default search action
Xing Xie 0001
谢幸
Person information
- unicode name: 谢幸
- affiliation: Microsoft Research Asia, Beijing, China
Other persons with the same name
- Xing Xie — disambiguation page
- Xing Xie 0002 — Colorado State University, Fort Collins, CO, USA
- Xing Xie 0003 — Fudan University, Shanghai, China
- Xing Xie 0004 — Hunan University, HNU, Changsha, China
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j103]Jindong Wang, Xixu Hu, Wenxin Hou, Hao Chen, Runkai Zheng, Yidong Wang, Linyi Yang, Wei Ye, Haojun Huang, Xiubo Geng, Binxing Jiao, Yue Zhang, Xing Xie:
On the Robustness of ChatGPT: An Adversarial and Out-of-distribution Perspective. IEEE Data Eng. Bull. 47(1): 48-62 (2024) - [j102]Yidong Wang, Zhuohao Yu, Jindong Wang, Qiang Heng, Hao Chen, Wei Ye, Rui Xie, Xing Xie, Shikun Zhang:
Exploring Vision-Language Models for Imbalanced Learning. Int. J. Comput. Vis. 132(1): 224-237 (2024) - [j101]Kaijie Zhu, Qinlin Zhao, Hao Chen, Jindong Wang, Xing Xie:
PromptBench: A Unified Library for Evaluation of Large Language Models. J. Mach. Learn. Res. 25: 254:1-254:22 (2024) - [j100]Wang Lu, Jindong Wang, Xinwei Sun, Yiqiang Chen, Xiangyang Ji, Qiang Yang, Xing Xie:
Diversify: A General Framework for Time Series Out-of-Distribution Detection and Generalization. IEEE Trans. Pattern Anal. Mach. Intell. 46(6): 4534-4550 (2024) - [j99]Xin Huang, Wenrui Wang, Jiayi Li, Leiguang Wang, Xing Xie:
A Stepwise Refining Image-Level Weakly Supervised Semantic Segmentation Method for Detecting Exposed Surface for Buildings (ESB) From Very High-Resolution Remote Sensing Images. IEEE Trans. Geosci. Remote. Sens. 62: 1-17 (2024) - [j98]Lilin Tu, Jiayi Li, Xin Huang, Jianya Gong, Xing Xie, Leiguang Wang:
S2HM2: A Spectral-Spatial Hierarchical Masked Modeling Framework for Self-Supervised Feature Learning and Classification of Large-Scale Hyperspectral Images. IEEE Trans. Geosci. Remote. Sens. 62: 1-19 (2024) - [j97]Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang, Yi Chang, Philip S. Yu, Qiang Yang, Xing Xie:
A Survey on Evaluation of Large Language Models. ACM Trans. Intell. Syst. Technol. 15(3): 39:1-39:45 (2024) - [j96]Xiang Ao, Ling Luo, Xiting Wang, Zhao Yang, Jiun-Hung Chen, Ying Qiao, Qing He, Xing Xie:
Put Your Voice on Stage: Personalized Headline Generation for News Articles. ACM Trans. Knowl. Discov. Data 18(3): 54:1-54:20 (2024) - [c362]Lei Li, Jianxun Lian, Xiao Zhou, Xing Xie:
Ada-Retrieval: An Adaptive Multi-Round Retrieval Paradigm for Sequential Recommendations. AAAI 2024: 8670-8678 - [c361]Zhuohao Yu, Chang Gao, Wenjin Yao, Yidong Wang, Wei Ye, Jindong Wang, Xing Xie, Yue Zhang, Shikun Zhang:
KIEval: A Knowledge-grounded Interactive Evaluation Framework for Large Language Models. ACL (1) 2024: 5967-5985 - [c360]Jingwei Yi, Rui Ye, Qisi Chen, Bin Zhu, Siheng Chen, Defu Lian, Guangzhong Sun, Xing Xie, Fangzhao Wu:
On the Vulnerability of Safety Alignment in Open-Access LLMs. ACL (Findings) 2024: 9236-9260 - [c359]Hao Chen, Jindong Wang, Ankit Shah, Ran Tao, Hongxin Wei, Xing Xie, Masashi Sugiyama, Bhiksha Raj:
Understanding and Mitigating the Label Noise in Pre-training on Downstream Tasks. ICLR 2024 - [c358]Shitong Duan, Xiaoyuan Yi, Peng Zhang, Tun Lu, Xing Xie, Ning Gu:
Denevil: towards Deciphering and Navigating the Ethical Values of Large Language Models via Instruction Learning. ICLR 2024 - [c357]Yidong Wang, Zhuohao Yu, Wenjin Yao, Zhengran Zeng, Linyi Yang, Cunxiang Wang, Hao Chen, Chaoya Jiang, Rui Xie, Jindong Wang, Xing Xie, Wei Ye, Shikun Zhang, Yue Zhang:
PandaLM: An Automatic Evaluation Benchmark for LLM Instruction Tuning Optimization. ICLR 2024 - [c356]Linyi Yang, Shuibai Zhang, Zhuohao Yu, Guangsheng Bao, Yidong Wang, Jindong Wang, Ruochen Xu, Wei Ye, Xing Xie, Weizhu Chen, Yue Zhang:
Supervised Knowledge Makes Large Language Models Better In-context Learners. ICLR 2024 - [c355]Peiyan Zhang, Haoyang Liu, Chaozhuo Li, Xing Xie, Sunghun Kim, Haohan Wang:
Foundation Model-oriented Robustness: Robust Image Model Evaluation with Pretrained Models. ICLR 2024 - [c354]Kaijie Zhu, Jiaao Chen, Jindong Wang, Neil Zhenqiang Gong, Diyi Yang, Xing Xie:
DyVal: Dynamic Evaluation of Large Language Models for Reasoning Tasks. ICLR 2024 - [c353]Hao Chen, Jindong Wang, Lei Feng, Xiang Li, Yidong Wang, Xing Xie, Masashi Sugiyama, Rita Singh, Bhiksha Raj:
A General Framework for Learning from Weak Supervision. ICML 2024 - [c352]Yue Huang, Lichao Sun, Haoran Wang, Siyuan Wu, Qihui Zhang, Yuan Li, Chujie Gao, Yixin Huang, Wenhan Lyu, Yixuan Zhang, Xiner Li, Hanchi Sun, Zhengliang Liu, Yixin Liu, Yijue Wang, Zhikun Zhang, Bertie Vidgen, Bhavya Kailkhura, Caiming Xiong, Chaowei Xiao, Chunyuan Li, Eric P. Xing, Furong Huang, Hao Liu, Heng Ji, Hongyi Wang, Huan Zhang, Huaxiu Yao, Manolis Kellis, Marinka Zitnik, Meng Jiang, Mohit Bansal, James Zou, Jian Pei, Jian Liu, Jianfeng Gao, Jiawei Han, Jieyu Zhao, Jiliang Tang, Jindong Wang, Joaquin Vanschoren, John C. Mitchell, Kai Shu, Kaidi Xu, Kai-Wei Chang, Lifang He, Lifu Huang, Michael Backes, Neil Zhenqiang Gong, Philip S. Yu, Pin-Yu Chen, Quanquan Gu, Ran Xu, Rex Ying, Shuiwang Ji, Suman Jana, Tianlong Chen, Tianming Liu, Tianyi Zhou, William Wang, Xiang Li, Xiangliang Zhang, Xiao Wang, Xing Xie, Xun Chen, Xuyu Wang, Yan Liu, Yanfang Ye, Yinzhi Cao, Yong Chen, Yue Zhao:
Position: TrustLLM: Trustworthiness in Large Language Models. ICML 2024 - [c351]Cheng Li, Jindong Wang, Yixuan Zhang, Kaijie Zhu, Xinyi Wang, Wenxin Hou, Jianxun Lian, Fang Luo, Qiang Yang, Xing Xie:
The Good, The Bad, and Why: Unveiling Emotions in Generative AI. ICML 2024 - [c350]Qinlin Zhao, Jindong Wang, Yixuan Zhang, Yiqiao Jin, Kaijie Zhu, Hao Chen, Xing Xie:
CompeteAI: Understanding the Competition Dynamics of Large Language Model-based Agents. ICML 2024 - [c349]Kaijie Zhu, Jindong Wang, Qinlin Zhao, Ruochen Xu, Xing Xie:
