default search action
Adam D. Smith 0001
Person information
- affiliation: Boston University, Department of Computer Science, Boston, MA, USA
- affiliation (2007-2017): Pennsylvania State University, Computer Science and Engineering Department, University Park, PA, USA
- affiliation (former): Weizmann Institute of Science, Department of Computer Science and Applied Mathematics, Rehovot, Israel
- affiliation (former): McGill University, Montréal, School of Computer Science, CA
- affiliation (1999-2004): MIT, Computer Science and AI Lab, Cambridge, MA, USA
- award (2008): Presidential Early Career Award for Scientists and Engineers
- award: Gödel Prize
Other persons with the same name
- Adam D. Smith 0002 — University of Alabama at Birmingham, Birmingham, AL, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
Books and Theses
- 2004
- [b1]Adam D. Smith:
Maintaining secrecy when information leakage is unavoidable. Massachusetts Institute of Technology, Cambridge, MA, USA, 2004
Journal Articles
- 2022
- [j23]Daniel Alabi, Audra McMillan, Jayshree Sarathy, Adam D. Smith, Salil P. Vadhan:
Differentially Private Simple Linear Regression. Proc. Priv. Enhancing Technol. 2022(2): 184-204 (2022) - 2021
- [j22]Ran Canetti, Benjamin Fuller, Omer Paneth, Leonid Reyzin, Adam D. Smith:
Reusable Fuzzy Extractors for Low-Entropy Distributions. J. Cryptol. 34(1): 2 (2021) - [j21]Albert Cheu, Adam D. Smith, Jonathan R. Ullman:
Manipulation Attacks in Local Differential Privacy. J. Priv. Confidentiality 11(1) (2021) - [j20]Raef Bassily, Kobbi Nissim, Adam D. Smith, Thomas Steinke, Uri Stemmer, Jonathan R. Ullman:
Algorithmic Stability for Adaptive Data Analysis. SIAM J. Comput. 50(3) (2021) - 2020
- [j19]Di Wang, Marco Gaboardi, Adam D. Smith, Jinhui Xu:
Empirical Risk Minimization in the Non-interactive Local Model of Differential Privacy. J. Mach. Learn. Res. 21: 200:1-200:39 (2020) - [j18]Benjamin Fuller, Leonid Reyzin, Adam D. Smith:
When Are Fuzzy Extractors Possible? IEEE Trans. Inf. Theory 66(8): 5282-5298 (2020) - 2017
- [j17]Eike Kiltz, Adam O'Neill, Adam D. Smith:
Instantiability of RSA-OAEP Under Chosen-Plaintext Attack. J. Cryptol. 30(3): 889-919 (2017) - 2016
- [j16]Venkatesan Guruswami, Adam D. Smith:
Optimal Rate Code Constructions for Computationally Simple Channels. J. ACM 63(4): 35:1-35:37 (2016) - [j15]Cynthia Dwork, Frank McSherry, Kobbi Nissim, Adam D. Smith:
Calibrating Noise to Sensitivity in Private Data Analysis. J. Priv. Confidentiality 7(3): 17-51 (2016) - 2015
- [j14]Craig Gentry, Jens Groth, Yuval Ishai, Chris Peikert, Amit Sahai, Adam D. Smith:
Using Fully Homomorphic Hybrid Encryption to Minimize Non-interative Zero-Knowledge Proofs. J. Cryptol. 28(4): 820-843 (2015) - 2014
- [j13]Shiva Prasad Kasiviswanathan, Adam D. Smith:
On the 'Semantics' of Differential Privacy: A Bayesian Formulation. J. Priv. Confidentiality 6(1) (2014) - [j12]Vishesh Karwa, Sofya Raskhodnikova, Adam D. Smith, Grigory Yaroslavtsev:
Private Analysis of Graph Structure. ACM Trans. Database Syst. 39(3): 22:1-22:33 (2014) - 2013
- [j11]Sofya Raskhodnikova, Dana Ron, Ronitt Rubinfeld, Adam D. Smith:
Sublinear Algorithms for Approximating String Compressibility. Algorithmica 65(3): 685-709 (2013) - 2012
- [j10]Aleksandra B. Slavkovic, Adam D. Smith:
Special Issue on Statistical and Learning-Theoretic Challenges in Data Privacy. J. Priv. Confidentiality 4(1) (2012) - [j9]Yevgeniy Dodis, Bhavana Kanukurthi, Jonathan Katz, Leonid Reyzin, Adam D. Smith:
Robust Fuzzy Extractors and Authenticated Key Agreement From Close Secrets. IEEE Trans. Inf. Theory 58(9): 6207-6222 (2012) - 2011
- [j8]Vishesh Karwa, Sofya Raskhodnikova, Adam D. Smith, Grigory Yaroslavtsev:
Private Analysis of Graph Structure. Proc. VLDB Endow. 4(11): 1146-1157 (2011) - [j7]Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova, Adam D. Smith:
What Can We Learn Privately? SIAM J. Comput. 40(3): 793-826 (2011) - [j6]Marco Tomamichel, Christian Schaffner, Adam D. Smith, Renato Renner:
Leftover Hashing Against Quantum Side Information. IEEE Trans. Inf. Theory 57(8): 5524-5535 (2011) - 2010
- [j5]Jonathan Katz, Ji Sun Shin, Adam D. Smith:
Parallel and Concurrent Security of the HB and HB+ Protocols. J. Cryptol. 23(3): 402-421 (2010) - [j4]Cynthia Dwork, Adam D. Smith:
Differential Privacy for Statistics: What we Know and What we Want to Learn. J. Priv. Confidentiality 1(2) (2010) - 2009
- [j3]Sofya Raskhodnikova, Dana Ron, Amir Shpilka, Adam D. Smith:
Strong Lower Bounds for Approximating Distribution Support Size and the Distinct Elements Problem. SIAM J. Comput. 39(3): 813-842 (2009) - 2008
- [j2]Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, Adam D. Smith:
Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data. SIAM J. Comput. 38(1): 97-139 (2008) - [j1]Moni Naor, Gil Segev, Adam D. Smith:
Tight Bounds for Unconditional Authentication Protocols in the Manual Channel and Shared Key Models. IEEE Trans. Inf. Theory 54(6): 2408-2425 (2008)
Conference and Workshop Papers
- 2024
- [c85]Palak Jain, Adam D. Smith, Connor Wagaman:
Time-Aware Projections: Truly Node-Private Graph Statistics under Continual Observation. SP 2024: 127-145 - 2023
- [c84]Aloni Cohen, Adam D. Smith, Marika Swanberg, Prashant Nalini Vasudevan:
Control, Confidentiality, and the Right to be Forgotten. CCS 2023: 3358-3372 - [c83]Gavin Brown, Samuel B. Hopkins, Adam D. Smith:
Fast, Sample-Efficient, Affine-Invariant Private Mean and Covariance Estimation for Subgaussian Distributions. COLT 2023: 5578-5579 - [c82]Talya Eden, Quanquan C. Liu, Sofya Raskhodnikova, Adam D. Smith:
Triangle Counting with Local Edge Differential Privacy. ICALP 2023: 52:1-52:21 - [c81]Palak Jain, Sofya Raskhodnikova, Satchit Sivakumar, Adam D. Smith:
The Price of Differential Privacy under Continual Observation. ICML 2023: 14654-14678 - [c80]Palak Jain, Iden Kalemaj, Sofya Raskhodnikova, Satchit Sivakumar, Adam D. Smith:
Counting Distinct Elements in the Turnstile Model with Differential Privacy under Continual Observation. NeurIPS 2023 - [c79]Iden Kalemaj, Sofya Raskhodnikova, Adam D. Smith, Charalampos E. Tsourakakis:
Node-Differentially Private Estimation of the Number of Connected Components. PODS 2023: 183-194 - 2022
- [c78]Gavin Brown, Mark Bun, Adam D. Smith:
Strong Memory Lower Bounds for Learning Natural Models. COLT 2022: 4989-5029 - [c77]Sergey Denisov, H. Brendan McMahan, John Rush, Adam D. Smith, Abhradeep Guha Thakurta:
Improved Differential Privacy for SGD via Optimal Private Linear Operators on Adaptive Streams. NeurIPS 2022 - 2021
- [c76]Leonid Reyzin, Adam D. Smith, Sophia Yakoubov:
Turning HATE into LOVE: Compact Homomorphic Ad Hoc Threshold Encryption for Scalable MPC. CSCML 2021: 361-378 - [c75]Gavin Brown, Marco Gaboardi, Adam D. Smith, Jonathan R. Ullman, Lydia Zakynthinou:
Covariance-Aware Private Mean Estimation Without Private Covariance Estimation. NeurIPS 2021: 7950-7964 - [c74]Sofya Raskhodnikova, Satchit Sivakumar, Adam D. Smith, Marika Swanberg:
Differentially Private Sampling from Distributions. NeurIPS 2021: 28983-28994 - [c73]Prateek Jain, John Rush, Adam D. Smith, Shuang Song, Abhradeep Guha Thakurta:
Differentially Private Model Personalization. NeurIPS 2021: 29723-29735 - [c72]Albert Cheu, Adam D. Smith, Jonathan R. Ullman:
Manipulation Attacks in Local Differential Privacy. SP 2021: 883-900 - [c71]Gavin Brown, Mark Bun, Vitaly Feldman, Adam D. Smith, Kunal Talwar:
When is memorization of irrelevant training data necessary for high-accuracy learning? STOC 2021: 123-132 - 2020
- [c70]Ryan Rogers, Aaron Roth, Adam D. Smith, Nathan Srebro, Om Thakkar, Blake E. Woodworth:
Guaranteed Validity for Empirical Approaches to Adaptive Data Analysis. AISTATS 2020: 2830-2840 - [c69]Adam D. Smith, Shuang Song, Abhradeep Thakurta:
The Flajolet-Martin Sketch Itself Preserves Differential Privacy: Private Counting with Minimal Space. NeurIPS 2020 - 2019
- [c68]Di Wang, Adam D. Smith, Jinhui Xu:
Noninteractive Locally Private Learning of Linear Models via Polynomial Approximations. ALT 2019: 897-902 - [c67]Albert Cheu, Adam D. Smith, Jonathan R. Ullman, David Zeber, Maxim Zhilyaev:
Distributed Differential Privacy via Shuffling. EUROCRYPT (1) 2019: 375-403 - [c66]Ran Canetti, Aloni Cohen, Nishanth Dikkala, Govind Ramnarayan, Sarah Scheffler, Adam D. Smith:
From Soft Classifiers to Hard Decisions: How fair can we be? FAT 2019: 309-318 - [c65]Clément L. Canonne, Gautam Kamath, Audra McMillan, Adam D. Smith, Jonathan R. Ullman:
The structure of optimal private tests for simple hypotheses. STOC 2019: 310-321 - 2018
- [c64]Christian Borgs, Jennifer T. Chayes, Adam D. Smith, Ilias Zadik:
Revealing Network Structure, Confidentially: Improved Rates for Node-Private Graphon Estimation. FOCS 2018: 533-543 - [c63]Jonathan R. Ullman, Adam D. Smith, Kobbi Nissim, Uri Stemmer, Thomas Steinke:
The Limits of Post-Selection Generalization. NeurIPS 2018: 6402-6411 - [c62]Blake E. Woodworth, Jialei Wang, Adam D. Smith, Brendan McMahan, Nati Srebro:
Graph Oracle Models, Lower Bounds, and Gaps for Parallel Stochastic Optimization. NeurIPS 2018: 8505-8515 - 2017
- [c61]Adam D. Smith, Abhradeep Thakurta, Jalaj Upadhyay:
Is Interaction Necessary for Distributed Private Learning? IEEE Symposium on Security and Privacy 2017: 58-77 - 2016
- [c60]Benjamin Fuller, Leonid Reyzin, Adam D. Smith:
When Are Fuzzy Extractors Possible? ASIACRYPT (1) 2016: 277-306 - [c59]Ran Canetti, Benjamin Fuller, Omer Paneth, Leonid Reyzin, Adam D. Smith:
Reusable Fuzzy Extractors for Low-Entropy Distributions. EUROCRYPT (1) 2016: 117-146 - [c58]Ryan M. Rogers, Aaron Roth, Adam D. Smith, Om Thakkar:
Max-Information, Differential Privacy, and Post-selection Hypothesis Testing. FOCS 2016: 487-494 - [c57]Sofya Raskhodnikova, Adam D. Smith:
Lipschitz Extensions for Node-Private Graph Statistics and the Generalized Exponential Mechanism. FOCS 2016: 495-504 - [c56]Raef Bassily, Kobbi Nissim, Adam D. Smith, Thomas Steinke, Uri Stemmer, Jonathan R. Ullman:
Algorithmic stability for adaptive data analysis. STOC 2016: 1046-1059 - 2015
- [c55]Cynthia Dwork, Adam D. Smith, Thomas Steinke, Jonathan R. Ullman, Salil P. Vadhan:
Robust Traceability from Trace Amounts. FOCS 2015: 650-669 - [c54]Avrim Blum, Jamie Morgenstern, Ankit Sharma, Adam D. Smith:
Privacy-Preserving Public Information for Sequential Games. ITCS 2015: 173-180 - [c53]Christian Borgs, Jennifer T. Chayes, Adam D. Smith:
Private Graphon Estimation for Sparse Graphs. NIPS 2015: 1369-1377 - [c52]Raef Bassily, Adam D. Smith:
Local, Private, Efficient Protocols for Succinct Histograms. STOC 2015: 127-135 - [c51]Adam D. Smith, Ye Zhang:
On the Regularity of Lossy RSA - Improved Bounds and Applications to Padding-Based Encryption. TCC (1) 2015: 609-628 - 2014
- [c50]Raef Bassily, Adam D. Smith, Abhradeep Thakurta:
Private Empirical Risk Minimization: Efficient Algorithms and Tight Error Bounds. FOCS 2014: 464-473 - [c49]Raef Bassily, Adam D. Smith:
Causal Erasure Channels. SODA 2014: 1844-1857 - 2013
- [c48]Abhradeep Thakurta, Adam D. Smith:
Differentially Private Feature Selection via Stability Arguments, and the Robustness of the Lasso. COLT 2013: 819-850 - [c47]Mark Lewko, Adam O'Neill, Adam D. Smith:
Regularity of Lossy RSA on Subdomains and Its Applications. EUROCRYPT 2013: 55-75 - [c46]Raef Bassily, Adam Groce, Jonathan Katz, Adam D. Smith:
Coupled-Worlds Privacy: Exploiting Adversarial Uncertainty in Statistical Data Privacy. FOCS 2013: 439-448 - [c45]Abhradeep Guha Thakurta, Adam D. Smith:
(Nearly) Optimal Algorithms for Private Online Learning in Full-information and Bandit Settings. NIPS 2013: 2733-2741 - [c44]Shiva Prasad Kasiviswanathan, Mark Rudelson, Adam D. Smith:
The Power of Linear Reconstruction Attacks. SODA 2013: 1415-1433 - [c43]Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya Raskhodnikova, Adam D. Smith:
Analyzing Graphs with Node Differential Privacy. TCC 2013: 457-476 - 2012
- [c42]Daniel Kifer, Adam D. Smith, Abhradeep Thakurta:
Private Convex Optimization for Empirical Risk Minimization with Applications to High-dimensional Regression. COLT 2012: 25.1-25.40 - 2011
- [c41]Sean Hallgren, Adam D. Smith, Fang Song:
Classical Cryptographic Protocols in a Quantum World. CRYPTO 2011: 411-428 - [c40]Adam D. Smith:
Privacy-preserving statistical estimation with optimal convergence rates. STOC 2011: 813-822 - 2010
- [c39]Eike Kiltz, Adam O'Neill, Adam D. Smith:
Instantiability of RSA-OAEP under Chosen-Plaintext Attack. CRYPTO 2010: 295-313 - [c38]Venkatesan Guruswami, Adam D. Smith:
Codes for Computationally Simple Channels: Explicit Constructions with Optimal Rate. FOCS 2010: 723-732 - [c37]Marco Tomamichel, Renato Renner, Christian Schaffner, Adam D. Smith:
Leftover Hashing against quantum side information. ISIT 2010: 2703-2707 - [c36]Raghav Bhaskar, Srivatsan Laxman, Adam D. Smith, Abhradeep Thakurta:
Discovering frequent patterns in sensitive data. KDD 2010: 503-512 - [c35]Shiva Prasad Kasiviswanathan, Mark Rudelson, Adam D. Smith, Jonathan R. Ullman:
The price of privately releasing contingency tables and the spectra of random matrices with correlated rows. STOC 2010: 775-784 - 2009
- [c34]Adam D. Smith:
Asymptotically Optimal and Private Statistical Estimation. CANS 2009: 53-57 - [c33]Adam D. Smith:
What Can Cryptography Do for Coding Theory? ICITS 2009: 158 - [c32]Yevgeniy Dodis, Jonathan Katz, Adam D. Smith, Shabsi Walfish:
Composability and On-Line Deniability of Authentication. TCC 2009: 146-162 - 2008
- [c31]William Enck, Kevin R. B. Butler, Thomas Richardson, Patrick D. McDaniel, Adam D. Smith:
Defending Against Attacks on Main Memory Persistence. ACSAC 2008: 65-74 - [c30]Ivan Damgård, Yuval Ishai, Mikkel Krøigaard, Jesper Buus Nielsen, Adam D. Smith:
Scalable Multiparty Computation with Nearly Optimal Work and Resilience. CRYPTO 2008: 241-261 - [c29]Vipul Goyal, Payman Mohassel, Adam D. Smith:
Efficient Two Party and Multi Party Computation Against Covert Adversaries. EUROCRYPT 2008: 289-306 - [c28]Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova, Adam D. Smith:
What Can We Learn Privately? FOCS 2008: 531-540 - [c27]Srivatsava Ranjit Ganta, Shiva Prasad Kasiviswanathan, Adam D. Smith:
Composition attacks and auxiliary information in data privacy. KDD 2008: 265-273 - 2007
- [c26]Sofya Raskhodnikova, Dana Ron, Ronitt Rubinfeld, Adam D. Smith:
Sublinear Algorithms for Approximating String Compressibility. APPROX-RANDOM 2007: 609-623 - [c25]Sofya Raskhodnikova, Dana Ron, Amir Shpilka, Adam D. Smith:
Strong Lower Bounds for Approximating Distribution Support Size and the Distinct Elements Problem. FOCS 2007: 559-569 - [c24]Adam D. Smith:
Scrambling adversarial errors using few random bits, optimal information reconciliation, and better private codes. SODA 2007: 395-404 - [c23]Kobbi Nissim, Sofya Raskhodnikova, Adam D. Smith:
Smooth sensitivity and sampling in private data analysis. STOC 2007: 75-84 - 2006
- [c22]Moni Naor, Gil Segev, Adam D. Smith:
Tight Bounds for Unconditional Authentication Protocols in the Manual Channel and Shared Key Models. CRYPTO 2006: 214-231 - [c21]Yevgeniy Dodis, Jonathan Katz, Leonid Reyzin, Adam D. Smith:
Robust Fuzzy Extractors and Authenticated Key Agreement from Close Secrets. CRYPTO 2006: 232-250 - [c20]Michael Ben-Or, Claude Crépeau, Daniel Gottesman, Avinatan Hassidim, Adam D. Smith:
Secure Multiparty Quantum Computation with (Only) a Strict Honest Majority. FOCS 2006: 249-260 - [c19]Cynthia Dwork, Frank McSherry, Kobbi Nissim, Adam D. Smith:
Calibrating Noise to Sensitivity in Private Data Analysis. TCC 2006: 265-284 - 2005
- [c18]Xavier Boyen, Yevgeniy Dodis, Jonathan Katz, Rafail Ostrovsky, Adam D. Smith:
Secure Remote Authentication Using Biometric Data. EUROCRYPT 2005: 147-163 - [c17]Claude Crépeau, Daniel Gottesman, Adam D. Smith:
Approximate Quantum Error-Correcting Codes and Secret Sharing Schemes. EUROCRYPT 2005: 285-301 - [c16]Yevgeniy Dodis, Adam D. Smith:
Correcting errors without leaking partial information. STOC 2005: 654-663 - [c15]Shuchi Chawla, Cynthia Dwork, Frank McSherry, Adam D. Smith, Hoeteck Wee:
Toward Privacy in Public Databases. TCC 2005: 363-385 - [c14]Yevgeniy Dodis, Adam D. Smith:
Entropic Security and the Encryption of High Entropy Messages. TCC 2005: 556-577 - 2004
- [c13]Andris Ambainis, Adam D. Smith:
Small Pseudo-random Families of Matrices: Derandomizing Approximate Quantum Encryption. APPROX-RANDOM 2004: 249-260 - [c12]Yevgeniy Dodis, Leonid Reyzin, Adam D. Smith:
Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data. EUROCRYPT 2004: 523-540 - [c11]Rafail Ostrovsky, Charles Rackoff, Adam D. Smith:
Efficient Consistency Proofs for Generalized Queries on a Committed Database. ICALP 2004: 1041-1053 - [c10]Cynthia Dwork, Ronen Shaltiel, Adam D. Smith, Luca Trevisan:
List-Decoding of Linear Functions and Analysis of a Two-Round Zero-Knowledge Argument. TCC 2004: 101-120 - 2003
- [c9]Jonathan Katz, Rafail Ostrovsky, Adam D. Smith:
Round Efficiency of Multi-party Computation with a Dishonest Majority. EUROCRYPT 2003: 578-595 - [c8]Chris Peikert, Abhi Shelat, Adam D. Smith:
Lower bounds for collusion-secure fingerprinting. SODA 2003: 472-479 - 2002
- [c7]Andris Ambainis, Adam D. Smith, Ke Yang:
Extracting Quantum Entanglement. CCC 2002: 103-112 - [c6]Howard Barnum, Claude Crépeau, Daniel Gottesman, Adam D. Smith, Alain Tapp:
Authentication of Quantum Messages. FOCS 2002: 449-458 - [c5]Matthias Fitzi, Daniel Gottesman, Martin Hirt, Thomas Holenstein, Adam D. Smith:
Detectable byzantine agreement secure against faulty majorities. PODC 2002: 118-126 - [c4]Claude Crépeau, Daniel Gottesman, Adam D. Smith:
Secure multi-party quantum computation. STOC 2002: 643-652 - 2001
- [c3]Moses D. Liskov, Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, Adam D. Smith:
Mutually Independent Commitments. ASIACRYPT 2001: 385-401 - [c2]Giovanni Di Crescenzo, Jonathan Katz, Rafail Ostrovsky, Adam D. Smith:
Efficient and Non-interactive Non-malleable Commitment. EUROCRYPT 2001: 40-59 - [c1]Yevgeniy Dodis, Amit Sahai, Adam D. Smith:
On Perfect and Adaptive Security in Exposure-Resilient Cryptography. EUROCRYPT 2001: 301-324
Editorship
- 2023
- [e5]Nicole Megow, Adam D. Smith:
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2023, September 11-13, 2023, Atlanta, Georgia, USA. LIPIcs 275, Schloss Dagstuhl - Leibniz-Zentrum für Informatik 2023, ISBN 978-3-95977-296-9 [contents] - 2020
- [e4]Yael Tauman Kalai, Adam D. Smith, Daniel Wichs:
1st Conference on Information-Theoretic Cryptography, ITC 2020, June 17-19, 2020, Boston, MA, USA. LIPIcs 163, Schloss Dagstuhl - Leibniz-Zentrum für Informatik 2020, ISBN 978-3-95977-151-1 [contents] - 2016
- [e3]Martin Hirt, Adam D. Smith:
Theory of Cryptography - 14th International Conference, TCC 2016-B, Beijing, China, October 31 - November 3, 2016, Proceedings, Part I. Lecture Notes in Computer Science 9985, 2016, ISBN 978-3-662-53640-7 [contents] - [e2]Martin Hirt, Adam D. Smith:
Theory of Cryptography - 14th International Conference, TCC 2016-B, Beijing, China, October 31 - November 3, 2016, Proceedings, Part II. Lecture Notes in Computer Science 9986, 2016, ISBN 978-3-662-53643-8 [contents] - 2012
- [e1]Adam D. Smith:
Information Theoretic Security - 6th International Conference, ICITS 2012, Montreal, QC, Canada, August 15-17, 2012. Proceedings. Lecture Notes in Computer Science 7412, Springer 2012, ISBN 978-3-642-32283-9 [contents]
Reference Works
- 2016
- [r1]Sofya Raskhodnikova, Adam D. Smith:
Differentially Private Analysis of Graphs. Encyclopedia of Algorithms 2016: 543-547
Informal and Other Publications
- 2024
- [i66]Róbert Istvan Busa-Fekete, Travis Dick, Claudio Gentile, Andrés Muñoz Medina, Adam D. Smith, Marika Swanberg:
Auditing Privacy Mechanisms via Label Inference Attacks. CoRR abs/2406.02797 (2024) - 2023
- [i65]Gavin Brown, Samuel B. Hopkins, Adam D. Smith:
Fast, Sample-Efficient, Affine-Invariant Private Mean and Covariance Estimation for Subgaussian Distributions. CoRR abs/2301.12250 (2023) - [i64]Iden Kalemaj, Sofya Raskhodnikova, Adam D. Smith, Charalampos E. Tsourakakis:
Node-Differentially Private Estimation of the Number of Connected Components. CoRR abs/2304.05890 (2023) - [i63]Talya Eden, Quanquan C. Liu, Sofya Raskhodnikova, Adam D. Smith:
Triangle Counting with Local Edge Differential Privacy. CoRR abs/2305.02263 (2023) - [i62]Palak Jain, Iden Kalemaj, Sofya Raskhodnikova, Satchit Sivakumar, Adam D. Smith:
Counting Distinct Elements in the Turnstile Model with Differential Privacy under Continual Observation. CoRR abs/2306.06723 (2023) - 2022
- [i61]Gavin Brown, Mark Bun, Adam D. Smith:
Strong Memory Lower Bounds for Learning Natural Models. CoRR abs/2206.04743 (2022) - [i60]Aloni Cohen, Adam D. Smith, Marika Swanberg, Prashant Nalini Vasudevan:
Control, Confidentiality, and the Right to be Forgotten. CoRR abs/2210.07876 (2022) - [i59]Audra McMillan, Adam D. Smith, Jonathan R. Ullman:
Instance-Optimal Differentially Private Estimation. CoRR abs/2210.15819 (2022) - [i58]Adam D. Smith, Abhradeep Thakurta:
Fully Adaptive Composition for Gaussian Differential Privacy. CoRR abs/2210.17520 (2022) - [i57]Sofya Raskhodnikova, Satchit Sivakumar, Adam D. Smith, Marika Swanberg:
Differentially Private Sampling from Distributions. CoRR abs/2211.08193 (2022) - 2021
- [i56]Jörg Drechsler, Ira Globus-Harris, Audra McMillan, Jayshree Sarathy, Adam D. Smith:
Non-parametric Differentially Private Confidence Intervals for the Median. CoRR abs/2106.10333 (2021) - [i55]Gavin Brown, Marco Gaboardi, Adam D. Smith, Jonathan R. Ullman, Lydia Zakynthinou:
Covariance-Aware Private Mean Estimation Without Private Covariance Estimation. CoRR abs/2106.13329 (2021) - [i54]Palak Jain, Sofya Raskhodnikova, Satchit Sivakumar, Adam D. Smith:
The Price of Differential Privacy under Continual Observation. CoRR abs/2112.00828 (2021) - 2020
- [i53]Daniel Alabi, Audra McMillan, Jayshree Sarathy, Adam D. Smith, Salil P. Vadhan:
Differentially Private Simple Linear Regression. CoRR abs/2007.05157 (2020) - [i52]Di Wang, Marco Gaboardi, Adam D. Smith, Jinhui Xu:
Empirical Risk Minimization in the Non-interactive Local Model of Differential Privacy. CoRR abs/2011.05934 (2020) - [i51]Gavin Brown, Mark Bun, Vitaly Feldman, Adam D. Smith, Kunal Talwar:
When is Memorization of Irrelevant Training Data Necessary for High-Accuracy Learning? CoRR abs/2012.06421 (2020) - 2019
- [i50]Ryan Rogers, Aaron Roth, Adam D. Smith, Nathan Srebro, Om Thakkar, Blake E. Woodworth:
Guaranteed Validity for Empirical Approaches to Adaptive Data Analysis. CoRR abs/1906.09231 (2019) - [i49]Albert Cheu, Adam D. Smith, Jonathan R. Ullman:
Manipulation Attacks in Local Differential Privacy. CoRR abs/1909.09630 (2019) - [i48]Albert Cheu, Adam D. Smith, Jonathan R. Ullman, David Zeber, Maxim Zhilyaev:
Distributed Differential Privacy via Shuffling. IACR Cryptol. ePrint Arch. 2019: 245 (2019) - 2018
- [i47]Kobbi Nissim, Adam D. Smith, Thomas Steinke, Uri Stemmer, Jonathan R. Ullman:
The Limits of Post-Selection Generalization. CoRR abs/1806.06100 (2018) - [i46]Albert Cheu, Adam D. Smith, Jonathan R. Ullman, David Zeber, Maxim Zhilyaev:
Distributed Differential Privacy via Mixnets. CoRR abs/1808.01394 (2018) - [i45]Ran Canetti, Aloni Cohen, Nishanth Dikkala, Govind Ramnarayan, Sarah Scheffler, Adam D. Smith:
From Soft Classifiers to Hard Decisions: How fair can we be? CoRR abs/1810.02003 (2018) - [i44]Christian Borgs, Jennifer T. Chayes, Adam D. Smith, Ilias Zadik:
Revealing Network Structure, Confidentially: Improved Rates for Node-Private Graphon Estimation. CoRR abs/1810.02183 (2018) - [i43]Christian Borgs, Jennifer T. Chayes, Adam D. Smith, Ilias Zadik:
Private Algorithms Can Always Be Extended. CoRR abs/1810.12518 (2018) - [i42]Clément L. Canonne, Gautam Kamath, Audra McMillan, Adam D. Smith, Jonathan R. Ullman:
The Structure of Optimal Private Tests for Simple Hypotheses. CoRR abs/1811.11148 (2018) - [i41]Di Wang, Adam D. Smith, Jinhui Xu:
Differentially Private Empirical Risk Minimization in Non-interactive Local Model via Polynomial of Inner Product Approximation. CoRR abs/1812.06825 (2018) - [i40]Leonid Reyzin, Adam D. Smith, Sophia Yakoubov:
Turning HATE Into LOVE: Homomorphic Ad Hoc Threshold Encryption for Scalable MPC. IACR Cryptol. ePrint Arch. 2018: 997 (2018) - 2017
- [i39]Adam D. Smith:
Information, Privacy and Stability in Adaptive Data Analysis. CoRR abs/1706.00820 (2017) - 2016
- [i38]Audra McMillan, Adam D. Smith:
When is Nontrivial Estimation Possible for Graphons and Stochastic Block Models? CoRR abs/1604.01871 (2016) - [i37]Ryan M. Rogers, Aaron Roth, Adam D. Smith, Om Thakkar:
Max-Information, Differential Privacy, and Post-Selection Hypothesis Testing. CoRR abs/1604.03924 (2016) - 2015
- [i36]Raef Bassily, Adam D. Smith:
Local, Private, Efficient Protocols for Succinct Histograms. CoRR abs/1504.04686 (2015) - [i35]Sofya Raskhodnikova, Adam D. Smith:
Efficient Lipschitz Extensions for High-Dimensional Graph Statistics and Node Private Degree Distributions. CoRR abs/1504.07912 (2015) - [i34]Christian Borgs, Jennifer T. Chayes, Adam D. Smith:
Private Graphon Estimation for Sparse Graphs. CoRR abs/1506.06162 (2015) - [i33]Sean Hallgren, Adam D. Smith, Fang Song:
Classical Cryptographic Protocols in a Quantum World. CoRR abs/1507.01625 (2015) - [i32]Raef Bassily, Kobbi Nissim, Adam D. Smith, Thomas Steinke, Uri Stemmer, Jonathan R. Ullman:
Algorithmic Stability for Adaptive Data Analysis. CoRR abs/1511.02513 (2015) - [i31]Adam D. Smith, Ye Zhang:
On the Regularity of Lossy RSA: Improved Bounds and Applications to Padding-Based Encryption. IACR Cryptol. ePrint Arch. 2015: 27 (2015) - [i30]Sean Hallgren, Adam D. Smith, Fang Song:
Classical Cryptographic Protocols in a Quantum World. IACR Cryptol. ePrint Arch. 2015: 687 (2015) - 2014
- [i29]Avrim Blum, Jamie Morgenstern, Ankit Sharma, Adam D. Smith:
Privacy-Preserving Public Information for Sequential Games. CoRR abs/1402.4488 (2014) - [i28]Raef Bassily, Adam D. Smith, Abhradeep Thakurta:
Private Empirical Risk Minimization, Revisited. CoRR abs/1405.7085 (2014) - [i27]Raef Bassily, Adam D. Smith:
Causal Erasure Channels. CoRR abs/1409.3893 (2014) - [i26]Benjamin Fuller, Adam D. Smith, Leonid Reyzin:
Where are Fuzzy Extractors Possible? IACR Cryptol. ePrint Arch. 2014: 961 (2014) - 2013
- [i25]Adam D. Smith, Ye Zhang:
Near-linear time, Leakage-resilient Key Evolution Schemes from Expander Graphs. IACR Cryptol. ePrint Arch. 2013: 864 (2013) - 2012
- [i24]Shiva Prasad Kasiviswanathan, Mark Rudelson, Adam D. Smith:
The Power of Linear Reconstruction Attacks. CoRR abs/1210.2381 (2012) - 2011
- [i23]Eike Kiltz, Adam O'Neill, Adam D. Smith:
Instantiability of RSA-OAEP under Chosen-Plaintext Attack. IACR Cryptol. ePrint Arch. 2011: 559 (2011) - 2010
