default search action
David A. McAllester
Person information
- affiliation: Toyota Technological Institute at Chicago, USA
- affiliation: AT&T Labs Research, Florham Park, USA
- affiliation: Massachusetts Institute of Technology (MIT), Artificial Intelligence Lab
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2010 – 2019
- 2019
- [c96]Hai Wang, Dian Yu, Kai Sun, Jianshu Chen, Dong Yu, David A. McAllester, Dan Roth:
Evidence Sentence Extraction for Machine Reading Comprehension. CoNLL 2019: 696-707 - [i14]Hai Wang, Dian Yu, Kai Sun, Jianshu Chen, Dong Yu, Dan Roth, David A. McAllester:
Evidence Sentence Extraction for Machine Reading Comprehension. CoRR abs/1902.08852 (2019) - 2017
- [c95]Zewei Chu, Hai Wang, Kevin Gimpel, David A. McAllester:
Broad Context Language Modeling as Reading Comprehension. EACL (2) 2017: 52-57 - [c94]Hai Wang, Takeshi Onishi, Kevin Gimpel, David A. McAllester:
Emergent Predication Structure in Hidden State Vectors of Neural Readers. Rep4NLP@ACL 2017: 26-36 - 2016
- [c93]Takeshi Onishi, Hai Wang, Mohit Bansal, Kevin Gimpel, David A. McAllester:
Who did What: A Large-Scale Person-Centered Cloze Dataset. EMNLP 2016: 2230-2235 - [i13]Takeshi Onishi, Hai Wang, Mohit Bansal, Kevin Gimpel, David A. McAllester:
Who did What: A Large-Scale Person-Centered Cloze Dataset. CoRR abs/1608.05457 (2016) - [i12]Zewei Chu, Hai Wang, Kevin Gimpel, David A. McAllester:
Broad Context Language Modeling as Reading Comprehension. CoRR abs/1610.08431 (2016) - [i11]Hai Wang, Takeshi Onishi, Kevin Gimpel, David A. McAllester:
Emergent Logical Structure in Vector Representations of Neural Readers. CoRR abs/1611.07954 (2016) - 2015
- [c92]Hai Wang, Mohit Bansal, Kevin Gimpel, David A. McAllester:
Machine Comprehension with Syntax, Frames, and Semantics. ACL (2) 2015: 700-706 - 2014
- [c91]Koichiro Yamaguchi, David A. McAllester, Raquel Urtasun:
Efficient Joint Segmentation, Occlusion Labeling, Stereo and Flow Estimation. ECCV (5) 2014: 756-771 - [c90]Shubhendu Trivedi, David A. McAllester, Greg Shakhnarovich:
Discriminative Metric Learning by Neighborhood Gerrymandering. NIPS 2014: 3392-3400 - [i10]David A. McAllester:
Implementation and Abstraction in Mathematics. CoRR abs/1407.7274 (2014) - 2013
- [j28]Pedro F. Felzenszwalb, Ross B. Girshick, David A. McAllester, Deva Ramanan:
Visual object detection with deformable part models. Commun. ACM 56(9): 97-105 (2013) - [c89]Koichiro Yamaguchi, David A. McAllester, Raquel Urtasun:
Robust Monocular Epipolar Flow Estimation. CVPR 2013: 1862-1869 - [i9]David A. McAllester, Satinder Singh:
Approximate Planning for Factored POMDPs using Belief State Simplification. CoRR abs/1301.6719 (2013) - [i8]David A. McAllester:
A PAC-Bayesian Tutorial with A Dropout Bound. CoRR abs/1307.2118 (2013) - 2012
- [j27]Hossein Tehrani Niknejad, Akihiro Takeuchi, Seiichi Mita, David A. McAllester:
On-Road Multivehicle Tracking Using Deformable Object Model and Particle Filter With Improved Likelihood Estimation. IEEE Trans. Intell. Transp. Syst. 13(2): 748-758 (2012) - [j26]Chunzhao Guo, Seiichi Mita, David A. McAllester:
Robust Road Detection and Tracking in Challenging Scenarios Based on Markov Random Fields With Unsupervised Learning. IEEE Trans. Intell. Transp. Syst. 13(3): 1338-1354 (2012) - [c88]Koichiro Yamaguchi, Tamir Hazan, David A. McAllester, Raquel Urtasun:
Continuous Markov Random Fields for Robust Stereo Estimation. ECCV (5) 2012: 45-58 - [i7]Koichiro Yamaguchi, Tamir Hazan, David A. McAllester, Raquel Urtasun:
Continuous Markov Random Fields for Robust Stereo Estimation. CoRR abs/1204.1393 (2012) - [i6]David A. McAllester, Michael Collins, Fernando Pereira:
Case-Factor Diagrams for Structured Probabilistic Modeling. CoRR abs/1207.4135 (2012) - [i5]David A. McAllester, Petri Myllymäki:
Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence (2008). CoRR abs/1208.5154 (2012) - 2011
- [c87]Joseph Keshet, David A. McAllester, Tamir Hazan:
PAC-Bayesian approach for minimization of phoneme error rate. ICASSP 2011: 2224-2227 - [c86]Jian Peng, Tamir Hazan, David A. McAllester, Raquel Urtasun:
Convex Max-Product over Compact Sets for Protein Folding. ICML 2011: 729-736 - [c85]Chunzhao Guo, Seiichi Mita, David A. McAllester:
Adaptive non-planar road detection and tracking in challenging environments using segmentation-based Markov Random Field. ICRA 2011: 1172-1179 - [c84]Joseph Keshet, Chih-Chieh Cheng, Mark Stoehr, David A. McAllester:
Direct Error Rate Minimization of Hidden Markov Models. INTERSPEECH 2011: 449-452 - [c83]Hossein Tehrani Niknejad, Koji Takahashi, Seiichi Mita, David A. McAllester:
Vehicle detection and tracking at nighttime for urban autonomous driving. IROS 2011: 4442-4447 - [c82]Hossein Tehrani Niknejad, Seiichi Mita, David A. McAllester, Takashi Naito:
Vision-based vehicle detection for nighttime with discriminately trained mixture of weighted deformable part models. ITSC 2011: 1560-1565 - [c81]Chunzhao Guo, Seiichi Mita, David A. McAllester:
Hierarchical road understanding for intelligent vehicles based on sensor fusion. ITSC 2011: 1672-1679 - [c80]Chunzhao Guo, Wataru Sato, Long Han, Seiichi Mita, David A. McAllester:
Graph-based 2D road representation of 3D point clouds for intelligent vehicles. Intelligent Vehicles Symposium 2011: 715-721 - [c79]Hossein Tehrani Niknejad, Koji Takahashi, Seiichi Mita, David A. McAllester:
Embedded multi-sensors objects detection and tracking for urban autonomous driving. Intelligent Vehicles Symposium 2011: 1128-1135 - [c78]David A. McAllester:
Generalization bounds and consistency for latent-structural probit and ramp loss. MLSLP 2011 - [c77]Ross B. Girshick, Pedro F. Felzenszwalb, David A. McAllester:
Object Detection with Grammar Models. NIPS 2011: 442-450 - [c76]David A. McAllester, Joseph Keshet:
Generalization Bounds and Consistency for Latent Structural Probit and Ramp Loss. NIPS 2011: 2205-2212 - [i4]János A. Csirik, Michael L. Littman, David A. McAllester, Robert E. Schapire, Peter Stone:
Decision-Theoretic Bidding Based on Learned Density Models in Simultaneous, Interacting Auctions. CoRR abs/1106.5270 (2011) - [i3]Pedro F. Felzenszwalb, David A. McAllester:
The Generalized A* Architecture. CoRR abs/1110.2216 (2011) - 2010
- [j25]Pedro F. Felzenszwalb, Ross B. Girshick, David A. McAllester, Deva Ramanan:
Object Detection with Discriminatively Trained Part-Based Models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9): 1627-1645 (2010) - [j24]Prahladh Harsha, Rahul Jain, David A. McAllester, Jaikumar Radhakrishnan:
The communication complexity of correlation. IEEE Trans. Inf. Theory 56(1): 438-449 (2010) - [c75]Hoang Trinh, David A. McAllester:
Structure and motion from road-driving stereo sequences. CVPR Workshops 2010: 9-16 - [c74]Pedro F. Felzenszwalb, Ross B. Girshick, David A. McAllester:
Cascade object detection with deformable part models. CVPR 2010: 2241-2248 - [c73]Pedro F. Felzenszwalb, Ross B. Girshick, David A. McAllester, Deva Ramanan:
Discriminative Latent Variable Models for Object Detection. ICML 2010: 11-12 - [c72]Chunzhao Guo, Seiichi Mita, David A. McAllester:
Lane detection and tracking in challenging environments based on a weighted graph and integrated cues. IROS 2010: 5543-5550 - [c71]Chunzhao Guo, Seiichi Mita, David A. McAllester:
A vision system for autonomous vehicle navigation in challenging traffic scenes using integrated cues. ITSC 2010: 1697-1704 - [c70]Chunzhao Guo, Seiichi Mita, David A. McAllester:
MRF-based road detection with unsupervised learning for autonomous driving in changing environments. Intelligent Vehicles Symposium 2010: 361-368 - [c69]Akihiro Takeuchi, Seiichi Mita, David A. McAllester:
On-road vehicle tracking using deformable object model and particle filter with integrated likelihoods. Intelligent Vehicles Symposium 2010: 1014-1021 - [c68]David A. McAllester, Tamir Hazan, Joseph Keshet:
Direct Loss Minimization for Structured Prediction. NIPS 2010: 1594-1602
2000 – 2009
- 2009
- [c67]Hoang Trinh, David A. McAllester:
Unsupervised Learning of Stereo Vision with Monocular Depth Cues. BMVC 2009: 1-11 - [c66]Chunzhao Guo, Seiichi Mita, David A. McAllester:
Stereovision-based road boundary detection for intelligent vehicles in challenging scenarios. IROS 2009: 1723-1728 - [c65]Alexander Ihler, David A. McAllester:
Particle Belief Propagation. AISTATS 2009: 256-263 - 2008
- [j23]David A. McAllester, Michael Collins, Fernando Pereira:
Case-factor diagrams for structured probabilistic modeling. J. Comput. Syst. Sci. 74(1): 84-96 (2008) - [c64]Pedro F. Felzenszwalb, David A. McAllester, Deva Ramanan:
A discriminatively trained, multiscale, deformable part model. CVPR 2008 - [c63]Hoang Trinh, David A. McAllester:
Particle-Based Belief Propagation for Structure from Motion and Dense Stereo Vision with Unknown Camera Constraints. RobVis 2008: 16-28 - [e3]David A. McAllester, Petri Myllymäki:
UAI 2008, Proceedings of the 24th Conference in Uncertainty in Artificial Intelligence, Helsinki, Finland, July 9-12, 2008. AUAI Press 2008, ISBN 0-9749039-4-9 [contents] - 2007
- [j22]Pedro F. Felzenszwalb, David A. McAllester:
The Generalized A* Architecture. J. Artif. Intell. Res. 29: 153-190 (2007) - [c62]Prahladh Harsha, Rahul Jain, David A. McAllester, Jaikumar Radhakrishnan:
The Communication Complexity of Correlation. CCC 2007: 10-23 - 2006
- [j21]Matthias Blume, David A. McAllester:
Sound and complete models of contracts. J. Funct. Program. 16(4-5): 375-414 (2006) - [c61]Pedro F. Felzenszwalb, David A. McAllester:
A Min-Cover Approach for Finding Salient Curves. CVPR Workshops 2006: 185 - [i2]Prahladh Harsha, Rahul Jain, David A. McAllester, Jaikumar Radhakrishnan:
The communication complexity of correlation. Electron. Colloquium Comput. Complex. TR06 (2006) - 2005
- [c60]Scott Sanner, David A. McAllester:
Affine Algebraic Decision Diagrams (AADDs) and their Application to Structured Probabilistic Inference. IJCAI 2005: 1384-1390 - [c59]Yasemin Altun, David A. McAllester, Mikhail Belkin:
Margin Semi-Supervised Learning for Structured Variables. NIPS 2005: 33-40 - 2004
- [j20]John Langford, David A. McAllester:
Computable Shell Decomposition Bounds. J. Mach. Learn. Res. 5: 529-547 (2004) - [c58]Matthias Blume, David A. McAllester:
A sound (and complete) model of contracts. ICFP 2004: 189-200 - [c57]Peter L. Bartlett, Michael Collins, Benjamin Taskar, David A. McAllester:
Exponentiated Gradient Algorithms for Large-margin Structured Classification. NIPS 2004: 113-120 - [c56]David A. McAllester, Michael Collins, Fernando Pereira:
Case-Factor Diagrams for Structured Probabilistic Modeling. UAI 2004: 382-391 - 2003
- [j19]Peter Stone, Robert E. Schapire, Michael L. Littman, János A. Csirik, David A. McAllester:
Decision-Theoretic Bidding Based on Learned Density Models in Simultaneous, Interacting Auctions. J. Artif. Intell. Res. 19: 209-242 (2003) - [j18]David A. McAllester, Luis E. Ortiz:
Concentration Inequalities for the Missing Mass and for Histogram Rule Error. J. Mach. Learn. Res. 4: 895-911 (2003) - [j17]David A. McAllester:
PAC-Bayesian Stochastic Model Selection. Mach. Learn. 51(1): 5-21 (2003) - [c55]David A. McAllester:
Simplified PAC-Bayesian Margin Bounds. COLT 2003: 203-215 - [c54]David A. McAllester:
Joint RTA-TLCA Invited Talk: A Logical Algorithm for ML Type Inference. RTA 2003: 436-451 - 2002
- [j16]Robert Givan, David A. McAllester, Carl Witty, Dexter Kozen:
Tarskian Set Constraints. Inf. Comput. 174(2): 105-131 (2002) - [j15]David A. McAllester, Deniz Yuret:
Alpha-Beta-Conspiracy Search. J. Int. Comput. Games Assoc. 25(1): 16-35 (2002) - [j14]David A. McAllester:
On the complexity analysis of static analyses. J. ACM 49(4): 512-537 (2002) - [j13]Yishay Mansour, David A. McAllester:
Boosting Using Branching Programs. J. Comput. Syst. Sci. 64(1): 103-112 (2002) - [j12]Robert Givan, David A. McAllester:
Polynomial-time computation via local inference relations. ACM Trans. Comput. Log. 3(4): 521-541 (2002) - [c53]Peter Stone, Robert E. Schapire, János A. Csirik, Michael L. Littman, David A. McAllester:
ATTac-2001: A Learning, Autonomous Bidding Agent. AMEC 2002: 143-160 - [c52]Harald Ganzinger, David A. McAllester:
Logical Algorithms. ICLP 2002: 209-223 - [c51]Robert E. Schapire, Peter Stone, David A. McAllester, Michael L. Littman, János A. Csirik:
Modeling Auction Price Uncertainty Using Boosting-based Conditional Density Estimation. ICML 2002: 546-553 - [c50]David A. McAllester, Luis E. Ortiz:
Concentration Inequalities for the Missing Mass and for Histogram Rule Error. NIPS 2002: 351-358 - 2001
- [j11]Andrew W. Appel, David A. McAllester:
An indexed model of recursive types for foundational proof-carrying code. ACM Trans. Program. Lang. Syst. 23(5): 657-683 (2001) - [c49]Peter Stone, David A. McAllester:
An architecture for action selection in robotic soccer. Agents 2001: 316-323 - [c48]Harald Ganzinger, David A. McAllester:
A New Meta-complexity Theorem for Bottom-Up Logic Programs. IJCAR 2001: 514-528 - [c47]Sanjoy Dasgupta, Michael L. Littman, David A. McAllester:
PAC Generalization Bounds for Co-training. NIPS 2001: 375-382 - 2000
- [c46]David A. McAllester, Robert E. Schapire:
On the Convergence Rate of Good-Turing Estimators. COLT 2000: 1-6 - [c45]John Langford, David A. McAllester:
Computable Shell Decomposition Bounds. COLT 2000: 25-34 - [c44]Yishay Mansour, David A. McAllester:
Generalization Bounds for Decision Trees. COLT 2000: 69-74 - [c43]Yishay Mansour, David A. McAllester:
Boosting Using Branching Programs. COLT 2000: 220-224 - [c42]David A. McAllester:
Meta-complexity Theorems: Talk Abstract. CP 2000: 13-17 - [c41]William W. Cohen, Henry A. Kautz, David A. McAllester:
Hardening soft information sources. KDD 2000: 255-259 - [c40]David A. McAllester, Peter Stone:
Keeping the Ball from CMUnited-99. RoboCup 2000: 333-338 - [c39]Patrick Riley, Peter Stone, David A. McAllester, Manuela M. Veloso:
ATT-CMUnited-2000: Third Place Finisher in the RoboCup-2000 Simulator League. RoboCup 2000: 489-492 - [e2]David A. McAllester:
Automated Deduction - CADE-17, 17th International Conference on Automated Deduction, Pittsburgh, PA, USA, June 17-20, 2000, Proceedings. Lecture Notes in Computer Science 1831, Springer 2000, ISBN 3-540-67664-3 [contents] - [i1]Robert Givan, David A. McAllester:
Polynomial-time Computation via Local Inference Relations. CoRR cs.LO/0007020 (2000)
1990 – 1999
- 1999
- [j10]David A. McAllester:
Some PAC-Bayesian Theorems. Mach. Learn. 37(3): 355-363 (1999) - [c38]Steven P. Abney, David A. McAllester, Fernando Pereira:
Relating Probabilistic Grammars and Automata. ACL 1999: 542-549 - [c37]David A. McAllester:
PAC-Bayesian Model Averaging. COLT 1999: 164-170 - [c36]David A. McAllester:
World-Modeling vs. World-Axiomatizing. LPNMR 1999: 375-388 - [c35]Yishay Mansour, David A. McAllester:
Boosting with Multi-Way Branching in Decision Trees. NIPS 1999: 300-306 - [c34]Richard S. Sutton, David A. McAllester, Satinder Singh, Yishay Mansour:
Policy Gradient Methods for Reinforcement Learning with Function Approximation. NIPS 1999: 1057-1063 - [c33]David A. McAllester:
On the Complexity Analysis of Static Analyses. SAS 1999: 312-329 - [c32]David A. McAllester, Satinder Singh:
Approximate Planning for Factored POMDPs using Belief State Simplification. UAI 1999: 409-416 - [e1]Harald Ganzinger, David A. McAllester, Andrei Voronkov:
Logic Programming and Automated Reasoning, 6th International Conference, LPAR'99, Tbilisi, Georgia, September 6-10, 1999, Proceedings. Lecture Notes in Computer Science 1705, Springer 1999, ISBN 3-540-66492-0 [contents] - 1998
- [c31]David A. McAllester:
Some PAC-Bayesian Theorems. COLT 1998: 230-234 - [c30]Witold Charatonik, David A. McAllester, Damian Niwinski, Andreas Podelski, Igor Walukiewicz:
The Horn Mu-calculus. LICS 1998: 58-69 - 1997
- [c29]David A. McAllester, Bart Selman, Henry A. Kautz:
Evidence for Invariants in Local Search. AAAI/IAAI 1997: 321-326 - [c28]Daphne Koller, David A. McAllester, Avi Pfeffer:
Effective Bayesian Inference for Stochastic Programs. AAAI/IAAI 1997: 740-747 - [c27]Nevin Heintze, David A. McAllester:
On the Complexity of Set-Based Analysis. ICFP 1997: 150-163 - [c26]Bart Selman, Henry A. Kautz, David A. McAllester:
Ten Challenges in Propositional Reasoning and Search. IJCAI (1) 1997: 50-54 - [c25]Nevin Heintze, David A. McAllester:
On the Cubic Bottleneck in Subtyping and Flow Analysis. LICS 1997: 342-351 - [c24]Nevin Heintze, David A. McAllester:
Linear-time Subtransitive Control Flow Analysis. PLDI 1997: 261-272 - 1996
- [j9]David A. McAllester:
The Rise of Nonlinear Mathematical Programming. ACM Comput. Surv. 28(4es): 68 (1996) - [c23]David A. McAllester, Kostas Arkoudas:
Walther Recursion. CADE 1996: 643-657 - [c22]Henry A. Kautz, David A. McAllester, Bart Selman:
Encoding Plans in Propositional Logic. KR 1996: 374-384 - [c21]David A. McAllester, Robert Givan, Carl Witty, Dexter Kozen:
Tarskian Set Constraints. LICS 1996: 138-147 - 1995
- [j8]David A. McAllester, J. Kucan, D. F. Otth:
A Proof of Strong Normalization of F_2, F_omega and Beyond. Inf. Comput. 121(2): 193-200 (1995) - 1994
- [c20]Matthew L. Ginsberg, David A. McAllester:
GSAT and Dynamic Backtracking. KR 1994: 226-237 - [c19]Matthew L. Ginsberg, David A. McAllester:
GSAT and Dynamic Backtracking. PPCP 1994: 243-265 - [c18]Frédéric Benhamou, David A. McAllester, Pascal Van Hentenryck:
CLP(Intervals) Revisited. ILPS 1994: 124-138 - 1993
- [j7]David A. McAllester, Robert Givan:
Taxonomic Syntax for First Order Inference. J. ACM 40(2): 246-283 (1993) - [j6]David A. McAllester:
Automatic Recognition of Tractability in Inference Relations. J. ACM 40(2): 284-303 (1993) - [j5]David A. McAllester, Prakash Panangaden, Vasant Shanbhogue:
Nonexpressibility of Fairness and Signaling. J. Comput. Syst. Sci. 47(2): 287-321 (1993) - [j4]Hai-Ping Ko, David A. McAllester, Mark E. Nadel:
Lower Bounds for the Lengths of Refutations. J. Log. Program. 17(1): 31-58 (1993) - [c17]Jeffrey Mark Siskind, David A. McAllester:
Nondeterministic Lisp as a Substrate for Constraint Logic Programming. AAAI 1993: 133-138 - [c16]David A. McAllester:
Bottom Up Logic Programming as an Inference Tool. ICTAI 1993: 8 - 1992
- [j3]