Dynamic Evaluation of Large Language Models by Meta Probing Agents. ICML 2024 - [c348]Xueting Zhang, Xin Huang, Jiayi Li, Jie Yang, Leiguang Wang, Xing Xie:
Enhancing Inter-Class Discrimination for Domain Adaptation of Change Detection. IGARSS 2024: 8513-8517 - [c347]Yuxuan Lei, Jianxun Lian, Jing Yao, Xu Huang, Defu Lian, Xing Xie:
RecExplainer: Aligning Large Language Models for Explaining Recommendation Models. KDD 2024: 1530-1541 - [c346]Jing Yao, Xiaoyuan Yi, Yifan Gong, Xiting Wang, Xing Xie:
Value FULCRA: Mapping Large Language Models to the Multidimensional Spectrum of Basic Human Value. NAACL-HLT 2024: 8762-8785 - [c345]Wang Lu, Jindong Wang, Yidong Wang, Xing Xie:
Towards Optimization and Model Selection for Domain Generalization: A Mixup-guided Solution. SDM 2024: 244-252 - [c344]Qi Chen, Xiubo Geng, Corby Rosset, Carolyn Buractaon, Jingwen Lu, Tao Shen, Kun Zhou, Chenyan Xiong, Yeyun Gong, Paul N. Bennett, Nick Craswell, Xing Xie, Fan Yang, Bryan Tower, Nikhil Rao, Anlei Dong, Wenqi Jiang, Zheng Liu, Mingqin Li, Chuanjie Liu, Zengzhong Li, Rangan Majumder, Jennifer Neville, Andy Oakley, Knut Magne Risvik, Harsha Vardhan Simhadri, Manik Varma, Yujing Wang, Linjun Yang, Mao Yang, Ce Zhang:
MS MARCO Web Search: A Large-scale Information-rich Web Dataset with Millions of Real Click Labels. WWW (Companion Volume) 2024: 292-301 - [c343]Yuxuan Lei, Jianxun Lian, Jing Yao, Mingqi Wu, Defu Lian, Xing Xie:
Aligning Language Models for Versatile Text-based Item Retrieval. WWW (Companion Volume) 2024: 935-938 - [c342]Jianxun Lian, Yuxuan Lei, Xu Huang, Jing Yao, Wei Xu, Xing Xie:
RecAI: Leveraging Large Language Models for Next-Generation Recommender Systems. WWW (Companion Volume) 2024: 1031-1034 - [c341]Xu Huang, Jianxun Lian, Hao Wang, Hao Liao, Defu Lian, Xing Xie:
A Data-Centric Multi-Objective Learning Framework for Responsible Recommendation Systems. WWW 2024: 3129-3138 - [c340]Peiyan Zhang, Chaozhuo Li, Liying Kang, Feiran Huang, Senzhang Wang, Xing Xie, Sunghun Kim:
High-Frequency-aware Hierarchical Contrastive Selective Coding for Representation Learning on Text Attributed Graphs. WWW 2024: 4316-4327 - [e12]De-Nian Yang, Xing Xie, Vincent S. Tseng, Jian Pei, Jen-Wei Huang, Jerry Chun-Wei Lin:
Advances in Knowledge Discovery and Data Mining - 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024, Taipei, Taiwan, May 7-10, 2024, Proceedings, Part I. Lecture Notes in Computer Science 14645, Springer 2024, ISBN 978-981-97-2241-9 [contents] - [e11]De-Nian Yang, Xing Xie, Vincent S. Tseng, Jian Pei, Jen-Wei Huang, Jerry Chun-Wei Lin:
Advances in Knowledge Discovery and Data Mining - 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024, Taipei, Taiwan, May 7-10, 2024, Proceedings, Part II. Lecture Notes in Computer Science 14646, Springer 2024, ISBN 978-981-97-2252-5 [contents] - [e10]De-Nian Yang, Xing Xie, Vincent S. Tseng, Jian Pei, Jen-Wei Huang, Jerry Chun-Wei Lin:
Advances in Knowledge Discovery and Data Mining - 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024, Taipei, Taiwan, May 7-10, 2024, Proceedings, Part III. Lecture Notes in Computer Science 14647, Springer 2024, ISBN 978-981-97-2261-7 [contents] - [e9]De-Nian Yang, Xing Xie, Vincent S. Tseng, Jian Pei, Jen-Wei Huang, Jerry Chun-Wei Lin:
Advances in Knowledge Discovery and Data Mining - 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024, Taipei, Taiwan, May 7-10, 2024, Proceedings, Part IV. Lecture Notes in Computer Science 14648, Springer 2024, ISBN 978-981-97-2240-2 [contents] - [e8]De-Nian Yang, Xing Xie, Vincent S. Tseng, Jian Pei, Jen-Wei Huang, Jerry Chun-Wei Lin:
Advances in Knowledge Discovery and Data Mining - 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024, Taipei, Taiwan, May 7-10, 2024, Proceedings, Part V. Lecture Notes in Computer Science 14649, Springer 2024, ISBN 978-981-97-2264-8 [contents] - [e7]De-Nian Yang, Xing Xie, Vincent S. Tseng, Jian Pei, Jen-Wei Huang, Jerry Chun-Wei Lin:
Advances in Knowledge Discovery and Data Mining - 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024, Taipei, Taiwan, May 7-10, 2024, Proceedings, Part VI. Lecture Notes in Computer Science 14650, Springer 2024, ISBN 978-981-97-2265-5 [contents] - [i187]Lichao Sun, Yue Huang, Haoran Wang, Siyuan Wu, Qihui Zhang, Chujie Gao, Yixin Huang, Wenhan Lyu, Yixuan Zhang, Xiner Li, Zhengliang Liu, Yixin Liu, Yijue Wang, Zhikun Zhang, Bhavya Kailkhura, Caiming Xiong, Chaowei Xiao, Chunyuan Li, Eric P. Xing, Furong Huang, Hao Liu, Heng Ji, Hongyi Wang, Huan Zhang, Huaxiu Yao, Manolis Kellis, Marinka Zitnik, Meng Jiang, Mohit Bansal, James Zou, Jian Pei, Jian Liu, Jianfeng Gao, Jiawei Han, Jieyu Zhao, Jiliang Tang, Jindong Wang, John C. Mitchell, Kai Shu, Kaidi Xu, Kai-Wei Chang, Lifang He, Lifu Huang, Michael Backes, Neil Zhenqiang Gong, Philip S. Yu, Pin-Yu Chen, Quanquan Gu, Ran Xu, Rex Ying, Shuiwang Ji, Suman Jana, Tianlong Chen, Tianming Liu, Tianyi Zhou, William Wang, Xiang Li, Xiangliang Zhang, Xiao Wang, Xing Xie, Xun Chen, Xuyu Wang, Yan Liu, Yanfang Ye, Yinzhi Cao, Yue Zhao:
TrustLLM: Trustworthiness in Large Language Models. CoRR abs/2401.05561 (2024) - [i186]Lei Li, Jianxun Lian, Xiao Zhou, Xing Xie:
Ada-Retrieval: An Adaptive Multi-Round Retrieval Paradigm for Sequential Recommendations. CoRR abs/2401.06633 (2024) - [i185]Hao Chen, Bhiksha Raj, Xing Xie, Jindong Wang:
On Catastrophic Inheritance of Large Foundation Models. CoRR abs/2402.01909 (2024) - [i184]Hao Chen, Jindong Wang, Lei Feng, Xiang Li, Yidong Wang, Xing Xie, Masashi Sugiyama, Rita Singh, Bhiksha Raj:
A General Framework for Learning from Weak Supervision. CoRR abs/2402.01922 (2024) - [i183]Xixu Hu, Runkai Zheng, Jindong Wang, Cheuk Hang Leung, Qi Wu, Xing Xie:
SpecFormer: Guarding Vision Transformer Robustness via Maximum Singular Value Penalization. CoRR abs/2402.03317 (2024) - [i182]Cheng Li, Mengzhou Chen, Jindong Wang, Sunayana Sitaram, Xing Xie:
CultureLLM: Incorporating Cultural Differences into Large Language Models. CoRR abs/2402.10946 (2024) - [i181]Kaijie Zhu, Jindong Wang, Qinlin Zhao, Ruochen Xu, Xing Xie:
DyVal 2: Dynamic Evaluation of Large Language Models by Meta Probing Agents. CoRR abs/2402.14865 (2024) - [i180]Zhuohao Yu, Chang Gao, Wenjin Yao, Yidong Wang, Wei Ye, Jindong Wang, Xing Xie, Yue Zhang, Shikun Zhang:
KIEval: A Knowledge-grounded Interactive Evaluation Framework for Large Language Models. CoRR abs/2402.15043 (2024) - [i179]Peiyan Zhang, Chaozhuo Li, Liying Kang, Feiran Huang, Senzhang Wang, Xing Xie, Sunghun Kim:
High-Frequency-aware Hierarchical Contrastive Selective Coding for Representation Learning on Text-attributed Graphs. CoRR abs/2402.16240 (2024) - [i178]Yuxuan Lei, Jianxun Lian, Jing Yao, Mingqi Wu, Defu Lian, Xing Xie:
Aligning Language Models for Versatile Text-based Item Retrieval. CoRR abs/2402.18899 (2024) - [i177]Xukun Liu, Zhiyuan Peng, Xiaoyuan Yi, Xing Xie, Lirong Xiang, Yuchen Liu, Dongkuan Xu:
ToolNet: Connecting Large Language Models with Massive Tools via Tool Graph. CoRR abs/2403.00839 (2024) - [i176]Shitong Duan, Xiaoyuan Yi, Peng Zhang, Tun Lu, Xing Xie, Ning Gu:
Negating Negatives: Alignment without Human Positive Samples via Distributional Dispreference Optimization. CoRR abs/2403.03419 (2024) - [i175]Xinpeng Wang, Shitong Duan, Xiaoyuan Yi, Jing Yao, Shanlin Zhou, Zhihua Wei, Peng Zhang, Dongkuan Xu, Maosong Sun, Xing Xie:
On the Essence and Prospect: An Investigation of Alignment Approaches for Big Models. CoRR abs/2403.04204 (2024) - [i174]Zihan Luo, Xiran Song, Hong Huang, Jianxun Lian, Chenhao Zhang, Jinqi Jiang, Xing Xie, Hai Jin:
GraphInstruct: Empowering Large Language Models with Graph Understanding and Reasoning Capability. CoRR abs/2403.04483 (2024) - [i173]Jio Oh, Soyeon Kim, Junseok Seo, Jindong Wang, Ruochen Xu, Xing Xie, Steven Euijong Whang:
ERBench: An Entity-Relationship based Automatically Verifiable Hallucination Benchmark for Large Language Models. CoRR abs/2403.05266 (2024) - [i172]Jianxun Lian, Yuxuan Lei, Xu Huang, Jing Yao, Wei Xu, Xing Xie:
RecAI: Leveraging Large Language Models for Next-Generation Recommender Systems. CoRR abs/2403.06465 (2024) - [i171]Hao Chen, Jindong Wang, Zihan Wang, Ran Tao, Hongxin Wei, Xing Xie, Masashi Sugiyama, Bhiksha Raj:
Learning with Noisy Foundation Models. CoRR abs/2403.06869 (2024) - [i170]Zhihao Xu, Ruixuan Huang, Xiting Wang, Fangzhao Wu, Jing Yao, Xing Xie:
Uncovering Safety Risks in Open-source LLMs through Concept Activation Vector. CoRR abs/2404.12038 (2024) - [i169]Pablo Biedma, Xiaoyuan Yi, Linus Huang, Maosong Sun, Xing Xie:
Beyond Human Norms: Unveiling Unique Values of Large Language Models through Interdisciplinary Approaches. CoRR abs/2404.12744 (2024) - [i168]Qi Chen, Xiubo Geng, Corby Rosset, Carolyn Buractaon, Jingwen Lu, Tao Shen, Kun Zhou, Chenyan Xiong, Yeyun Gong, Paul N. Bennett, Nick Craswell, Xing Xie, Fan Yang, Bryan Tower, Nikhil Rao, Anlei Dong, Wenqi Jiang, Zheng Liu, Mingqin Li, Chuanjie Liu, Zengzhong Li, Rangan Majumder, Jennifer Neville, Andy Oakley, Knut Magne Risvik, Harsha Vardhan Simhadri, Manik Varma, Yujing Wang, Linjun Yang, Mao Yang, Ce Zhang:
MS MARCO Web Search: a Large-scale Information-rich Web Dataset with Millions of Real Click Labels. CoRR abs/2405.07526 (2024) - [i167]Cheng Li, Damien Teney, Linyi Yang, Qingsong Wen, Xing Xie, Jindong Wang:
CulturePark: Boosting Cross-cultural Understanding in Large Language Models. CoRR abs/2405.15145 (2024) - [i166]Shaohua Wang, Xing Xie, Yong Li, Danhuai Guo, Zhi Cai, Yu Liu, Yang Yue, Xiao Pan, Feng Lu, Huayi Wu, Zhipeng Gui, Zhiming Ding, Bolong Zheng, Fuzheng Zhang, Tao Qin, Jingyuan Wang, Chuang Tao, Zhengchao Chen, Hao Lu, Jiayi Li, Hongyang Chen, Peng Yue, Wenhao Yu, Yao Yao, Leilei Sun, Yong Zhang, Longbiao Chen, Xiaoping Du, Xiang Li, Xueying Zhang, Kun Qin, Zhaoya Gong, Weihua Dong, Xiaofeng Meng:
Research on Foundation Model for Spatial Data Intelligence: China's 2024 White Paper on Strategic Development of Spatial Data Intelligence. CoRR abs/2405.19730 (2024) - [i165]Han Jiang, Xiaoyuan Yi, Zhihua Wei, Shu Wang, Xing Xie:
Raising the Bar: Investigating the Values of Large Language Models via Generative Evolving Testing. CoRR abs/2406.14230 (2024) - [i164]Yueqi Xie, Tao Qi, Jingwei Yi, Ryan Whalen, Junming Huang, Qian Ding, Yu Xie, Xing Xie, Fangzhao Wu:
Measuring Human Contribution in AI-Assisted Content Generation. CoRR abs/2408.14792 (2024) - 2023
- [j95]Wang Lu, Xixu Hu, Jindong Wang, Xing Xie:
FedCLIP: Fast Generalization and Personalization for CLIP in Federated Learning. IEEE Data Eng. Bull. 46(1): 52-66 (2023) - [j94]Yueqi Xie, Jingwei Yi, Jiawei Shao, Justin Curl, Lingjuan Lyu, Qifeng Chen, Xing Xie, Fangzhao Wu:
Defending ChatGPT against jailbreak attack via self-reminders. Nat. Mac. Intell. 5(12): 1486-1496 (2023) - [j93]Jing Yao, Zheng Liu, Junhan Yang, Zhicheng Dou, Xing Xie, Ji-Rong Wen:
CDSM: Cascaded Deep Semantic Matching on Textual Graphs Leveraging Ad-hoc Neighbor Selection. ACM Trans. Intell. Syst. Technol. 14(2): 32:1-32:24 (2023) - [j92]Defu Lian, Zhihao Zhu, Kai Zheng, Yong Ge, Xing Xie, Enhong Chen:
Network Representation Lightening From Hashing to Quantization. IEEE Trans. Knowl. Data Eng. 35(5): 5119-5131 (2023) - [j91]Chaozhuo Li, Senzhang Wang, Jie Xu, Zheng Liu, Hao Wang, Xing Xie, Lei Chen, Philip S. Yu:
Semi-Supervised Variational User Identity Linkage via Noise-Aware Self-Learning. IEEE Trans. Knowl. Data Eng. 35(10): 10166-10180 (2023) - [j90]Chao Feng, Defu Lian, Xiting Wang, Zheng Liu, Xing Xie, Enhong Chen:
Reinforcement Routing on Proximity Graph for Efficient Recommendation. ACM Trans. Inf. Syst. 41(1): 8:1-8:27 (2023) - [j89]Chuhan Wu, Fangzhao Wu, Yongfeng Huang, Xing Xie:
Personalized News Recommendation: Methods and Challenges. ACM Trans. Inf. Syst. 41(1): 24:1-24:50 (2023) - [j88]Yiqi Wang, Chaozhuo Li, Zheng Liu, Mingzheng Li, Jiliang Tang, Xing Xie, Lei Chen, Philip S. Yu:
An Adaptive Graph Pre-training Framework for Localized Collaborative Filtering. ACM Trans. Inf. Syst. 41(2): 43:1-43:27 (2023) - [c339]Yiqiao Jin, Xiting Wang, Yaru Hao, Yizhou Sun, Xing Xie:
Prototypical Fine-Tuning: Towards Robust Performance under Varying Data Sizes. AAAI 2023: 12968-12976 - [c338]Rui Li, Xu Chen, Chaozhuo Li, Yanming Shen, Jianan Zhao, Yujing Wang, Weihao Han, Hao Sun, Weiwei Deng, Qi Zhang, Xing Xie:
To Copy Rather Than Memorize: A Vertical Learning Paradigm for Knowledge Graph Completion. ACL (1) 2023: 6335-6347 - [c337]Wenjun Peng, Jingwei Yi, Fangzhao Wu, Shangxi Wu, Bin Zhu, Lingjuan Lyu, Binxing Jiao, Tong Xu, Guangzhong Sun, Xing Xie:
Are You Copying My Model? Protecting the Copyright of Large Language Models for EaaS via Backdoor Watermark. ACL (1) 2023: 7653-7668 - [c336]Yuxi Feng, Xiaoyuan Yi, Xiting Wang, Laks V. S. Lakshmanan, Xing Xie:
DuNST: Dual Noisy Self Training for Semi-Supervised Controllable Text Generation. ACL (1) 2023: 8760-8785 - [c335]Linyi Yang, Shuibai Zhang, Libo Qin, Yafu Li, Yidong Wang, Hanmeng Liu, Jindong Wang, Xing Xie, Yue Zhang:
GLUE-X: Evaluating Natural Language Understanding Models from an Out-of-Distribution Generalization Perspective. ACL (Findings) 2023: 12731-12750 - [c334]Juyong Jiang, Peiyan Zhang, Yingtao Luo, Chaozhuo Li, Jae Boum Kim, Kai Zhang, Senzhang Wang, Xing Xie, Sunghun Kim:
AdaMCT: Adaptive Mixture of CNN-Transformer for Sequential Recommendation. CIKM 2023: 976-986 - [c333]Chao Zhang, Fangzhao Wu, Jingwei Yi, Derong Xu, Yang Yu, Jindong Wang, Yidong Wang, Tong Xu, Xing Xie, Enhong Chen:
Non-IID always Bad? Semi-Supervised Heterogeneous Federated Learning with Local Knowledge Enhancement. CIKM 2023: 3257-3267 - [c332]Xinpeng Wang, Xiaoyuan Yi, Han Jiang, Shanlin Zhou, Zhihua Wei, Xing Xie:
ToViLaG: Your Visual-Language Generative Model is Also An Evildoer. EMNLP 2023: 3508-3533 - [c331]Junhan Yang, Zheng Liu, Chaozhuo Li, Guangzhong Sun, Xing Xie:
Longtriever: a Pre-trained Long Text Encoder for Dense Document Retrieval. EMNLP 2023: 3655-3665 - [c330]Kaijie Zhu, Xixu Hu, Jindong Wang, Xing Xie, Ge Yang:
Improving Generalization of Adversarial Training via Robust Critical Fine-Tuning. ICCV 2023: 4401-4411 - [c329]Sungwon Han, Sungwon Park, Fangzhao Wu, Sundong Kim, Bin Zhu, Xing Xie, Meeyoung Cha:
Towards Attack-tolerant Federated Learning via Critical Parameter Analysis. ICCV 2023: 4976-4985 - [c328]Qingyu Guo, Fuzhen Zhuang, Chuan Qin, Hengshu Zhu, Xing Xie, Hui Xiong, Qing He:
A Survey on Knowledge Graph-Based Recommender Systems : Extended Abstract. ICDE 2023: 3803-3804 - [c327]Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, Jian Tang:
Learning on Large-scale Text-attributed Graphs via Variational Inference. ICLR 2023 - [c326]Hao Chen, Ran Tao, Yue Fan, Yidong Wang, Jindong Wang, Bernt Schiele, Xing Xie, Bhiksha Raj, Marios Savvides:
