


Остановите войну!
for scientists:


default search action
Zeyuan Allen Zhu
Zeyuan Allen-Zhu
Person information

- affiliation: MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, USA
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [c57]Zeyuan Allen-Zhu, Yuanzhi Li:
Backward Feature Correction: How Deep Learning Performs Deep (Hierarchical) Learning. COLT 2023: 4598 - [c56]Zeyuan Allen-Zhu, Yuanzhi Li:
Towards Understanding Ensemble, Knowledge Distillation and Self-Distillation in Deep Learning. ICLR 2023 - [c55]Zeyuan Allen-Zhu, Yuanzhi Li:
Forward Super-Resolution: How Can GANs Learn Hierarchical Generative Models for Real-World Distributions. ICLR 2023 - [i61]Zeyuan Allen-Zhu, Yuanzhi Li:
Physics of Language Models: Part 1, Context-Free Grammar. CoRR abs/2305.13673 (2023) - [i60]Cathy Yuanchen Li, Jana Sotáková, Emily Wenger, Zeyuan Allen-Zhu, François Charton, Kristin E. Lauter:
SALSA VERDE: a machine learning attack on Learning With Errors with sparse small secrets. CoRR abs/2306.11641 (2023) - [i59]Zeyuan Allen Zhu, Yuanzhi Li:
Physics of Language Models: Part 3.1, Knowledge Storage and Extraction. CoRR abs/2309.14316 (2023) - [i58]Zeyuan Allen-Zhu, Yuanzhi Li:
Physics of Language Models: Part 3.2, Knowledge Manipulation. CoRR abs/2309.14402 (2023) - [i57]Cathy Yuanchen Li, Jana Sotáková, Emily Wenger, Zeyuan Allen-Zhu, François Charton, Kristin E. Lauter:
SALSA VERDE: a machine learning attack on Learning with Errors with sparse small secrets. IACR Cryptol. ePrint Arch. 2023: 968 (2023) - 2022
- [c54]Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen:
LoRA: Low-Rank Adaptation of Large Language Models. ICLR 2022 - 2021
- [j6]Zeyuan Allen-Zhu, Yuanzhi Li, Aarti Singh, Yining Wang
:
Near-optimal discrete optimization for experimental design: a regret minimization approach. Math. Program. 186(1): 439-478 (2021) - [c53]Zeyuan Allen-Zhu, Yuanzhi Li:
Feature Purification: How Adversarial Training Performs Robust Deep Learning. FOCS 2021: 977-988 - [c52]Zeyuan Allen-Zhu, Faeze Ebrahimianghazani, Jerry Li, Dan Alistarh:
Byzantine-Resilient Non-Convex Stochastic Gradient Descent. ICLR 2021 - [i56]Zeyuan Allen-Zhu, Yuanzhi Li:
Forward Super-Resolution: How Can GANs Learn Hierarchical Generative Models for Real-World Distributions. CoRR abs/2106.02619 (2021) - [i55]Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Weizhu Chen:
LoRA: Low-Rank Adaptation of Large Language Models. CoRR abs/2106.09685 (2021) - 2020
- [i54]Zeyuan Allen-Zhu, Yuanzhi Li:
Backward Feature Correction: How Deep Learning Performs Deep Learning. CoRR abs/2001.04413 (2020) - [i53]Zeyuan Allen-Zhu, Yuanzhi Li:
Feature Purification: How Adversarial Training Performs Robust Deep Learning. CoRR abs/2005.10190 (2020) - [i52]Zeyuan Allen-Zhu, Yuanzhi Li:
Towards Understanding Ensemble, Knowledge Distillation and Self-Distillation in Deep Learning. CoRR abs/2012.09816 (2020) - [i51]Zeyuan Allen-Zhu, Faeze Ebrahimian, Jerry Li, Dan Alistarh:
Byzantine-Resilient Non-Convex Stochastic Gradient Descent. CoRR abs/2012.14368 (2020)
2010 – 2019
- 2019
- [j5]Zeyuan Allen-Zhu, Lorenzo Orecchia
:
Nearly linear-time packing and covering LP solvers - Achieving width-independence and -convergence. Math. Program. 175(1-2): 307-353 (2019) - [c51]Zeyuan Allen-Zhu, Yuanzhi Li, Zhao Song:
A Convergence Theory for Deep Learning via Over-Parameterization. ICML 2019: 242-252 - [c50]Zeyuan Allen-Zhu, Yuanzhi Li, Yingyu Liang:
Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers. NeurIPS 2019: 6155-6166 - [c49]Zeyuan Allen-Zhu, Yuanzhi Li, Zhao Song:
On the Convergence Rate of Training Recurrent Neural Networks. NeurIPS 2019: 6673-6685 - [c48]Zeyuan Allen-Zhu, Yuanzhi Li:
What Can ResNet Learn Efficiently, Going Beyond Kernels? NeurIPS 2019: 9015-9025 - [c47]Zeyuan Allen-Zhu, Yuanzhi Li:
Can SGD Learn Recurrent Neural Networks with Provable Generalization? NeurIPS 2019: 10331-10341 - [i50]Zeyuan Allen-Zhu, David Simchi-Levi, Xinshang Wang:
The Lingering of Gradients: How to Reuse Gradients over Time. CoRR abs/1901.02871 (2019) - [i49]Zeyuan Allen-Zhu, Yuanzhi Li:
Can SGD Learn Recurrent Neural Networks with Provable Generalization? CoRR abs/1902.01028 (2019) - [i48]Zeyuan Allen-Zhu, Yuanzhi Li:
What Can ResNet Learn Efficiently, Going Beyond Kernels? CoRR abs/1905.10337 (2019) - 2018
- [c46]Zeyuan Allen-Zhu:
Katyusha X: Practical Momentum Method for Stochastic Sum-of-Nonconvex Optimization. ICML 2018: 179-185 - [c45]Zeyuan Allen-Zhu, Sébastien Bubeck, Yuanzhi Li:
Make the Minority Great Again: First-Order Regret Bound for Contextual Bandits. ICML 2018: 186-194 - [c44]Zeyuan Allen-Zhu:
How To Make the Gradients Small Stochastically: Even Faster Convex and Nonconvex SGD. NeurIPS 2018: 1165-1175 - [c43]Zeyuan Allen-Zhu, David Simchi-Levi, Xinshang Wang:
The Lingering of Gradients: How to Reuse Gradients Over Time. NeurIPS 2018: 1252-1261 - [c42]Zeyuan Allen-Zhu:
Natasha 2: Faster Non-Convex Optimization Than SGD. NeurIPS 2018: 2680-2691 - [c41]Zeyuan Allen-Zhu, Yuanzhi Li:
NEON2: Finding Local Minima via First-Order Oracles. NeurIPS 2018: 3720-3730 - [c40]Dan Alistarh, Zeyuan Allen-Zhu, Jerry Li:
Byzantine Stochastic Gradient Descent. NeurIPS 2018: 4618-4628 - [c39]Chi Jin, Zeyuan Allen-Zhu, Sébastien Bubeck, Michael I. Jordan:
Is Q-Learning Provably Efficient? NeurIPS 2018: 4868-4878 - [c38]Zeyuan Allen-Zhu, Ankit Garg, Yuanzhi Li, Rafael Mendes de Oliveira, Avi Wigderson:
Operator scaling via geodesically convex optimization, invariant theory and polynomial identity testing. STOC 2018: 172-181 - [i47]Zeyuan Allen-Zhu:
How To Make the Gradients Small Stochastically. CoRR abs/1801.02982 (2018) - [i46]Zeyuan Allen-Zhu, Sébastien Bubeck, Yuanzhi Li:
Make the Minority Great Again: First-Order Regret Bound for Contextual Bandits. CoRR abs/1802.03386 (2018) - [i45]Zeyuan Allen-Zhu:
Katyusha X: Practical Momentum Method for Stochastic Sum-of-Nonconvex Optimization. CoRR abs/1802.03866 (2018) - [i44]Dan Alistarh, Zeyuan Allen-Zhu, Jerry Li:
Byzantine Stochastic Gradient Descent. CoRR abs/1803.08917 (2018) - [i43]Zeyuan Allen-Zhu, Ankit Garg, Yuanzhi Li, Rafael Mendes de Oliveira, Avi Wigderson:
Operator Scaling via Geodesically Convex Optimization, Invariant Theory and Polynomial Identity Testing. CoRR abs/1804.01076 (2018) - [i42]Chi Jin, Zeyuan Allen-Zhu, Sébastien Bubeck, Michael I. Jordan:
Is Q-learning Provably Efficient? CoRR abs/1807.03765 (2018) - [i41]Zeyuan Allen-Zhu, Yuanzhi Li, Zhao Song:
On the Convergence Rate of Training Recurrent Neural Networks. CoRR abs/1810.12065 (2018) - [i40]Zeyuan Allen-Zhu, Yuanzhi Li, Zhao Song:
A Convergence Theory for Deep Learning via Over-Parameterization. CoRR abs/1811.03962 (2018) - [i39]Zeyuan Allen-Zhu, Yuanzhi Li, Yingyu Liang:
Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers. CoRR abs/1811.04918 (2018) - 2017
- [j4]Zeyuan Allen-Zhu:
Katyusha: The First Direct Acceleration of Stochastic Gradient Methods. J. Mach. Learn. Res. 18: 221:1-221:51 (2017) - [c37]Zeyuan Allen-Zhu, Yuanzhi Li:
First Efficient Convergence for Streaming k-PCA: A Global, Gap-Free, and Near-Optimal Rate. FOCS 2017: 487-492 - [c36]Zeyuan Allen-Zhu, Yuanzhi Li, Rafael Mendes de Oliveira, Avi Wigderson:
Much Faster Algorithms for Matrix Scaling. FOCS 2017: 890-901 - [c35]Zeyuan Allen-Zhu:
Natasha: Faster Non-Convex Stochastic Optimization via Strongly Non-Convex Parameter. ICML 2017: 89-97 - [c34]Zeyuan Allen-Zhu, Yuanzhi Li:
Doubly Accelerated Methods for Faster CCA and Generalized Eigendecomposition. ICML 2017: 98-106 - [c33]Zeyuan Allen-Zhu, Yuanzhi Li:
Faster Principal Component Regression and Stable Matrix Chebyshev Approximation. ICML 2017: 107-115 - [c32]Zeyuan Allen-Zhu, Yuanzhi Li:
Follow the Compressed Leader: Faster Online Learning of Eigenvectors and Faster MMWU. ICML 2017: 116-125 - [c31]Zeyuan Allen-Zhu, Yuanzhi Li, Aarti Singh, Yining Wang:
Near-Optimal Design of Experiments via Regret Minimization. ICML 2017: 126-135 - [c30]Zeyuan Allen Zhu, Lorenzo Orecchia
:
Linear Coupling: An Ultimate Unification of Gradient and Mirror Descent. ITCS 2017: 3:1-3:22 - [c29]Zeyuan Allen-Zhu, Elad Hazan, Wei Hu, Yuanzhi Li:
Linear Convergence of a Frank-Wolfe Type Algorithm over Trace-Norm Balls. NIPS 2017: 6191-6200 - [c28]Naman Agarwal, Zeyuan Allen Zhu, Brian Bullins, Elad Hazan
, Tengyu Ma:
Finding approximate local minima faster than gradient descent. STOC 2017: 1195-1199 - [c27]Zeyuan Allen Zhu:
Katyusha: the first direct acceleration of stochastic gradient methods. STOC 2017: 1200-1205 - [i38]Zeyuan Allen Zhu, Yuanzhi Li:
Follow the Compressed Leader: Faster Algorithms for Matrix Multiplicative Weight Updates. CoRR abs/1701.01722 (2017) - [i37]Zeyuan Allen Zhu:
Natasha: Faster Non-Convex Stochastic Optimization Via Strongly Non-Convex Parameter. CoRR abs/1702.00763 (2017) - [i36]Zeyuan Allen Zhu, Yuanzhi Li, Rafael Mendes de Oliveira, Avi Wigderson:
Much Faster Algorithms for Matrix Scaling. CoRR abs/1704.02315 (2017) - [i35]Zeyuan Allen-Zhu, Elad Hazan, Wei Hu, Yuanzhi Li:
Linear Convergence of a Frank-Wolfe Type Algorithm over Trace-Norm Balls. CoRR abs/1708.02105 (2017) - [i34]Zeyuan Allen-Zhu:
