default search action
Arnab Bhattacharyya 0001
Person information
- affiliation: National University of Singapore
- affiliation: Indian Institute of Science, Bengaluru, India
Other persons with the same name
- Arnab Bhattacharyya 0002 — Vellore Institue of Technology, Chennai, India
- Arnab Bhattacharyya 0003 — IIT Kanpur, Department of CSE, India
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [c62]Yuhao Wang, Ming Gao, Wai Ming Tai, Bryon Aragam, Arnab Bhattacharyya:
Optimal estimation of Gaussian (poly)trees. AISTATS 2024: 3619-3627 - [c61]Davin Choo, Joy Qiping Yang, Arnab Bhattacharyya, Clément L. Canonne:
Learning bounded-degree polytrees with known skeleton. ALT 2024: 402-443 - [c60]Vipul Arora, Arnab Bhattacharyya, Mathews Boban, Venkatesan Guruswami, Esty Kelman:
Outlier Robust Multivariate Polynomial Regression. ESA 2024: 12:1-12:17 - [c59]Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S. Meel, Dimitrios Myrisiotis, A. Pavan, N. V. Vinodchandran:
Total Variation Distance Meets Probabilistic Inference. ICML 2024 - [c58]Davin Choo, Themistoklis Gouleakis, Chun Kai Ling, Arnab Bhattacharyya:
Online bipartite matching with imperfect advice. ICML 2024 - [i90]Yuhao Wang, Ming Gao, Wai Ming Tai, Bryon Aragam, Arnab Bhattacharyya:
Optimal estimation of Gaussian (poly)trees. CoRR abs/2402.06380 (2024) - [i89]Vipul Arora, Arnab Bhattacharyya, Mathews Boban, Venkatesan Guruswami, Esty Kelman:
Outlier Robust Multivariate Polynomial Regression. CoRR abs/2403.09465 (2024) - [i88]Arnab Bhattacharyya, Sutanu Gayen, Philips George John, Sayantan Sen, N. V. Vinodchandran:
Distribution Learning Meets Graph Structure Sampling. CoRR abs/2405.07914 (2024) - [i87]Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S. Meel, Dimitrios Myrisiotis, A. Pavan, N. V. Vinodchandran:
Total Variation Distance for Product Distributions is #P-Complete. CoRR abs/2405.08255 (2024) - [i86]Davin Choo, Themis Gouleakis, Chun Kai Ling, Arnab Bhattacharyya:
Online bipartite matching with imperfect advice. CoRR abs/2405.09784 (2024) - [i85]Arnab Bhattacharyya, Davin Choo, Sutanu Gayen, Dimitrios Myrisiotis:
Learnability of Parameter-Bounded Bayes Nets. CoRR abs/2407.00927 (2024) - [i84]Philips George John, Arnab Bhattacharyya, Silviu Maniu, Dimitrios Myrisiotis, Zhenan Wu:
Efficient, Low-Regret, Online Reinforcement Learning for Linear MDPs. CoRR abs/2411.10906 (2024) - [i83]Arnab Bhattacharyya, Davin Choo, Philips George John, Themis Gouleakis:
Learning multivariate Gaussians with imperfect advice. CoRR abs/2411.12700 (2024) - [i82]Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S. Meel, Dimitrios Myrisiotis, A. Pavan, N. V. Vinodchandran:
Computational Explorations of Total Variation Distance. CoRR abs/2412.10370 (2024) - 2023
- [j22]A. Pavan, N. V. Vinodchandran, Arnab Bhattacharyya, Kuldeep S. Meel:
Model Counting Meets Distinct Elements. Commun. ACM 66(9): 95-102 (2023) - [j21]Arnab Bhattacharyya, Sutanu Gayen, Eric Price, Vincent Y. F. Tan, N. V. Vinodchandran:
Near-Optimal Learning of Tree-Structured Distributions by Chow and Liu. SIAM J. Comput. 52(3): 761-793 (2023) - [j20]A. Pavan, N. Variyam Vinodchandran, Arnab Bhattacharyya, Kuldeep S. Meel:
Model Counting Meets F0 Estimation. ACM Trans. Database Syst. 48(3): 7:1-7:28 (2023) - [c57]Aduri Pavan, Kuldeep S. Meel, N. V. Vinodchandran, Arnab Bhattacharyya:
Constraint Optimization over Semirings. AAAI 2023: 4070-4077 - [c56]Jayadev Acharya, Sourbh Bhadane, Arnab Bhattacharyya, Saravanan Kandasamy, Ziteng Sun:
Sample Complexity of Distinguishing Cause from Effect. AISTATS 2023: 10487-10504 - [c55]Jonas Bernhard Wildberger, Siyuan Guo, Arnab Bhattacharyya, Bernhard Schölkopf:
On the Interventional Kullback-Leibler Divergence. CLeaR 2023: 328-349 - [c54]Davin Choo, Themistoklis Gouleakis, Arnab Bhattacharyya:
Active causal structure learning with advice. ICML 2023: 5838-5867 - [c53]Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S. Meel, Dimitrios Myrisiotis, A. Pavan, N. V. Vinodchandran:
On Approximating Total Variation Distance. IJCAI 2023: 3479-3487 - [c52]Vipul Arora, Arnab Bhattacharyya, Clément L. Canonne, Joy Qiping Yang:
Near-Optimal Degree Testing for Bayes Nets. ISIT 2023: 1396-1401 - [c51]Vipul Arora, Arnab Bhattacharyya, Noah Fleming, Esty Kelman, Yuichi Yoshida:
Low Degree Testing over the Reals. SODA 2023: 738-792 - [i81]Thanh Vinh Vo, Arnab Bhattacharyya, Young Lee, Tze-Yun Leong:
An Adaptive Kernel Approach to Federated Learning of Heterogeneous Causal Effects. CoRR abs/2301.00346 (2023) - [i80]Jonas Wildberger, Siyuan Guo, Arnab Bhattacharyya, Bernhard Schölkopf:
On the Interventional Kullback-Leibler Divergence. CoRR abs/2302.05380 (2023) - [i79]Aduri Pavan, Kuldeep S. Meel, N. V. Vinodchandran, Arnab Bhattacharyya:
Constraint Optimization over Semirings. CoRR abs/2302.12937 (2023) - [i78]Vipul Arora, Arnab Bhattacharyya, Clément L. Canonne, Joy Qiping Yang:
Near-Optimal Degree Testing for Bayes Nets. CoRR abs/2304.06733 (2023) - [i77]Davin Choo, Themis Gouleakis, Arnab Bhattacharyya:
Active causal structure learning with advice. CoRR abs/2305.19588 (2023) - [i76]Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S. Meel, Dimitrios Myrisiotis, A. Pavan, N. V. Vinodchandran:
Total Variation Distance Estimation Is as Easy as Probabilistic Inference. CoRR abs/2309.09134 (2023) - [i75]Davin Choo, Joy Qiping Yang, Arnab Bhattacharyya, Clément L. Canonne:
Learning bounded-degree polytrees with known skeleton. CoRR abs/2310.06333 (2023) - [i74]Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S. Meel, Dimitrios Myrisiotis, A. Pavan, N. V. Vinodchandran:
Total Variation Distance Estimation Is as Easy as Probabilistic Inference. Electron. Colloquium Comput. Complex. TR23 (2023) - 2022
- [b2]Arnab Bhattacharyya, Yuichi Yoshida:
Property Testing - Problems and Techniques. Springer 2022, ISBN 978-981-16-8621-4, pp. 1-427 - [j19]Aduri Pavan, N. V. Vinodchandran, Arnab Bhattacharyya, Kuldeep S. Meel:
Model Counting Meets Distinct Elements in a Data Stream. SIGMOD Rec. 51(1): 87-94 (2022) - [c50]Yuhao Wang, Arnab Bhattacharyya:
Identifiability of Linear AMP Chain Graph Models. AAAI 2022: 10080-10089 - [c49]Arnab Bhattacharyya, Sutanu Gayen, Saravanan Kandasamy, Vedant Raval, N. Variyam Vinodchandran:
Efficient interventional distribution learning in the PAC framework. AISTATS 2022: 7531-7549 - [c48]Arnab Bhattacharyya, Davin Choo, Rishikesh Gajjala, Sutanu Gayen, Yuhao Wang:
Learning Sparse Fixed-Structure Gaussian Bayesian Networks. AISTATS 2022: 9400-9429 - [c47]Sidhant Bansal, Arnab Bhattacharyya, Anamay Chaturvedi, Jonathan Scarlett:
Universal 1-Bit Compressive Sensing for Bounded Dynamic Range Signals. ISIT 2022: 3280-3284 - [c46]Arnab Bhattacharyya, Clément L. Canonne, Joy Qiping Yang:
Independence Testing for Bounded Degree Bayesian Networks. NeurIPS 2022 - [c45]Davin Choo, Kirankumar Shiragur, Arnab Bhattacharyya:
Verification and search algorithms for causal DAGs. NeurIPS 2022 - [c44]Thanh Vinh Vo, Arnab Bhattacharyya, Young Lee, Tze-Yun Leong:
An Adaptive Kernel Approach to Federated Learning of Heterogeneous Causal Effects. NeurIPS 2022 - [i73]Sidhant Bansal, Arnab Bhattacharyya, Anamay Chaturvedi, Jonathan Scarlett:
Universal 1-Bit Compressive Sensing for Bounded Dynamic Range Signals. CoRR abs/2202.10611 (2022) - [i72]Vipul Arora, Arnab Bhattacharyya, Noah Fleming, Esty Kelman, Yuichi Yoshida:
Low Degree Testing over the Reals. CoRR abs/2204.08404 (2022) - [i71]Arnab Bhattacharyya, Clément L. Canonne, Joy Qiping Yang:
Independence Testing for Bounded Degree Bayesian Network. CoRR abs/2204.08690 (2022) - [i70]Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S. Meel, Dimitrios Myrisiotis, Aduri Pavan, N. V. Vinodchandran:
On Approximating Total Variation Distance. CoRR abs/2206.07209 (2022) - [i69]Davin Choo, Kirankumar Shiragur, Arnab Bhattacharyya:
Verification and search algorithms for causal DAGs. CoRR abs/2206.15374 (2022) - [i68]Vipul Arora, Arnab Bhattacharyya, Noah Fleming, Esty Kelman, Yuichi Yoshida:
Low Degree Testing over the Reals. Electron. Colloquium Comput. Complex. TR22 (2022) - 2021
- [j18]Arnab Bhattacharyya, Ashutosh Gupta, Lakshmanan Kuppusamy, Somya Mani, Ankit Shukla, Mandayam K. Srivas, Mukund Thattai:
A formal methods approach to predicting new features of the eukaryotic vesicle traffic system. Acta Informatica 58(1-2): 57-93 (2021) - [j17]Arnab Bhattacharyya, Palash Dey:
Predicting winner and estimating margin of victory in elections using sampling. Artif. Intell. 296: 103476 (2021) - [j16]Arnab Bhattacharyya, Édouard Bonnet, László Egri, Suprovat Ghoshal, Karthik C. S., Bingkai Lin, Pasin Manurangsi, Dániel Marx:
Parameterized Intractability of Even Set and Shortest Vector Problem. J. ACM 68(3): 16:1-16:40 (2021) - [c43]Arnab Bhattacharyya, Rathin Desai, Sai Ganesh Nagarajan, Ioannis Panageas:
Efficient Statistics for Sparse Graphical Models from Truncated Samples. AISTATS 2021: 1450-1458 - [c42]Arnab Bhattacharyya, Sutanu Gayen, Saravanan Kandasamy, N. V. Vinodchandran:
Testing Product Distributions: A Closer Look. ALT 2021: 367-396 - [c41]Aduri Pavan, N. V. Vinodchandran, Arnab Bhattacharyya, Kuldeep S. Meel:
Model Counting meets F0 Estimation. PODS 2021: 299-311 - [c40]Arnab Bhattacharyya, Sutanu Gayen, Eric Price, N. V. Vinodchandran:
Near-optimal learning of tree-structured distributions by Chow-Liu. STOC 2021: 147-160 - [i67]Aduri Pavan, N. V. Vinodchandran, Arnab Bhattacharyya, Kuldeep S. Meel:
Model Counting meets F0 Estimation. CoRR abs/2105.00639 (2021) - [i66]Yuhao Wang, Arnab Bhattacharyya:
Identifiability of AMP chain graph models. CoRR abs/2106.09350 (2021) - [i65]Arnab Bhattacharyya, Davin Choo, Rishikesh Gajjala, Sutanu Gayen, Yuhao Wang:
Learning Sparse Fixed-Structure Gaussian Bayesian Networks. CoRR abs/2107.10450 (2021) - [i64]Arnab Bhattacharyya, Sutanu Gayen, Saravanan Kandasamy, Vedant Raval, N. V. Vinodchandran:
Efficient inference of interventional distributions. CoRR abs/2107.11712 (2021) - 2020
- [j15]Arnab Bhattacharyya, Ameet Gadekar, Ninad Rajgopal:
Improved learning of k-parities. Theor. Comput. Sci. 840: 249-256 (2020) - [c39]Arnab Bhattacharyya, Sutanu Gayen, Saravanan Kandasamy, Ashwin Maran, N. Variyam Vinodchandran:
Learning and Sampling of Atomic Interventions from Observations. ICML 2020: 842-853 - [c38]Arnab Bhattacharyya, L. Sunil Chandran, Suprovat Ghoshal:
Combinatorial Lower Bounds for 3-Query LDCs. ITCS 2020: 85:1-85:8 - [c37]Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S. Meel, N. V. Vinodchandran:
Efficient Distance Approximation for Structured High-Dimensional Distributions via Learning. NeurIPS 2020 - [i63]Arnab Bhattacharyya, Sutanu Gayen, Saravanan Kandasamy, Ashwin Maran, N. V. Vinodchandran:
Efficiently Learning and Sampling Interventional Distributions from Observations. CoRR abs/2002.04232 (2020) - [i62]Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S. Meel, N. V. Vinodchandran:
Efficient Distance Approximation for Structured High-Dimensional Distributions via Learning. CoRR abs/2002.05378 (2020) - [i61]Arnab Bhattacharyya, Rathin Desai, Sai Ganesh Nagarajan, Ioannis Panageas:
Efficient Statistics for Sparse Graphical Models from Truncated Samples. CoRR abs/2006.09735 (2020) - [i60]Arnab Bhattacharyya, Sutanu Gayen, Eric Price, N. V. Vinodchandran:
Near-Optimal Learning of Tree-Structured Distributions by Chow-Liu. CoRR abs/2011.04144 (2020) - [i59]Arnab Bhattacharyya, Sutanu Gayen, Saravanan Kandasamy, N. V. Vinodchandran:
Testing Product Distributions: A Closer Look. CoRR abs/2012.14632 (2020)
2010 – 2019
- 2019
- [j14]Arnab Bhattacharyya, Palash Dey, David P. Woodruff:
An Optimal Algorithm for ℓ1-Heavy Hitters in Insertion Streams and Related Problems. ACM Trans. Algorithms 15(1): 2:1-2:27 (2019) - [c36]Saravanan Kandasamy, Arnab Bhattacharyya, Vasant G. Honavar:
Minimum Intervention Cover of a Causal Graph. AAAI 2019: 2876-2885 - [i58]Arnab Bhattacharyya, Édouard Bonnet, László Egri, Suprovat Ghoshal, Karthik C. S., Bingkai Lin, Pasin Manurangsi, Dániel Marx:
Parameterized Intractability of Even Set and Shortest Vector Problem. CoRR abs/1909.01986 (2019) - [i57]Arnab Bhattacharyya, L. Sunil Chandran, Suprovat Ghoshal:
Combinatorial lower bounds for 3-query LDCs. CoRR abs/1911.10698 (2019) - [i56]Arnab Bhattacharyya, Édouard Bonnet, László Egri, Suprovat Ghoshal, Karthik C. S., Bingkai Lin, Pasin Manurangsi, Dániel Marx:
Parameterized Intractability of Even Set and Shortest Vector Problem. Electron. Colloquium Comput. Complex. TR19 (2019) - [i55]Arnab Bhattacharyya, Philips George John, Suprovat Ghoshal, Raghu Meka:
Average Bias and Polynomial Sources. Electron. Colloquium Comput. Complex. TR19 (2019) - 2018
- [j13]Arnab Bhattacharyya, Fabrizio Grandoni, Aleksandar Nikolov, Barna Saha, Saket Saurabh, Aravindan Vijayaraghavan, Qin Zhang:
Editorial: ACM-SIAM Symposium on Discrete Algorithms (SODA) 2016 Special Issue. ACM Trans. Algorithms 14(3): 26:1-26:2 (2018) - [c35]Arnab Bhattacharyya, Ameet Gadekar, Ninad Rajgopal:
Improved Learning of k-Parities. COCOON 2018: 542-553 - [c34]Arnab Bhattacharyya, Suprovat Ghoshal, Rishi Saket:
Hardness of Learning Noisy Halfspaces using Polynomial Thresholds. COLT 2018: 876-917 - [c33]Arnab Bhattacharyya, Suprovat Ghoshal, Karthik C. S., Pasin Manurangsi:
Parameterized Intractability of Even Set and Shortest Vector Problem from Gap-ETH. ICALP 2018: 17:1-17:15 - [c32]Siddharth Barman, Arnab Bhattacharyya, Suprovat Ghoshal:
Testing Sparsity over Known and Unknown Bases. ICML 2018: 500-509 - [c31]Jayadev Acharya, Arnab Bhattacharyya, Constantinos Daskalakis, Saravanan Kandasamy:
Learning and Testing Causal Models with Interventions. NeurIPS 2018: 9469-9481 - [i54]Arnab Bhattacharyya, Suprovat Ghoshal, Karthik C. S., Pasin Manurangsi:
Parameterized Intractability of Even Set and Shortest Vector Problem from Gap-ETH. CoRR abs/1803.09717 (2018) - [i53]Jayadev Acharya, Arnab Bhattacharyya, Constantinos Daskalakis, Saravanan Kandasamy:
Learning and Testing Causal Models with Interventions. CoRR abs/1805.09697 (2018) - [i52]Arnab Bhattacharyya, Suprovat Ghoshal, Karthik C. S., Pasin Manurangsi:
Parameterized Intractability of Even Set and Shortest Vector Problem from Gap-ETH. Electron. Colloquium Comput. Complex. TR18 (2018) - 2017
- [j12]Arnab Bhattacharyya, Sivakanth Gopi:
Lower Bounds for Constant Query Affine-Invariant LCCs and LTCs. ACM Trans. Comput. Theory 9(2): 7:1-7:17 (2017) - [c30]Arnab Bhattacharyya, Sivakanth Gopi, Avishay Tal:
Lower Bounds for 2-Query LCCs over Large Alphabet. APPROX-RANDOM 2017: 30:1-30:20 - [c29]Anurita Mathur, Arnab Bhattacharyya:
On the Gap between Outcomes of Voting Rules. AAMAS 2017: 1631-1633 - [c28]Jayadev Acharya, Arnab Bhattacharyya, Pritish Kamath:
Improved bounds for universal one-bit compressive sensing. ISIT 2017: 2353-2357 - [i51]Jayadev Acharya, Arnab Bhattacharyya, Pritish Kamath:
Improved Bounds for Universal One-Bit Compressive Sensing. CoRR abs/1705.00763 (2017) - [i50]Arnab Bhattacharyya, Suprovat Ghoshal, Rishi Saket:
Hardness of learning noisy halfspaces using polynomial thresholds. CoRR abs/1707.01795 (2017) - [i49]Arnab Bhattacharyya, Suprovat Ghoshal, Rishi Saket:
Hardness of learning noisy halfspaces using polynomial thresholds. Electron. Colloquium Comput. Complex. TR17 (2017) - 2016
- [j11]Arnab Bhattacharyya, Zeev Dvir, Shubhangi Saraf, Amir Shpilka:
Tight lower bounds for linear 2-query LCCs over finite fields. Comb. 36(1): 1-36 (2016) - [c27]Arnab Bhattacharyya, Abhishek Bhowmick, Chetan Gupta:
On Higher-Order Fourier Analysis over Non-Prime Fields. APPROX-RANDOM 2016: 23:1-23:29 - [c26]Arnab Bhattacharyya, Sivakanth Gopi:
Lower Bounds for Constant Query Affine-Invariant LCCs and LTCs. CCC 2016: 12:1-12:17 - [c25]Arnab Bhattacharyya, Ameet Gadekar, Suprovat Ghoshal, Rishi Saket:
On the Hardness of Learning Sparse Parities. ESA 2016: 11:1-11:17 - [c24]Arnab Bhattacharyya, Palash Dey, David P. Woodruff:
An Optimal Algorithm for l1-Heavy Hitters in Insertion Streams and Related Problems. PODS 2016: 385-400 - [i48]Arnab Bhattacharyya, Palash Dey, David P. Woodruff:
An Optimal Algorithm for l1-Heavy Hitters in Insertion Streams and Related Problems. CoRR abs/1603.00213 (2016) - [i47]Siddharth Barman, Arnab Bhattacharyya, Suprovat Ghoshal:
The Dictionary Testing Problem. CoRR abs/1608.01275 (2016) - [i46]Arnab Bhattacharyya, Sivakanth Gopi:
Lower bounds for 2-query LCCs over large alphabet. CoRR abs/1611.06980 (2016) - [i45]Arnab Bhattacharyya, Sivakanth Gopi:
Lower bounds for 2-query LCCs over large alphabet. Electron. Colloquium Comput. Complex. TR16 (2016) - 2015
- [j10]Arnab Bhattacharyya, Ning Xie:
Lower bounds for testing triangle-freeness in Boolean functions. Comput. Complex. 24(1): 65-101 (2015) - [j9]Arnab Bhattacharyya, Elena Grigorescu, Asaf Shapira:
A unified framework for testing linear-invariant properties. Random Struct. Algorithms 46(2): 232-260 (2015) - [c23]Palash Dey, Arnab Bhattacharyya:
Sample Complexity for Winner Prediction in Elections. AAMAS 2015: 1421-1430 - [c22]Arnab Bhattacharyya, Kirankumar Shiragur:
How friends and non-determinism affect opinion dynamics. CDC 2015: 6466-6471 - [c21]Arnab Bhattacharyya, Pooya Hatami, Madhur Tulsiani:
Algorithmic regularity for polynomials and applications. SODA 2015: 1870-1889 - [i44]Arnab Bhattacharyya, Palash Dey:
Sample Complexity for Winner Prediction in Elections. CoRR abs/1502.04354 (2015) - [i43]Arnab Bhattacharyya, Ameet Gadekar, Ninad Rajgopal:
On learning k-parities with and without noise. CoRR abs/1502.05375 (2015) - [i42]Arnab Bhattacharyya, Kirankumar Shiragur:
How friends and non-determinism affect opinion dynamics. CoRR abs/1503.01720 (2015) - [i41]Arnab Bhattacharyya, Abhishek Bhowmick:
Using higher-order Fourier analysis over general fields. CoRR abs/1505.00619 (2015) - [i40]Arnab Bhattacharyya, Palash Dey:
Fishing out Winners from Vote Streams. CoRR abs/1508.04522 (2015) - [i39]Arnab Bhattacharyya, Sivakanth Gopi:
Lower bounds for constant query affine-invariant LCCs and LTCs. CoRR abs/1511.07558 (2015) - [i38]Arnab Bhattacharyya, Ameet Gadekar, Suprovat Ghoshal, Rishi Saket:
On the hardness of learning sparse parities. CoRR abs/1511.08270 (2015) - [i37]Arnab Bhattacharyya, Abhishek Bhowmick:
Using higher-order Fourier analysis over general fields. Electron. Colloquium Comput. Complex. TR15 (2015) - [i36]Arnab Bhattacharyya, Palash Dey:
Sample Complexity for Winner Prediction in Elections. Electron. Colloquium Comput. Complex. TR15 (2015) - [i35]Arnab Bhattacharyya, Palash Dey:
Fishing out Winners from Vote Streams. Electron. Colloquium Comput. Complex. TR15 (2015) - [i34]Arnab Bhattacharyya, Sivakanth Gopi:
Lower bounds for constant query affine-invariant LCCs and LTCs. Electron. Colloquium Comput. Complex. TR15 (2015) - [i33]Arnab Bhattacharyya, Ameet Gadekar, Suprovat Ghoshal, Rishi Saket:
On the hardness of learning sparse parities. Electron. Colloquium Comput. Complex. TR15 (2015) - 2014
- [j8]Piotr Berman, Arnab Bhattacharyya, Elena Grigorescu, Sofya Raskhodnikova, David P. Woodruff, Grigory Yaroslavtsev:
Steiner transitive-closure spanners of low-dimensional posets. Comb. 34(3): 255-277 (2014) - [c20]Arnab Bhattacharyya:
Polynomial Decompositions in Polynomial Time. ESA 2014: 125-136 - [i32]Arnab Bhattacharyya, Vineet Nair:
An explicit sparse recovery scheme in the L1-norm. CoRR abs/1411.2344 (2014) - [i31]Arnab Bhattacharyya:
Polynomial decompositions in polynomial time. Electron. Colloquium Comput. Complex. TR14 (2014) - 2013
- [j7]Arnab Bhattacharyya, Jeff Kahn:
A Bipartite Graph with Non-Unimodal Independent Set Sequence. Electron. J. Comb. 20(4): 11 (2013) - [j6]Piotr Berman, Arnab Bhattacharyya, Konstantin Makarychev, Sofya Raskhodnikova, Grigory Yaroslavtsev:
Approximation algorithms for spanner problems and Directed Steiner Forest. Inf. Comput. 222: 93-107 (2013) - [j5]Arnab Bhattacharyya:
Guest column: on testing affine-invariant properties over finite fields. SIGACT News 44(4): 53-72 (2013) - [c19]