SoftMatch: Addressing the Quantity-Quality Tradeoff in Semi-supervised Learning. ICLR 2023 - [c325]Wang Lu, Jindong Wang, Xinwei Sun, Yiqiang Chen, Xing Xie:
Out-of-distribution Representation Learning for Time Series Classification. ICLR 2023 - [c324]Yidong Wang, Hao Chen, Qiang Heng, Wenxin Hou, Yue Fan, Zhen Wu, Jindong Wang, Marios Savvides, Takahiro Shinozaki, Bhiksha Raj, Bernt Schiele, Xing Xie:
FreeMatch: Self-adaptive Thresholding for Semi-supervised Learning. ICLR 2023 - [c323]Zonghan Yang, Xiaoyuan Yi, Peng Li, Yang Liu, Xing Xie:
Unified Detoxifying and Debiasing in Language Generation via Inference-time Adaptive Optimization. ICLR 2023 - [c322]Tao Qi, Fangzhao Wu, Lingjuan Lyu, Yongfeng Huang, Xing Xie:
FedSampling: A Better Sampling Strategy for Federated Learning. IJCAI 2023: 4154-4162 - [c321]Yuxi Feng, Xiaoyuan Yi, Laks V. S. Lakshmanan, Xing Xie:
KEST: Kernel Distance Based Efficient Self-Training for Improving Controllable Text Generation. IJCAI 2023: 5049-5057 - [c320]Sungwon Park, Sungwon Han, Fangzhao Wu, Sundong Kim, Bin Zhu, Xing Xie, Meeyoung Cha:
FedDefender: Client-Side Attack-Tolerant Federated Learning. KDD 2023: 1850-1861 - [c319]Xin Qin, Jindong Wang, Shuo Ma, Wang Lu, Yongchun Zhu, Xing Xie, Yiqiang Chen:
Generalizable Low-Resource Activity Recognition with Diverse and Discriminative Representation Learning. KDD 2023: 1943-1953 - [c318]Chenwang Wu, Xiting Wang, Defu Lian, Xing Xie, Enhong Chen:
A Causality Inspired Framework for Model Interpretation. KDD 2023: 2731-2741 - [c317]Yi-Fan Zhang, Jindong Wang, Jian Liang, Zhang Zhang, Baosheng Yu, Liang Wang, Dacheng Tao, Xing Xie:
Domain-Specific Risk Minimization for Domain Generalization. KDD 2023: 3409-3421 - [c316]Hao Liao, Jiahao Peng, Zhanyi Huang, Wei Zhang, Guanghua Li, Kai Shu, Xing Xie:
MUSER: A MUlti-Step Evidence Retrieval Enhancement Framework for Fake News Detection. KDD 2023: 4461-4472 - [c315]Zhoujin Tian, Chaozhuo Li, Zhiqiang Zuo, Zengxuan Wen, Lichao Sun, Xinyue Hu, Wen Zhang, Haizhen Huang, Senzhang Wang, Weiwei Deng, Xing Xie, Qi Zhang:
PASS: Personalized Advertiser-aware Sponsored Search. KDD 2023: 4924-4936 - [c314]Jingwei Yi, Fangzhao Wu, Bin Zhu, Jing Yao, Zhulin Tao, Guangzhong Sun, Xing Xie:
UA-FedRec: Untargeted Attack on Federated News Recommendation. KDD 2023: 5428-5438 - [c313]Jindong Wang, Haoliang Li, Haohan Wang, Sinno Jialin Pan, Xing Xie:
Trustworthy Machine Learning: Robustness, Generalization, and Interpretability. KDD 2023: 5827-5828 - [c312]Wang Lu, Jindong Wang, Yidong Wang, Xing Xie:
Towards Optimization and Model Selection for Domain Generalization: A Mixup-guided Solution. CDPD 2023: 75-97 - [c311]Zihan Luo, Hong Huang, Jianxun Lian, Xiran Song, Xing Xie, Hai Jin:
Cross-links Matter for Link Prediction: Rethinking the Debiased GNN from a Data Perspective. NeurIPS 2023 - [c310]Senzhang Wang, Jun Yin, Chaozhuo Li, Xing Xie, Jianxin Wang:
V-InFoR: A Robust Graph Neural Networks Explainer for Structurally Corrupted Graphs. NeurIPS 2023 - [c309]