Natasha 2: Faster Non-Convex Optimization Than SGD. CoRR abs/1708.08694 (2017) - [i33]Zeyuan Allen-Zhu, Yuanzhi Li, Aarti Singh, Yining Wang:
Near-Optimal Discrete Optimization for Experimental Design: A Regret Minimization Approach. CoRR abs/1711.05174 (2017) - [i32]Zeyuan Allen-Zhu, Yuanzhi Li:
Neon2: Finding Local Minima via First-Order Oracles. CoRR abs/1711.06673 (2017) - 2016
- [j3]Silvio Micali, Zeyuan Allen Zhu:
Reconstructing Markov processes from independent and anonymous experiments. Discret. Appl. Math. 200: 108-122 (2016) - [j2]Zeyuan Allen Zhu
, Rati Gelashvili, Ilya P. Razenshteyn:
Restricted Isometry Property for General p-Norms. IEEE Trans. Inf. Theory 62(10): 5839-5854 (2016) - [c26]Zeyuan Allen Zhu, Zhenyu Liao, Yang Yuan:
Optimization Algorithms for Faster Computational Geometry. ICALP 2016: 53:1-53:6 - [c25]Zeyuan Allen Zhu, Elad Hazan:
Variance Reduction for Faster Non-Convex Optimization. ICML 2016: 699-707 - [c24]Zeyuan Allen Zhu, Yang Yuan:
Improved SVRG for Non-Strongly-Convex or Sum-of-Non-Convex Objectives. ICML 2016: 1080-1089 - [c23]Zeyuan Allen Zhu, Zheng Qu, Peter Richtárik, Yang Yuan:
Even Faster Accelerated Coordinate Descent Using Non-Uniform Sampling. ICML 2016: 1110-1119 - [c22]Zeyuan Allen Zhu, Yuanzhi Li:
Even Faster SVD Decomposition Yet Without Agonizing Pain. NIPS 2016: 974-982 - [c21]Zeyuan Allen Zhu, Elad Hazan:
Optimal Black-Box Reductions Between Optimization Objectives. NIPS 2016: 1606-1614 - [c20]Zeyuan Allen Zhu, Yang Yuan, Karthik Sridharan:
Exploiting the Structure: Stochastic Gradient Methods Using Raw Clusters. NIPS 2016: 1642-1650 - [c19]Zeyuan Allen Zhu, Aditya Bhaskara, Silvio Lattanzi, Vahab S. Mirrokni, Lorenzo Orecchia:
Expanders via Local Edge Flips. SODA 2016: 259-269 - [c18]Zeyuan Allen Zhu, Yin Tat Lee, Lorenzo Orecchia:
Using Optimization to Obtain a Width-Independent, Parallel, Simpler, and Faster Positive SDP Solver. SODA 2016: 1824-1831 - [i31]Zeyuan Allen Zhu, Yang Yuan, Karthik Sridharan:
Exploiting the Structure: Stochastic Gradient Methods Using Raw Clusters. CoRR abs/1602.02151 (2016) - [i30]Zeyuan Allen Zhu, Elad Hazan:
Optimal Black-Box Reductions Between Optimization Objectives. CoRR abs/1603.05642 (2016) - [i29]Zeyuan Allen Zhu, Elad Hazan:
Variance Reduction for Faster Non-Convex Optimization. CoRR abs/1603.05643 (2016) - [i28]Zeyuan Allen Zhu:
Katyusha: Accelerated Variance Reduction for Faster SGD. CoRR abs/1603.05953 (2016) - [i27]Zeyuan Allen Zhu, Yuanzhi Li:
Even Faster SVD Decomposition Yet Without Agonizing Pain. CoRR abs/1607.03463 (2016) - [i26]Zeyuan Allen Zhu, Yuanzhi Li:
Doubly Accelerated Methods for Faster CCA and Generalized Eigendecomposition. CoRR abs/1607.06017 (2016) - [i25]Zeyuan Allen Zhu, Yuanzhi Li:
Fast Global Convergence of Online PCA. CoRR abs/1607.07837 (2016) - [i24]Zeyuan Allen Zhu, Yuanzhi Li:
Faster Principal Component Regression via Optimal Polynomial Approximation to sgn(x). CoRR abs/1608.04773 (2016) - [i23]Naman Agarwal, Zeyuan Allen Zhu, Brian Bullins, Elad Hazan, Tengyu Ma:
Finding Approximate Local Minima for Nonconvex Optimization in Linear Time. CoRR abs/1611.01146 (2016) - 2015
