chakraborty, Daniel J. Fremont, Sanjit A. Seshia, Dror Fried, Alexander Ivrii, Sharad Malik:
Constrained Sampling and Counting: Universal Hashing Meets SAT Solving. CoRR abs/1512.06633 (2015) - [i7]Sri Raj Paul, Karthik Murthy, Kuldeep S. Meel, John M. Mellor-Crummey:
Distributed Phasers. CoRR abs/1512.07305 (2015) - 2014
- [c5]Deepak Majeti, Kuldeep S. Meel, Rajkishore Barik, Vivek Sarkar:
ADHA: automatic data layout framework for heterogeneous architectures. PACT 2014: 479-480 - [c4]Supratik Chakraborty, Daniel J. Fremont, Kuldeep S. Meel, Sanjit A. Seshia, Moshe Y. Vardi:
Distribution-Aware Sampling and Weighted Model Counting for SAT. AAAI 2014: 1722-1730 - [c3]Supratik Chakraborty, Kuldeep S. Meel, Moshe Y. Vardi:
Balancing Scalability and Uniformity in SAT Witness Generator. DAC 2014: 60:1-60:6 - [i6]Supratik Chakraborty, Kuldeep S. Meel, Moshe Y. Vardi:
Balancing Scalability and Uniformity in SAT Witness Generator. CoRR abs/1403.6246 (2014) - [i5]Supratik Chakraborty, Daniel J. Fremont, Kuldeep S. Meel, Sanjit A. Seshia, Moshe Y. Vardi:
Distribution-Aware Sampling and Weighted Model Counting for SAT. CoRR abs/1404.2984 (2014) - [i4]Kuldeep S. Meel:
Sampling Techniques for Boolean Satisfiability. CoRR abs/1404.6682 (2014) - [i3]Deepak Majeti, Kuldeep S. Meel, Rajkishore Barik, Vivek Sarkar:
ADHA: Automatic Data layout framework for Heterogeneous Architectures. CoRR abs/1407.4859 (2014) - 2013
- [c2]Supratik Chakraborty, Kuldeep S. Meel, Moshe Y. Vardi:
A Scalable and Nearly Uniform Generator of SAT Witnesses. CAV 2013: 608-623 - [c1]Supratik Chakraborty, Kuldeep S. Meel, Moshe Y. Vardi:
A Scalable Approximate Model Counter. CP 2013: 200-216 - [i2]Supratik Chakraborty, Kuldeep S. Meel, Moshe Y. Vardi:
A Scalable and Nearly Uniform Generator of SAT Witnesses. CoRR abs/1304.1584 (2013) - [i1]Supratik Chakraborty, Kuldeep S. Meel, Moshe Y. Vardi:
A Scalable Approximate Model Counter. CoRR abs/1306.5726 (2013)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-07 21:30 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint