


default search action
NIPS 1996: Denver, CO, USA
- Michael Mozer, Michael I. Jordan, Thomas Petsche:

Advances in Neural Information Processing Systems 9, NIPS, Denver, CO, USA, December 2-5, 1996. MIT Press 1997
Cognitive Science
- Ron Papka, James P. Callan, Andrew G. Barto:

Text-Based Information Retrieval Using Exponentiated Gradient Descent. 3-9 - Jordan B. Pollack, Alan D. Blair:

Why did TD-Gammon Work? 10-16 - Maximilian Riesenhuber, Peter Dayan:

Neural Models for Part-Whole Hierarchies. 17-26
Neuroscience
- Hagai Attias, Christoph E. Schreiner:

Temporal Low-Order Statistics of Natural Sounds. 27-33 - Wyeth Bair, James R. Cavanaugh, J. Anthony Movshon:

Reconstructing Stimulus Velocity from Neuronal Responses in Area MT. 34-40 - Emanuela Bricolo, Tomaso A. Poggio, Nikos K. Logothetis:

3D Object Recognition: A Model of View-Tuned Neurons. 41-47 - Peter Dayan:

A Hierarchical Model of Visual Rivalry. 48-54 - Thomas C. Ferrée, Ben A. Marcotte, Shawn R. Lockery:

Neural Network Models of Chemotaxis in the Nematode Caenorhabditis Elegans. 55-61 - Fabrizio Gabbiani, Walter Metzner, Ralf Wessel, Christof Koch:

Extraction of Temporal Features in the Electrosensory System of Weakly Electric Fish. 62-68 - Zhaoping Li:

A Neural Model of Visual Contour Integration. 69-75 - Laura Martignon, Kathryn B. Laskey, Gustavo Deco, Eilon Vaadia:

Learning Exact Patterns of Quasi-synchronization among Spiking Neurons from Data on Multi-unit Recordings. 76-82 - Bartlett W. Mel, Daniel L. Ruderman, Kevin A. Archie:

Complex-Cell Responses Derived from Center-Surround Inputs: The Surprising Power of Intradendritic Computation. 83-89 - Klaus Pawelzik, Udo Ernst, Fred Wolf, Theo Geisel:

Orientation Contrast Sensitivity from Long-range Interactions in Visual Cortex. 90-96 - Alexandre Pouget, Kechen Zhang:

Statistically Efficient Estimations Using Cortical Lateral Connections. 97-103 - Silvio P. Sabatini, Fabio Solari, Giacomo M. Bisio:

An Architectural Mechanism for Direction-tuned Cortical Simple Cells: The Role of Mutual Inhibition. 104-110 - Akaysha C. Tang, Andreas M. Bartels, Terrence J. Sejnowski:

Cholinergic Modulation Preserves Spike Timing Under Physiologically Realistic Fluctuating Input. 111-117 - Emanuel Todorov, Athanassios Siapas, David Somers:

A Model of Recurrent Interactions in Primary Visual Cortex. 118-126
Theory
- Shun-ichi Amari:

Neural Learning in Structured Parameter Spaces - Natural Riemannian Gradient. 127-133 - Peter L. Bartlett:

For Valid Generalization the Size of the Weights is More Important than the Size of the Network. 134-140 - Siegfried Bös, Manfred Opper:

Dynamics of Training. 141-147 - Graham R. Brightwell, Claire Kenyon, Hélène Paugam-Moisy:

Multilayer Neural Networks: One or Two Hidden Layers? 148-154 - Harris Drucker, Christopher J. C. Burges, Linda Kaufman, Alexander J. Smola, Vladimir Vapnik:

Support Vector Regression Machines. 155-161 - André Elisseeff, Hélène Paugam-Moisy:

Size of Multilayer Networks for Exact Learning: Analytic Approach. 162-168 - Søren Halkjær, Ole Winther:

The Effect of Correlated Input Data on the Dynamics of Learning. 169-175 - Tom Heskes:

Practical Confidence and Prediction Intervals. 176-182 - Kukjin Kang, Jong-Hoon Oh:

Statistical Mechanics of the Mixture of Experts. 183-189 - Adam Kowalczyk, Herman L. Ferrá:

MLP Can Provably Generalize Much Better than VC-bounds Indicate. 190-196 - Adam Krzyzak, Tamás Linder:

Radial Basis Function Networks and Complexity Regularization in Function Learning. 197-203 - Nick Littlestone, Chris Mesterharm:

An Apobayesian Relative of Winnow. 204-210 - Wolfgang Maass:

Noisy Spiking Neurons with Temporal Coding have more Computational Power than Sigmoidal Neurons. 211-217 - Wolfgang Maass, Pekka Orponen:

On the Effect of Analog Noise in Discrete-Time Analog Computations. 218-224 - Manfred Opper, Ole Winther:

A Mean Field Algorithm for Bayes Learning in Large Feed-forward Neural Networks. 225-231 - Genevieve B. Orr:

Removing Noise in On-Line Search using Adaptive Batch Sizes. 232-238 - Ian Parberry, Hung-Li Tseng:

Are Hopfield Networks Faster than Conventional Computers? 239-245 - Ferdinand Peper, Hideki Noda:

Hebb Learning of Features based on their Information Content. 246-252 - Richard Rohwer, Michal Morciniec:

The Generalisation Cost of RAMnets. 253-259 - David Saad, Sara A. Solla:

Learning with Noise and Regularizers in Multilayer Neural Networks. 260-266 - Lawrence K. Saul, Michael I. Jordan:

A Variational Principle for Model-based Morphing. 267-273 - Peter Sollich, David Barber:

Online Learning from Finite Training Sets: An Analytical Case Study. 274-280 - Vladimir Vapnik, Steven E. Golowich, Alexander J. Smola:

Support Vector Method for Function Approximation, Regression Estimation and Signal Processing. 281-287 - Ansgar Heinrich Ludolf West, David Saad, Ian T. Nabney:

The Learning Dynamcis of a Universal Approximator. 288-294 - Christopher K. I. Williams:

Computing with Infinite Networks. 295-301 - K. Y. Michael Wong:

Microscopic Equations in Rough Energy Landscape for Neural Networks. 302-308 - Assaf J. Zeevi, Ron Meir, Robert J. Adler:

Time Series Prediction using Mixtures of Experts. 309-318
Algorithms and Architecture
- Shumeet Baluja:

Genetic Algorithms and Explicit Search Statistics. 319-325 - Yoram Baram:

Consistent Classification, Firm and Soft. 326-332 - David Barber, Christopher M. Bishop:

Bayesian Model Comparison by Monte Carlo Chaining. 333-339 - David Barber, Christopher K. I. Williams:

Gaussian Processes for Bayesian Classification via Hybrid Monte Carlo. 340-346 - Christopher M. Bishop, Cazhaow S. Quazaz:

Regression with Input-Dependent Noise: A Bayesian Treatment. 347-353 - Christopher M. Bishop, Markus Svensén, Christopher K. I. Williams:

GTM: A Principled Alternative to the Self-Organizing Map. 354-360 - Andrew Blake, Michael Isard:

The CONDENSATION Algorithm - Conditional Density Propagation and Applications to Visual Tracking. 361-367 - Paul S. Bradley, Olvi L. Mangasarian, W. Nick Street:

Clustering via Concave Minimization. 368-374 - Christopher J. C. Burges, Bernhard Schölkopf:

Improving the Accuracy and Speed of Support Vector Machines. 375-381 - A. Neil Burgess:

Estimating Equivalent Kernels for Neural Networks: A Data Perturbation Approach. 382-388 - Rich Caruana, Virginia R. de Sa:

Promoting Poor Features to Supervisors: Some Inputs Work Better as Outputs. 389-395 - Chanchal Chatterjee, Vwani P. Roychowdhury:

Self-Organizing and Adaptive Algorithms for Generalized Eigen-Decomposition. 396-402 - Daniel S. Clouse, C. Lee Giles

, Bill G. Horne, Garrison W. Cottrell:
Representation and Induction of Finite State Machines using Time-Delay Neural Networks. 403-409 - Frans Coetzee, Virginia L. Stonick:

488 Solutions to the XOR Problem. 410-416 - David A. Cohn:

Minimizing Statistical Bias with Queries. 417-423 - Jeremy S. De Bonet, Charles Lee Isbell Jr., Paul A. Viola:

MIMIC: Finding Optima by Estimating Probability Densities. 424-430 - A. P. Dunmur, D. M. Titterington:

On a Modification to the Mean Field EM Algorithm in Factorial Learning. 431-437 - Andrew M. Finch, Richard C. Wilson, Edwin R. Hancock:

Softening Discrete Relaxation. 438-444 - Arthur Flexer:

Limitations of Self-organizing Maps for Vector Quantization and Multidimensional Scaling. 445-451 - Brendan J. Frey:

Continuous Sigmoidal Belief Networks Trained using Slice Sampling. 452-458 - Jürgen Fritsch, Michael Finke, Alex Waibel:

Adaptively Growing Hierarchical Mixtures of Experts. 459-465 - Tom Heskes:

Balancing Between Bagging and Bumping. 466-472 - Sepp Hochreiter, Jürgen Schmidhuber:

LSTM can Solve Hard Long Time Lag Problems. 473-479 - Aapo Hyvärinen, Erkki Oja:

One-unit Learning Rules for Independent Component Analysis. 480-486 - Tommi S. Jaakkola, Michael I. Jordan:

Recursive Algorithms for Approximating Probabilities in Graphical Models. 487-493 - Chuanyi Ji, Sheng Ma:

Combinations of Weak Classifiers. 494-500 - Michael I. Jordan, Zoubin Ghahramani, Lawrence K. Saul:

Hidden Markov Decision Trees. 501-507 - Ryotaro Kamimura:

Unification of Information Maximization and Minimization. 508-514 - Daniel D. Lee, H. Sebastian Seung:

Unsupervised Learning by Convex and Conic Coding. 515-521 - Friedrich Leisch, Kurt Hornik:

ARC-LH: A New Adaptive Resampling Algorithm for Improving ANN Classifiers. 522-528 - Michael S. Lewicki, Terrence J. Sejnowski:

Bayesian Unsupervised Learning of Higher Order Structure. 529-535 - Juan K. Lin, Jack D. Cowan, David G. Grier:

Source Separation and Density Estimation by Faithful Equivariant SOM. 536-542 - David Lowe, Michael E. Tipping:

NeuroScale: Novel Topographic Feature Extraction using RBF Networks. 543-549 - Mark Mathieson:

Ordered Classes and Incomplete Examples in Classification. 550-556 - Marina Meila, Michael I. Jordan:

Triangulation by Continuous Embedding. 557-563 - Christopher J. Merz, Michael J. Pazzani:

Combining Neural Network Regression Estimates with Regularized Linear Weights. 564-570 - David J. Miller, Hasan S. Uyar:

A Mixture of Experts Classifier with Learning Based on Both Labelled and Unlabelled Data. 571-577 - Stefano Monti, Gregory F. Cooper:

Learning Bayesian Belief Networks with Neural Network Estimators. 578-584 - John E. Moody, Thorsteinn S. Rögnvaldsson:

Smoothing Regularizers for Projective Basis Function Networks. 585-591 - Paul W. Munro, Bambang Parmanto:

Competition Among Networks Improves Committee Performance. 592-598 - Noboru Murata, Klaus-Robert Müller, Andreas Ziehe, Shun-ichi Amari:

Adaptive On-line Learning in Changing Environments. 599-605 - Genevieve B. Orr, Todd K. Leen:

Using Curvature Information for Fast Stochastic Search. 606-612 - Barak A. Pearlmutter, Lucas C. Parra:

Maximum Likelihood Blind Source Separation: A Context-Sensitive Generalization of ICA. 613-619 - Anand Rangarajan, Alan L. Yuille, Steven Gold, Eric Mjolsness:

A Convergence Proof for the Softassign Quadratic Assignment Algorithm. 620-626 - Kazumi Saito, Ryohei Nakano:

Second-order Learning Algorithm with Squared Penalty Term. 627-633 - Joseph Sill, Yaser S. Abu-Mostafa:

Monotonicity Hints. 634-640 - Yoram Singer, Manfred K. Warmuth:

Training Algorithms for Hidden Markov Models using Entropy Based Distance Functions. 641-647 - Padhraic Smyth:

Clustering Sequences with Hidden Markov Models. 648-654 - Achim Stahlberger, Martin A. Riedmiller:

Fast Network Pruning and Feature Extraction by using the Unit-OBS Algorithm. 655-661 - Joshua B. Tenenbaum, William T. Freeman:

Separating Style and Content. 662-668 - Volker Tresp, Ralph Neuneier, Hans-Georg Zimmermann:

Early Brain Damage. 669-675 - Richard S. Zemel, Peter Dayan, Alexandre Pouget:

Probabilistic Interpretation of Population Codes. 676-684
Implementation
- Ralph Etienne-Cummings, Jan Van der Spiegel, Naomi Takahashi, Alyssa B. Apsel, Paul Mueller:

VLSI Implementation of Cortical Visual Motion Detection Using an Analog Neural Computer. 685-691 - Philipp Häfliger, Misha Mahowald, Lloyd Watts:

A Spike Based Learning Neuron in Analog VLSI. 692-698 - John G. Harris, Yu-Ming Chiang:

An Analog Implementation of the Constant Average Statistics Constraint For Sensor Calibration. 699-705 - Timothy K. Horiuchi, Tonia G. Morris, Christof Koch, Stephen P. DeWeerth:

Analog VLSI Circuits for Attention-Based, Visual Tracking. 706-712 - Kunihiko Iizuka, Masayuki Miyamoto, Hirofumi Matsui:

Dynamically Adaptable CMOS Winner-Take-All Neural Network. 713-719 - W. Fritz Kruger, Paul E. Hasler, Bradley A. Minch, Christof Koch:

An Adaptive WTA using Floating Gate Technology. 720-726 - John Lazzaro, John Wawrzynek, Richard Lippmann:

A Micropower Analog VLSI HMM State Decoder for Wordspotting. 727-733 - Fernando J. Pineda, Gert Cauwenberghs, R. Timothy Edwards:

Bangs, Clicks, Snaps, Thuds and Whacks: An Architecture for Acoustic Transient Processing. 734-740 - André van Schaik, Eric Fragnière, Eric A. Vittoz:

A Silicon Model of Amplitude Modulation Detection in the Auditory Brainstem. 741-750
Speech, Handwriting and Signal Processing
- Michael S. Gray, Javier R. Movellan, Terrence J. Sejnowski:

Dynamic Features for Visual Speechreading: A Systematic Comparison. 751-757 - Te-Won Lee, Anthony J. Bell, Russell H. Lambert:

Blind Separation of Delayed and Convolved Sources. 758-764 - John C. Platt, Nada Matic:

A Constructive RBF Network for Writer Adaptation. 765-771 - Gerhard Rigoll, Christoph Neukirchen:

A New Approach to Hybrid HMM/ANN Speech Recognition using Mutual Information Neural Networks. 772-778 - Axel Röbel:

Neural Network Modeling of Speech and Music Signals. 779-785 - Diego Sona, Alessandro Sperduti, Antonina Starita:

A Constructive Learning Algorithm for Discriminant Tangent Models. 786-792 - Eric A. Wan, Alex T. Nelson:

Dual Kalman Filtering Methods for Nonlinear Prediction, Smoothing and Estimation. 793-799 - Steve R. Waterhouse, Gary D. Cook:

Ensemble Methods for Phoneme Classification. 800-806 - Larry S. Yaeger, Richard F. Lyon, Brandyn J. Webb:

Effective Training of a Neural Network Character Classifier for Word Recognition. 807-816
Visual Processing
- Marian Stewart Bartlett, Terrence J. Sejnowski:

Viewpoint Invariant Face Recognition using Independent Component Analysis and Attractor Networks. 817-823 - Suzanna Becker:

Learning Temporally Persistent Hierarchical Representations. 824-830 - Anthony J. Bell, Terrence J. Sejnowski:

Edges are the Independent Components of Natural Scenes. 831-837 - Elie Bienenstock, Stuart Geman, Daniel Potter:

Compositionality, MDL Priors, and Object Recognition. 838-844 - Christoph Bregler, Jitendra Malik:

Learning Appearance Based Models: Mixtures of Second Moment Experts. 845- - Dawei W. Dong:

Spatiotemporal Coupling and Scaling of Natural Images and Human Visual Sensitivities. 859-865 - Michael S. Gray, Alexandre Pouget, Richard S. Zemel, Steven J. Nowlan, Terrence J. Sejnowski:

Selective Integration: A Model for Disparity Estimation. 866-872 - Stephen Grossberg, James R. Williamson:

ARTEX: A Self-organizing Architecture for Classifying Image Regions. 873-879 - José A. F. Leite, Edwin R. Hancock:

Contour Organisation with the EM Algorithm. 880-886 - Trevor Mundel, Alexander Dimitrov, Jack D. Cowan:

Visual Cortex Circuitry and Orientation Tuning. 887-893 - Curtis Padgett, Garrison W. Cottrell:

Representing Face Images for Emotion Classification. 894-900 - Simon J. Thorpe, Jacques Gautrais:

Rapid Visual Processing using Spike Asynchrony. 901-907 - Yair Weiss:

Interpreting Images by Propagating Bayesian Beliefs. 908-914 - Shih-Cheng Yen, Leif H. Finkel:

Salient Contour Extraction by Temporal Binding in a Cortically-based Network. 915-924
Applications
- Halina Abramowicz, David Horn, Ury Naftaly, Carmit Sahar-Pikielny:

An Orientation Selective Neural Network for Pattern Identification in Particle Detectors. 925-931 - Timothy X. Brown:

Adaptive Access Control Applied to Ethernet Data. 932-938 - David A. Cohn, Satinder Singh:

Predicting Lifetimes in Dynamically Allocated Memory. 939-945 - Joumana Ghosn, Yoshua Bengio:

Multi-Task Learning for Stock Selection. 946-952 - Michael Mozer, Lucky Vidmar, Robert H. Dodier:

The Neurothermostat: Predictive Optimal Control of Residential Heating Systems. 953-959 - Mahesan Niranjan:

Sequential Tracking in Pricing Financial Options using Model Based and Neural Network Approaches. 960-966 - Tony Plate, Pierre Band, Joel Bert, John Grace:

A Comparison between Neural Networks and other Statistical Techniques for Modeling the Relationship between Tobacco and Alcohol and Cancer. 967-973 - Satinder Singh, Dimitri P. Bertsekas:

Reinforcement Learning for Dynamic Channel Allocation in Cellular Telephone Systems. 974-980 - Kagan Tumer, Nirmala Ramanujam, Rebecca R. Richards-Kortum, Joydeep Ghosh:

Spectroscopic Detection of Cervical Pre-Cancer through Radial Basis Function Networks. 981-987 - Ernest Wan, Don Bone:

Interpolating Earth-science Data using RBF Networks and Mixtures of Experts. 988-994 - Lizhong Wu, John E. Moody:

Multi-effect Decompositions for Financial Data Modeling. 995-1004
Control, Navigation and Planning
- Scott Davies:

Multidimensional Triangulation and Interpolation for Reinforcement Learning. 1005-1011 - Kenji Doya:

Efficient Nonlinear Control with Actor-Tutor Architecture. 1012-1018 - Michael O. Duff, Andrew G. Barto:

Local Bandit Approximation for Optimal Learning Problems. 1019-1025 - Eric A. Hansen, Andrew G. Barto, Shlomo Zilberstein:

Reinforcement Learning for Mixed Open-loop and Closed-loop Control. 1026-1032 - Stephan Pareigis:

Multi-Grid Methods for Reinforcement Learning in Controlled Diffusion Processes. 1033-1039 - Stefan Schaal:

Learning from Demonstration. 1040-1046 - Jeff G. Schneider:

Exploiting Model Uncertainty Estimates for Safe Dynamic Control Learning. 1047-1053 - Satinder Singh, Peter Dayan:

Analytical Mean Squared Error Curves in Temporal Difference Learning. 1054-1060 - Magnus Stensmo, Terrence J. Sejnowski:

Learning Decision Theoretic Utilities through Reinforcement Learning. 1061-1067 - Gerald Tesauro, Gregory R. Galperin:

On-line Policy Improvement using Monte-Carlo Search. 1068-1074 - John N. Tsitsiklis, Benjamin Van Roy:

Analysis of Temporal-Diffference Learning with Function Approximation. 1075-1081 - John N. Tsitsiklis, Benjamin Van Roy:

Approximate Solutions to Optimal Stopping Problems. 1082-1088

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