- [j1]Alessandro Chiesa, Zeyuan Allen Zhu:
Shorter arithmetization of nondeterministic computations. Theor. Comput. Sci. 600: 107-131 (2015) - [c17]Zeyuan Allen Zhu, Rati Gelashvili, Ilya P. Razenshteyn:
Restricted Isometry Property for General p-Norms. SoCG 2015: 451-460 - [c16]Zeyuan Allen Zhu, Lorenzo Orecchia:
Using Optimization to Break the Epsilon Barrier: A Faster and Simpler Width-Independent Algorithm for Solving Positive Linear Programs in Parallel. SODA 2015: 1439-1456 - [c15]Zeyuan Allen Zhu, Lorenzo Orecchia
:
Nearly-Linear Time Positive LP Solver with Faster Convergence Rate. STOC 2015: 229-236 - [c14]Zeyuan Allen Zhu, Zhenyu Liao, Lorenzo Orecchia
:
Spectral Sparsification and Regret Minimization Beyond Matrix Multiplicative Updates. STOC 2015: 237-245 - [i22]Zeyuan Allen Zhu, Yang Yuan:
UniVR: A Universal Variance Reduction Framework for Proximal Stochastic Gradient Method. CoRR abs/1506.01972 (2015) - [i21]Zeyuan Allen Zhu, Zhenyu Liao, Lorenzo Orecchia:
Spectral Sparsification and Regret Minimization Beyond Matrix Multiplicative Updates. CoRR abs/1506.04838 (2015) - [i20]Zeyuan Allen Zhu, Yin Tat Lee, Lorenzo Orecchia:
Using Optimization to Obtain a Width-Independent, Parallel, Simpler, and Faster Positive SDP Solver. CoRR abs/1507.02259 (2015) - [i19]Zeyuan Allen Zhu, Aditya Bhaskara, Silvio Lattanzi, Vahab S. Mirrokni, Lorenzo Orecchia:
Expanders via Local Edge Flips. CoRR abs/1510.07768 (2015) - [i18]Zeyuan Allen Zhu, Yang Yuan:
Even Faster Accelerated Coordinate Descent Using Non-Uniform Sampling. CoRR abs/1512.09103 (2015) - 2014
- [c13]Alessandro Chiesa, Silvio Micali, Zeyuan Allen Zhu:
Knightian self uncertainty in the vcg mechanism for unrestricted combinatorial auctions. EC 2014: 619-620 - [c12]Lorenzo Orecchia, Zeyuan Allen Zhu:
Flow-Based Algorithms for Local Graph Clustering. SODA 2014: 1267-1286 - [i17]Alessandro Chiesa, Silvio Micali, Zeyuan Allen Zhu:
Bridging Utility Maximization and Regret Minimization. CoRR abs/1403.6394 (2014) - [i16]Alessandro Chiesa, Silvio Micali, Zeyuan Allen Zhu:
Knightian Robustness from Regret Minimization. CoRR abs/1403.6409 (2014) - [i15]Alessandro Chiesa, Silvio Micali, Zeyuan Allen Zhu:
Knightian Analysis of the VCG Mechanism in Unrestricted Combinatorial Auctions. CoRR abs/1403.6410 (2014) - [i14]Alessandro Chiesa, Silvio Micali, Zeyuan Allen Zhu:
Knightian Robustness of Single-Parameter Domains. CoRR abs/1403.6411 (2014) - [i13]Alessandro Chiesa, Silvio Micali, Zeyuan Allen Zhu:
Knightian Robustness of the Vickrey Mechanism. CoRR abs/1403.6413 (2014) - [i12]Zeyuan Allen Zhu, Lorenzo Orecchia:
A Novel, Simple Interpretation of Nesterov's Accelerated Method as a Combination of Gradient and Mirror Descent. CoRR abs/1407.1537 (2014) - [i11]Zeyuan Allen Zhu, Lorenzo Orecchia:
Using Optimization to Break the Epsilon Barrier: A Faster and Simpler Width-Independent Algorithm for Solving Positive Linear Programs in Parallel. CoRR abs/1407.1925 (2014) - [i10]Zeyuan Allen Zhu, Rati Gelashvili, Ilya P. Razenshteyn:
The Restricted Isometry Property for the General p-Norms. CoRR abs/1407.2178 (2014) - [i9]Zeyuan Allen Zhu, Lorenzo Orecchia:
Nearly-Linear Time Packing and Covering LP Solver with Faster Convergence Rate Than $O(1/\varepsilon^2)$. CoRR abs/1411.1124 (2014) - [i8]Zeyuan Allen Zhu, Rati Gelashvili, Silvio Micali, Nir Shavit:
Johnson-Lindenstrauss Compression with Neuroscience-Based Constraints. CoRR abs/1411.5383 (2014) - [i7]Zeyuan Allen Zhu, Zhenyu Liao, Lorenzo Orecchia:
Using Optimization to Find Maximum Inscribed Balls and Minimum Enclosing Balls. CoRR abs/1412.1001 (2014) - 2013
- [c11]Zeyuan Allen Zhu, Silvio Lattanzi, Vahab S. Mirrokni:
A Local Algorithm for Finding Well-Connected Clusters. ICML (3) 2013: 396-404 - [c10]Jonathan A. Kelner, Lorenzo Orecchia
, Aaron Sidford, Zeyuan Allen Zhu:
A simple, combinatorial algorithm for solving SDD systems in nearly-linear time. STOC 2013: 911-920 - [i6]Jonathan A. Kelner, Lorenzo Orecchia, Aaron Sidford, Zeyuan Allen Zhu:
A Simple, Combinatorial Algorithm for Solving SDD Systems in Nearly-Linear Time. CoRR abs/1301.6628 (2013) - [i5]Zeyuan Allen Zhu, Silvio Lattanzi, Vahab S. Mirrokni:
A Local Algorithm for Finding Well-Connected Clusters. CoRR abs/1304.8132 (2013) - [i4]Lorenzo Orecchia, Zeyuan Allen Zhu:
Flow-Based Algorithms for Local Graph Clustering. CoRR abs/1307.2855 (2013) - 2012
- [c9]Alessandro Chiesa, Silvio Micali, Zeyuan Allen Zhu:
Mechanism design with approximate valuations. ITCS 2012: 34-38 - [c8]Zeyuan Allen Zhu, Sasa Misailovic, Jonathan A. Kelner, Martin C. Rinard:
Randomized accuracy-aware program transformations for efficient approximate computations. POPL 2012: 441-454 - 2011
- [c7]Wei Chen
, Pinyan Lu
, Xiaorui Sun, Bo Tang, Yajun Wang, Zeyuan Allen Zhu:
Optimal Pricing in Social Networks with Incomplete Information. WINE 2011: 49-60 - [i3]Alessandro Chiesa, Silvio Micali, Zeyuan Allen Zhu:
Knightian Auctions. CoRR abs/1112.1147 (2011) - 2010
- [c6]Pinyan Lu
, Xiaorui Sun, Yajun Wang, Zeyuan Allen Zhu:
Asymptotically optimal strategy-proof mechanisms for two-facility games. EC 2010: 315-324 - [c5]Zeyuan Allen Zhu, Weizhu Chen, Tom Minka, Chenguang Zhu, Zheng Chen:
A novel click model and its applications to online advertising. WSDM 2010: 321-330 - [i2]Wei Chen, Pinyan Lu, Xiaorui Sun, Yajun Wang, Zeyuan Allen Zhu:
Pricing in Social Networks: Equilibrium and Revenue Maximization. CoRR abs/1007.1501 (2010) - [i1]Zeyuan Allen Zhu:
Survey & Experiment: Towards the Learning Accuracy. CoRR abs/1012.4051 (2010)
2000 – 2009
- 2009
- [c4]Chenguang Zhu, Weizhu Chen, Zeyuan Allen Zhu, Gang Wang, Dong Wang, Zheng Chen:
A general magnitude-preserving boosting algorithm for search ranking. CIKM 2009: 817-826 - [c3]Zeyuan Allen Zhu, Weizhu Chen, Tao Wan, Chenguang Zhu, Gang Wang, Zheng Chen:
To divide and conquer search ranking by learning query difficulty. CIKM 2009: 1883-1886 - [c2]Zeyuan Allen Zhu, Weizhu Chen, Chenguang Zhu, Gang Wang, Haixun Wang, Zheng Chen:
Inverse Time Dependency in Convex Regularized Learning. ICDM 2009: 667-676 - [c1]