default search action
Hanghang Tong
Person information
- affiliation: Arizona State University
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j89]Michael C. Loui, Nigel Bosch, Anita Say Chan, Jenny L. Davis, Rochelle Gutiérrez, Jingrui He, Karrie Karahalios, Sanmi Koyejo, Ruby Mendenhall, Madelyn Rose Sanfilippo, Hanghang Tong, Lav R. Varshney, Yang Wang:
Artificial Intelligence, Social Responsibility, and the Roles of the University. Commun. ACM 67(8): 22-25 (2024) - [j88]Zhe Xu, Kaize Ding, Yu-Xiong Wang, Huan Liu, Hanghang Tong:
Generalized few-shot node classification: toward an uncertainty-based solution. Knowl. Inf. Syst. 66(2): 1205-1229 (2024) - [j87]He Zhang, Bang Wu, Xingliang Yuan, Shirui Pan, Hanghang Tong, Jian Pei:
Trustworthy Graph Neural Networks: Aspects, Methods, and Trends. Proc. IEEE 112(2): 97-139 (2024) - [j86]Shengyu Feng, Baoyu Jing, Yada Zhu, Hanghang Tong:
ArieL: Adversarial Graph Contrastive Learning. ACM Trans. Knowl. Discov. Data 18(4): 82:1-82:22 (2024) - [j85]Feng Xia, Renaud Lambiotte, Neil Shah, Hanghang Tong, Irwin King:
Guest Editorial: Special Issue on Graph Learning. IEEE Trans. Neural Networks Learn. Syst. 35(9): 11630-11633 (2024) - [j84]Qing Chen, Nan Chen, Wei Shuai, Guande Wu, Zhe Xu, Hanghang Tong, Nan Cao:
Calliope-Net: Automatic Generation of Graph Data Facts via Annotated Node-Link Diagrams. IEEE Trans. Vis. Comput. Graph. 30(1): 562-572 (2024) - [c272]Baoyu Jing, Yuchen Yan, Kaize Ding, Chanyoung Park, Yada Zhu, Huan Liu, Hanghang Tong:
Sterling: Synergistic Representation Learning on Bipartite Graphs. AAAI 2024: 12976-12984 - [c271]Zhichen Zeng, Boxin Du, Si Zhang, Yinglong Xia, Zhining Liu, Hanghang Tong:
Hierarchical Multi-Marginal Optimal Transport for Network Alignment. AAAI 2024: 16660-16668 - [c270]Lihui Liu, Blaine Hill, Boxin Du, Fei Wang, Hanghang Tong:
Conversational Question Answering with Language Models Generated Reformulations over Knowledge Graph. ACL (Findings) 2024: 839-850 - [c269]Qineng Wang, Zihao Wang, Ying Su, Hanghang Tong, Yangqiu Song:
Rethinking the Bounds of LLM Reasoning: Are Multi-Agent Discussions the Key? ACL (1) 2024: 6106-6131 - [c268]Xinyu He, Jian Kang, Ruizhong Qiu, Fei Wang, Jose Sepulveda, Hanghang Tong:
On the Sensitivity of Individual Fairness: Measures and Robust Algorithms. CIKM 2024: 829-838 - [c267]Yuchen Yan, Yongyi Hu, Qinghai Zhou, Shurang Wu, Dingsu Wang, Hanghang Tong:
Topological Anonymous Walk Embedding: A New Structural Node Embedding Approach. CIKM 2024: 2796-2806 - [c266]Qinghai Zhou, Yuzhong Chen, Zhe Xu, Yuhang Wu, Menghai Pan, Mahashweta Das, Hao Yang, Hanghang Tong:
Graph Anomaly Detection with Adaptive Node Mixup. CIKM 2024: 3494-3504 - [c265]Jiejun Xu, Hanghang Tong, Andrea L. Bertozzi:
The 8th Workshop on Graph Techniques for Adversarial Activity Analytics (GTA3 2024). CIKM 2024: 5603-5604 - [c264]Yao Xu, Shizhu He, Jiabei Chen, Zihao Wang, Yangqiu Song, Hanghang Tong, Guang Liu, Jun Zhao, Kang Liu:
Generate-on-Graph: Treat LLM as both Agent and KG for Incomplete Knowledge Graph Question Answering. EMNLP 2024: 18410-18430 - [c263]Eunice Chan, Zhining Liu, Ruizhong Qiu, Yuheng Zhang, Ross Maciejewski, Hanghang Tong:
Group Fairness via Group Consensus. FAccT 2024: 1788-1808 - [c262]Jinning Li, Ruipeng Han, Chenkai Sun, Dachun Sun, Ruijie Wang, Jingying Zeng, Yuchen Yan, Hanghang Tong, Tarek F. Abdelzaher:
Large Language Model-Guided Disentangled Belief Representation Learning on Polarized Social Graphs. ICCCN 2024: 1-9 - [c261]Lecheng Zheng, Dawei Zhou, Hanghang Tong, Jiejun Xu, Yada Zhu, Jingrui He:
Fairgen: Towards Fair Graph Generation. ICDE 2024: 2285-2297 - [c260]Yikun Ban, Ishika Agarwal, Ziwei Wu, Yada Zhu, Kommy Weldemariam, Hanghang Tong, Jingrui He:
Neural Active Learning Beyond Bandits. ICLR 2024 - [c259]Jian Kang, Yinglong Xia, Ross Maciejewski, Jiebo Luo, Hanghang Tong:
Deceptive Fairness Attacks on Graphs via Meta Learning. ICLR 2024 - [c258]Zhining Liu, Ruizhong Qiu, Zhichen Zeng, Hyunsik Yoo, David Zhou, Zhe Xu, Yada Zhu, Kommy Weldemariam, Jingrui He, Hanghang Tong:
Class-Imbalanced Graph Learning without Class Rebalancing. ICML 2024 - [c257]Ruizhong Qiu, Hanghang Tong:
Gradient Compressed Sensing: A Query-Efficient Gradient Estimator for High-Dimensional Zeroth-Order Optimization. ICML 2024 - [c256]Haobo Xu, Yuchen Yan, Dingsu Wang, Zhe Xu, Zhichen Zeng, Tarek F. Abdelzaher, Jiawei Han, Hanghang Tong:
SLOG: An Inductive Spectral Graph Neural Network Beyond Polynomial Filter. ICML 2024 - [c255]Zhichen Zeng, Ruizhong Qiu, Zhe Xu, Zhining Liu, Yuchen Yan, Tianxin Wei, Lei Ying, Jingrui He, Hanghang Tong:
Graph Mixup on Approximate Gromov-Wasserstein Geodesics. ICML 2024 - [c254]Zhining Liu, Ruizhong Qiu, Zhichen Zeng, Yada Zhu, Hendrik F. Hamann, Hanghang Tong:
AIM: Attributing, Interpreting, Mitigating Data Unfairness. KDD 2024: 2014-2025 - [c253]Jun Wu, Jingrui He, Hanghang Tong:
Distributional Network of Networks for Modeling Data Heterogeneity. KDD 2024: 3379-3390 - [c252]Lecheng Zheng, Baoyu Jing, Zihao Li, Hanghang Tong, Jingrui He:
Heterogeneous Contrastive Learning for Foundation Models and Beyond. KDD 2024: 6666-6676 - [c251]Chuxuan Hu, Qinghai Zhou, Hanghang Tong:
Genius: Subteam Replacement with Clustering-based Graph Neural Networks. SDM 2024: 10-18 - [c250]Huiyuan Chen, Zhe Xu, Chin-Chia Michael Yeh, Vivian Lai, Yan Zheng, Minghua Xu, Hanghang Tong:
Masked Graph Transformer for Large-Scale Recommendation. SIGIR 2024: 2502-2506 - [c249]Blaine Hill, Lihui Liu, Hanghang Tong:
Ginkgo-P: General Illustrations of Knowledge Graphs for Openness as a Platform. WSDM 2024: 1066-1069 - [c248]Lihui Liu, Zihao Wang, Jiaxin Bai, Yangqiu Song, Hanghang Tong:
New Frontiers of Knowledge Graph Reasoning: Recent Advances and Future Trends. WWW (Companion Volume) 2024: 1294-1297 - [c247]Yuchen Yan, Yongyi Hu, Qinghai Zhou, Lihui Liu, Zhichen Zeng, Yuzhong Chen, Menghai Pan, Huiyuan Chen, Mahashweta Das, Hanghang Tong:
PaCEr: Network Embedding From Positional to Structural. WWW 2024: 2485-2496 - [c246]Hyunsik Yoo, Zhichen Zeng, Jian Kang, Ruizhong Qiu, David Zhou, Zhining Liu, Fei Wang, Charlie Xu, Eunice Chan, Hanghang Tong:
Ensuring User-side Fairness in Dynamic Recommender Systems. WWW 2024: 3667-3678 - [i107]Weilin Cong, Jian Kang, Hanghang Tong, Mehrdad Mahdavi:
On the Generalization Capability of Temporal Graph Learning Algorithms: Theoretical Insights and a Simpler Method. CoRR abs/2402.16387 (2024) - [i106]Qineng Wang, Zihao Wang, Ying Su, Hanghang Tong, Yangqiu Song:
Rethinking the Bounds of LLM Reasoning: Are Multi-Agent Discussions the Key? CoRR abs/2402.18272 (2024) - [i105]Weizhi Fei, Zihao Wang, Hang Yin, Yang Duan, Hanghang Tong, Yangqiu Song:
Soft Reasoning on Uncertain Knowledge Graphs. CoRR abs/2403.01508 (2024) - [i104]Lecheng Zheng, Baoyu Jing, Zihao Li, Hanghang Tong, Jingrui He:
Heterogeneous Contrastive Learning for Foundation Models and Beyond. CoRR abs/2404.00225 (2024) - [i103]Lihui Liu, Zihao Wang, Ruizhong Qiu, Yikun Ban, Eunice Chan, Yangqiu Song, Jingrui He, Hanghang Tong:
Logic Query of Thoughts: Guiding Large Language Models to Answer Complex Logic Queries with Knowledge Graphs. CoRR abs/2404.04264 (2024) - [i102]Yikun Ban, Ishika Agarwal, Ziwei Wu, Yada Zhu, Kommy Weldemariam, Hanghang Tong, Jingrui He:
Neural Active Learning Beyond Bandits. CoRR abs/2404.12522 (2024) - [i101]Yao Xu, Shizhu He, Jiabei Chen, Zihao Wang, Yangqiu Song, Hanghang Tong, Kang Liu, Jun Zhao:
Generate-on-Graph: Treat LLM as both Agent and KG in Incomplete Knowledge Graph Question Answering. CoRR abs/2404.14741 (2024) - [i100]Huiyuan Chen, Zhe Xu, Chin-Chia Michael Yeh, Vivian Lai, Yan Zheng, Minghua Xu, Hanghang Tong:
Masked Graph Transformer for Large-Scale Recommendation. CoRR abs/2405.04028 (2024) - [i99]Zhe Xu, Ruizhong Qiu, Yuzhong Chen, Huiyuan Chen, Xiran Fan, Menghai Pan, Zhichen Zeng, Mahashweta Das, Hanghang Tong:
Discrete-state Continuous-time Diffusion for Graph Generation. CoRR abs/2405.11416 (2024) - [i98]Ruizhong Qiu, Hanghang Tong:
Gradient Compressed Sensing: A Query-Efficient Gradient Estimator for High-Dimensional Zeroth-Order Optimization. CoRR abs/2405.16805 (2024) - [i97]Ruizhong Qiu, Weiliang Will Zeng, Hanghang Tong, James Ezick, Christopher Lott:
How Efficient is LLM-Generated Code? A Rigorous & High-Standard Benchmark. CoRR abs/2406.06647 (2024) - [i96]Zhining Liu, Ruizhong Qiu, Zhichen Zeng, Yada Zhu, Hendrik F. Hamann, Hanghang Tong:
AIM: Attributing, Interpreting, Mitigating Data Unfairness. CoRR abs/2406.08819 (2024) - [i95]Xiaodong Yang, Huiyuan Chen, Yuchen Yan, Yuxin Tang, Yuying Zhao, Eric Xu, Yiwei Cai, Hanghang Tong:
SimCE: Simplifying Cross-Entropy Loss for Collaborative Filtering. CoRR abs/2406.16170 (2024) - [i94]Zexing Xu, Linjun Zhang, Sitan Yang, S. Rasoul Etesami, Hanghang Tong, Huan Zhang, Jiawei Han:
F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data. CoRR abs/2406.16221 (2024) - [i93]Dongqi Fu, Yada Zhu, Hanghang Tong, Kommy Weldemariam, Onkar Bhardwaj, Jingrui He:
Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection. CoRR abs/2408.04254 (2024) - [i92]Hezhe Qiao, Hanghang Tong, Bo An, Irwin King, Charu C. Aggarwal, Guansong Pang:
Deep Graph Anomaly Detection: A Survey and New Perspectives. CoRR abs/2409.09957 (2024) - [i91]Xiao Lin, Zhining Liu, Dongqi Fu, Ruizhong Qiu, Hanghang Tong:
BACKTIME: Backdoor Attacks on Multivariate Time Series Forecasting. CoRR abs/2410.02195 (2024) - [i90]Zhe Xu, Kaveh Hassani, Si Zhang, Hanqing Zeng, Michihiro Yasunaga, Limei Wang, Dongqi Fu, Ning Yao, Bo Long, Hanghang Tong:
Language Models are Graph Learners. CoRR abs/2410.02296 (2024) - [i89]Lingjie Chen, Ruizhong Qiu, Siyu Yuan, Zhining Liu, Tianxin Wei, Hyunsik Yoo, Zhichen Zeng, Deqing Yang, Hanghang Tong:
WAPITI: A Watermark for Finetuned Open-Source LLMs. CoRR abs/2410.06467 (2024) - [i88]Wenxuan Bao, Zhichen Zeng, Zhining Liu, Hanghang Tong, Jingrui He:
AdaRC: Mitigating Graph Structure Shifts during Test-Time. CoRR abs/2410.06976 (2024) - [i87]Dongqi Fu, Liri Fang, Zihao Li, Hanghang Tong, Vetle I. Torvik, Jingrui He:
Parametric Graph Representations in the Era of Foundation Models: A Survey and Position. CoRR abs/2410.12126 (2024) - [i86]Yikun Ban, Jiaru Zou, Zihao Li, Yunzhe Qi, Dongqi Fu, Jian Kang, Hanghang Tong, Jingrui He:
PageRank Bandits for Link Prediction. CoRR abs/2411.01410 (2024) - [i85]Ruizhong Qiu, Zhe Xu, Wenxuan Bao, Hanghang Tong:
Ask, and it shall be given: Turing completeness of prompting. CoRR abs/2411.01992 (2024) - 2023
- [j83]Zhizhi Yu, Di Jin, Ziyang Liu, Dongxiao He, Xiao Wang, Hanghang Tong, Jiawei Han:
Embedding text-rich graph neural networks with sequence and topical semantic structures. Knowl. Inf. Syst. 65(2): 613-640 (2023) - [j82]Dongqi Fu, Wenxuan Bao, Ross Maciejewski, Hanghang Tong, Jingrui He:
Privacy-Preserving Graph Machine Learning from Data to Computation: A Survey. SIGKDD Explor. 25(1): 54-72 (2023) - [j81]Lei Shi, Yuankai Luo, Shuai Ma, Hanghang Tong, Zhetao Li, Xiatian Zhang, Zhiguang Shan:
Mobility Inference on Long-Tailed Sparse Trajectory. ACM Trans. Intell. Syst. Technol. 14(1): 18:1-18:26 (2023) - [j80]Qinghai Zhou, Liangyue Li, Nan Cao, Lei Ying, Hanghang Tong:
Adversarial Attacks on Multi-Network Mining: Problem Definition and Fast Solutions. IEEE Trans. Knowl. Data Eng. 35(1): 96-107 (2023) - [j79]Hao Wang, Defu Lian, Hanghang Tong, Qi Liu, Zhenya Huang, Enhong Chen:
Decoupled Representation Learning for Attributed Networks. IEEE Trans. Knowl. Data Eng. 35(3): 2430-2444 (2023) - [j78]Scott Freitas, Diyi Yang, Srijan Kumar, Hanghang Tong, Duen Horng Chau:
Graph Vulnerability and Robustness: A Survey. IEEE Trans. Knowl. Data Eng. 35(6): 5915-5934 (2023) - [j77]Ziye Zhu, Hanghang Tong, Yu Wang, Yun Li:
BL-GAN: Semi-Supervised Bug Localization via Generative Adversarial Network. IEEE Trans. Knowl. Data Eng. 35(11): 11112-11125 (2023) - [j76]Haibo Ye, Xinjie Li, Yuan Yao, Hanghang Tong:
Towards Robust Neural Graph Collaborative Filtering via Structure Denoising and Embedding Perturbation. ACM Trans. Inf. Syst. 41(3): 59:1-59:28 (2023) - [j75]Senrong Xu, Liangyue Li, Zenan Li, Yuan Yao, Feng Xu, Zulong Chen, Quan Lu, Hanghang Tong:
On the Vulnerability of Graph Learning-based Collaborative Filtering. ACM Trans. Inf. Syst. 41(4): 87:1-87:28 (2023) - [c245]Ruijie Wang, Baoyu Li, Yichen Lu, Dachun Sun, Jinning Li, Yuchen Yan, Shengzhong Liu, Hanghang Tong, Tarek F. Abdelzaher:
Noisy Positive-Unlabeled Learning with Self-Training for Speculative Knowledge Graph Reasoning. ACL (Findings) 2023: 2440-2457 - [c244]Haipeng Luo, Hanghang Tong, Mengxiao Zhang, Yuheng Zhang:
Improved High-Probability Regret for Adversarial Bandits with Time-Varying Feedback Graphs. ALT 2023: 1074-1100 - [c243]Qinghai Zhou, Kaize Ding, Huan Liu, Hanghang Tong:
Learning Node Abnormality with Weak Supervision. CIKM 2023: 3584-3594 - [c242]Boxin Du, Changhe Yuan, Fei Wang, Hanghang Tong:
Geometric Matrix Completion via Sylvester Multi-Graph Neural Network. CIKM 2023: 3860-3864 - [c241]Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong, Mehrdad Mahdavi:
Do We Really Need Complicated Model Architectures For Temporal Networks? ICLR 2023 - [c240]Chi Han, Qizheng He, Charles Yu, Xinya Du, Hanghang Tong, Heng Ji:
Logical Entity Representation in Knowledge-Graphs for Differentiable Rule Learning. ICLR 2023 - [c239]Zhichen Zeng, Ruike Zhu, Yinglong Xia, Hanqing Zeng, Hanghang Tong:
Generative Graph Dictionary Learning. ICML 2023: 40749-40769 - [c238]Ruizhong Qiu, Dingsu Wang, Lei Ying, H. Vincent Poor, Yifang Zhang, Hanghang Tong:
Reconstructing Graph Diffusion History from a Single Snapshot. KDD 2023: 1978-1988 - [c237]Dingsu Wang, Yuchen Yan, Ruizhong Qiu, Yada Zhu, Kaiyu Guan, Andrew Margenot, Hanghang Tong:
Networked Time Series Imputation via Position-aware Graph Enhanced Variational Autoencoders. KDD 2023: 2256-2268 - [c236]Zhe Xu, Yuzhong Chen, Menghai Pan, Huiyuan Chen, Mahashweta Das, Hao Yang, Hanghang Tong:
Kernel Ridge Regression-Based Graph Dataset Distillation. KDD 2023: 2850-2861 - [c235]Zhe Xu, Yuzhong Chen, Qinghai Zhou, Yuhang Wu, Menghai Pan, Hao Yang, Hanghang Tong:
Node Classification Beyond Homophily: Towards a General Solution. KDD 2023: 2862-2873 - [c234]Lihui Liu, Hanghang Tong:
Knowledge Graph Reasoning and Its Applications. KDD 2023: 5813-5814 - [c233]Xiao Lin, Jian Kang, Weilin Cong, Hanghang Tong:
BeMap: Balanced Message Passing for Fair Graph Neural Network. LoG 2023: 37 - [c232]Yuchen Yan, Yuzhong Chen, Huiyuan Chen, Minghua Xu, Mahashweta Das, Hao Yang, Hanghang Tong:
From Trainable Negative Depth to Edge Heterophily in Graphs. NeurIPS 2023 - [c231]Yuchen Yan, Baoyu Jing, Lihui Liu, Ruijie Wang, Jinning Li, Tarek F. Abdelzaher, Hanghang Tong:
Reconciling Competing Sampling Strategies of Network Embedding. NeurIPS 2023 - [c230]Si Zhang, Yinglong Xia, Yan Zhu, Hanghang Tong:
Representation Learning on Dynamic Network of Networks. SDM 2023: 298-306 - [c229]Shengyu Feng, Hanghang Tong:
Concept Discovery for Fast Adaptation. SDM 2023: 577-585 - [c228]Senrong Xu, Liangyue Li, Yuan Yao, Zulong Chen, Han Wu, Quan Lu, Hanghang Tong:
MUSENET: Multi-Scenario Learning for Repeat-Aware Personalized Recommendation. WSDM 2023: 517-525 - [c227]Dongqi Fu, Zhe Xu, Hanghang Tong, Jingrui He:
Natural and Artificial Dynamics in GNNs: A Tutorial. WSDM 2023: 1252-1255 - [c226]Zhichen Zeng, Si Zhang, Yinglong Xia, Hanghang Tong:
PARROT: Position-Aware Regularized Optimal Transport for Network Alignment. WWW 2023: 372-382 - [c225]Yun-Yong Ko, Seongeun Ryu, Soeun Han, Youngseung Jeon, Jaehoon Kim, Sohyun Park, Kyungsik Han, Hanghang Tong, Sang-Wook Kim:
KHAN: Knowledge-Aware Hierarchical Attention Networks for Accurate Political Stance Prediction. WWW 2023: 1572-1583 - [c224]Lihui Liu, Yuzhong Chen, Mahashweta Das, Hao Yang, Hanghang Tong:
Knowledge Graph Question Answering with Ambiguous Query. WWW 2023: 2477-2486 - [i84]Shengyu Feng, Hanghang Tong:
Concept Discovery for Fast Adapatation. CoRR abs/2301.07850 (2023) - [i83]Baoyu Jing, Yuchen Yan, Kaize Ding, Chanyoung Park, Yada Zhu, Huan Liu, Hanghang Tong:
STERLING: Synergistic Representation Learning on Bipartite Graphs. CoRR abs/2302.05428 (2023) - [i82]Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong, Mehrdad Mahdavi:
Do We Really Need Complicated Model Architectures For Temporal Networks? CoRR abs/2302.11636 (2023) - [i81]Yun-Yong Ko, Seongeun Ryu, Soeun Han, Yeongseung Jeon, Jaehoon Kim, Sohyun Park, Kyungsik Han, Hanghang Tong, Sang-Wook Kim:
KHAN: Knowledge-Aware Hierarchical Attention Networks for Political Stance Prediction. CoRR abs/2302.12126 (2023) - [i80]Lecheng Zheng, Dawei Zhou, Hanghang Tong, Jiejun Xu, Yada Zhu, Jingrui He:
FairGen: Towards Fair Graph Generation. CoRR abs/2303.17743 (2023) - [i79]Boxin Du, Lihui Liu, Jiejun Xu, Fei Wang, Hanghang Tong:
Neural Multi-network Diffusion towards Social Recommendation. CoRR abs/2304.04994 (2023) - [i78]Chi Han, Qizheng He, Charles Yu, Xinya Du, Hanghang Tong, Heng Ji:
Logical Entity Representation in Knowledge-Graphs for Differentiable Rule Learning. CoRR abs/2305.12738 (2023) - [i77]Dingsu Wang, Yuchen Yan, Ruizhong Qiu, Yada Zhu, Kaiyu Guan, Andrew J. Margenot, Hanghang Tong:
Networked Time Series Imputation via Position-aware Graph Enhanced Variational Autoencoders. CoRR abs/2305.18612 (2023) - [i76]Ruizhong Qiu, Dingsu Wang, Lei Ying, H. Vincent Poor, Yifang Zhang, Hanghang Tong:
Reconstructing Graph Diffusion History from a Single Snapshot. CoRR abs/2306.00488 (2023) - [i75]Xiao Lin, Jian Kang, Weilin Cong, Hanghang Tong:
BeMap: Balanced Message Passing for Fair Graph Neural Network. CoRR abs/2306.04107 (2023) - [i74]Ruijie Wang, Baoyu Li, Yichen Lu, Dachun Sun, Jinning Li, Yuchen Yan, Shengzhong Liu, Hanghang Tong, Tarek F. Abdelzaher:
Noisy Positive-Unlabeled Learning with Self-Training for Speculative Knowledge Graph Reasoning. CoRR abs/2306.07512 (2023) - [i73]Dongqi Fu, Wenxuan Bao, Ross Maciejewski, Hanghang Tong, Jingrui He:
Privacy-Preserving Graph Machine Learning from Data to Computation: A Survey. CoRR abs/2307.04338 (2023) - [i72]Qing Chen, Nan Chen, Wei Shuai, Guande Wu, Zhe Xu, Hanghang Tong, Nan Cao:
Calliope-Net: Automatic Generation of Graph Data Facts via Annotated Node-link Diagrams. CoRR abs/2308.06441 (2023) - [i71]Zhining Liu, Zhichen Zeng, Ruizhong Qiu, Hyunsik Yoo, David Zhou, Zhe Xu, Yada Zhu, Kommy Weldemariam, Jingrui He, Hanghang Tong:
Topological Augmentation for Class-Imbalanced Node Classification. CoRR abs/2308.14181 (2023) - [i70]Hyunsik Yoo, Zhichen Zeng, Jian Kang, Zhining Liu, David Zhou, Fei Wang, Eunice Chan, Hanghang Tong:
Ensuring User-side Fairness in Dynamic Recommender Systems. CoRR abs/2308.15651 (2023) - [i69]Yun-Yong Ko, Hanghang Tong, Sang-Wook Kim:
Enhancing Hyperedge Prediction with Context-Aware Self-Supervised Learning. CoRR abs/2309.05798 (2023) - [i68]Haibo Ye, Xinjie Li, Yuan Yao, Hanghang Tong:
On the Sweet Spot of Contrastive Views for Knowledge-enhanced Recommendation. CoRR abs/2309.13384 (2023) - [i67]Zihao Wang, Yongqiang Chen, Yang Duan, Weijiang Li, Bo Han, James Cheng, Hanghang Tong:
Towards out-of-distribution generalizable predictions of chemical kinetics properties. CoRR abs/2310.03152 (2023) - [i66]Zhichen Zeng, Boxin Du, Si Zhang, Yinglong Xia, Zhining Liu, Hanghang Tong:
Hierarchical Multi-Marginal Optimal Transport for Network Alignment. CoRR abs/2310.04470 (2023) - [i65]Jian Kang, Yinglong Xia, Ross Maciejewski, Jiebo Luo, Hanghang Tong:
Deceptive Fairness Attacks on Graphs via Meta Learning. CoRR abs/2310.15653 (2023) - [i64]Yushun Dong, Binchi Zhang, Hanghang Tong, Jundong Li:
ELEGANT: Certified Defense on the Fairness of Graph Neural Networks. CoRR abs/2311.02757 (2023) - [i63]Zhe Xu, Menghai Pan, Yuzhong Chen, Huiyuan Chen, Yuchen Yan, Mahashweta Das, Hanghang Tong:
Invariant Graph Transformer. CoRR abs/2312.07859 (2023) - [i62]