- [i22]Venkatesan Guruswami, Adam D. Smith:
Codes for Computationally Simple Channels: Explicit Constructions with Optimal Rate. CoRR abs/1004.4017 (2010) - [i21]Venkatesan Guruswami, Adam D. Smith:
Codes for Computationally Simple Channels: Explicit Constructions with Optimal Rate. Electron. Colloquium Comput. Complex. TR10 (2010) - [i20]Yevgeniy Dodis, Bhavana Kanukurthi, Jonathan Katz, Leonid Reyzin, Adam D. Smith:
Robust Fuzzy Extractors and Authenticated Key Agreement from Close Secrets. IACR Cryptol. ePrint Arch. 2010: 456 (2010) - 2008
- [i19]Srivatsava Ranjit Ganta, Shiva Prasad Kasiviswanathan, Adam D. Smith:
Composition Attacks and Auxiliary Information in Data Privacy. CoRR abs/0803.0032 (2008) - [i18]Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova, Adam D. Smith:
What Can We Learn Privately? CoRR abs/0803.0924 (2008) - [i17]Shiva Prasad Kasiviswanathan, Adam D. Smith:
A Note on Differential Privacy: Defining Resistance to Arbitrary Side Information. CoRR abs/0803.3946 (2008) - [i16]Adam D. Smith:
Efficient, Differentially Private Point Estimators. CoRR abs/0809.4794 (2008) - 2007
- [i15]Sofya Raskhodnikova, Dana Ron, Ronitt Rubinfeld, Adam D. Smith:
Sublinear Algorithms for Approximating String Compressibility. CoRR abs/0706.1084 (2007) - 2006
- [i14]Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, Adam D. Smith:
Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data. CoRR abs/cs/0602007 (2006) - [i13]Sofya Raskhodnikova, Adam D. Smith:
A Note on Adaptivity in Testing Properties of Bounded Degree Graphs. Electron. Colloquium Comput. Complex. TR06 (2006) - [i12]Adam D. Smith:
Scrambling Adversarial Errors Using Few Random Bits, Optimal Information Reconciliation, and Better Private Codes. IACR Cryptol. ePrint Arch. 2006: 20 (2006) - [i11]Moni Naor, Gil Segev, Adam D. Smith:
Tight Bounds for Unconditional Authentication Protocols in the Manual Channel and Shared Key Models. IACR Cryptol. ePrint Arch. 2006: 175 (2006) - [i10]Jonathan Katz, Adam D. Smith:
Analyzing the HB and HB+ Protocols in the "Large Error" Case. IACR Cryptol. ePrint Arch. 2006: 326 (2006) - 2005
- [i9]Claude Crépeau, Daniel Gottesman, Adam D. Smith:
Approximate Quantum Error-Correcting Codes and Secret Sharing Schemes. CoRR abs/quant-ph/0503139 (2005) - [i8]Sofya Raskhodnikova, Dana Ron, Ronitt Rubinfeld, Amir Shpilka, Adam D. Smith:
Sublinear Algorithms for Approximating String Compressibility and the Distribution Support Size. Electron. Colloquium Comput. Complex. TR05 (2005) - 2004
- [i7]Rafail Ostrovsky, Charles Rackoff, Adam D. Smith:
Efficient Consistency Proofs for Generalized Queries on a Committed Database. IACR Cryptol. ePrint Arch. 2004: 170 (2004) - [i6]Yevgeniy Dodis, Adam D. Smith:
Entropic Security and the Encryption of High Entropy Messages. IACR Cryptol. ePrint Arch. 2004: 219 (2004) - 2003
- [i5]Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, Adam D. Smith:
Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data. IACR Cryptol. ePrint Arch. 2003: 235 (2003) - 2002
- [i4]Howard Barnum, Claude Crépeau, Daniel Gottesman, Adam D. Smith, Alain Tapp:
Authentication of Quantum Messages. CoRR quant-ph/0205128 (2002) - [i3]Howard Barnum, Claude Crépeau, Daniel Gottesman, Adam D. Smith, Alain Tapp:
Authentication of Quantum Messages. IACR Cryptol. ePrint Arch. 2002: 82 (2002) - 2001
- [i2]Giovanni Di Crescenzo, Jonathan Katz, Rafail Ostrovsky, Adam D. Smith:
Efficient and Non-Interactive Non-Malleable Commitment. IACR Cryptol. ePrint Arch. 2001: 32 (2001) - 1999
- [i1]Adam D. Smith, Anton Stiglic:
Multiparty computation unconditionally secure against Q^2 adversary structures. CoRR cs.CR/9902010 (1999)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:08 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint