default search action
Xiangnan Kong
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
Journal Articles
- 2022
- [j19]Yingxue Zhang, Yanhua Li, Xun Zhou, Xiangnan Kong, Jun Luo:
Off-Deployment Traffic Estimation - A Traffic Generative Adversarial Networks Approach. IEEE Trans. Big Data 8(4): 1084-1095 (2022) - [j18]Nesreen K. Ahmed, Ryan A. Rossi, John Boaz Lee, Theodore L. Willke, Rong Zhou, Xiangnan Kong, Hoda Eldardiry:
Role-Based Graph Embeddings. IEEE Trans. Knowl. Data Eng. 34(5): 2401-2415 (2022) - [j17]Yao Zhang, Sijia Peng, Yun Xiong, Xiangnan Kong, Xinyue Liu, Yangyong Zhu:
Multi-task attributed graphical lasso and its application in fund classification. World Wide Web 25(3): 1425-1446 (2022) - 2021
- [j16]Yao Zhang, Yun Xiong, Xiangnan Kong, Zhuang Niu, Yangyong Zhu:
IGE+: A Framework for Learning Node Embeddings in Interaction Graphs. IEEE Trans. Knowl. Data Eng. 33(3): 1032-1044 (2021) - [j15]Yun Xiong, Yizhou Zhang, Xiangnan Kong, Huidi Chen, Yangyong Zhu:
GraphInception: Convolutional Neural Networks for Collective Classification in Heterogeneous Information Networks. IEEE Trans. Knowl. Data Eng. 33(5): 1960-1972 (2021) - 2020
- [j14]Yugang Ji, Chuan Shi, Yuan Fang, Xiangnan Kong, Mingyang Yin:
Semi-supervised Co-Clustering on Attributed Heterogeneous Information Networks. Inf. Process. Manag. 57(6): 102338 (2020) - 2019
- [j13]John Boaz Lee, Xiangnan Kong:
Learning compact graph representations via an encoder-decoder network. Appl. Netw. Sci. 4(1): 50:1-50:16 (2019) - [j12]Yafang Li, Caiyan Jia, Xiangnan Kong, Liu Yang, Jian Yu:
Locally Weighted Fusion of Structural and Attribute Information in Graph Clustering. IEEE Trans. Cybern. 49(1): 247-260 (2019) - 2018
- [j11]Yun Xiong, Yizhou Zhang, Xiangnan Kong, Yangyong Zhu:
NetCycle+: A Framework for Collective Evolution Inference in Dynamic Heterogeneous Networks. IEEE Trans. Knowl. Data Eng. 30(8): 1547-1560 (2018) - 2017
- [j10]Maryam Hasan, Elke A. Rundensteiner, Xiangnan Kong, Emmanuel Agu:
Discover trends in public emotion using social sensing. SIGWEB Newsl. 2017(Spring): 2:1-2:5 (2017) - 2015
- [j9]Bokai Cao, Xiangnan Kong, Jingyuan Zhang, Philip S. Yu, Ann B. Ragin:
Identifying HIV-induced subgraph patterns in brain networks with side information. Brain Informatics 2(4): 211-223 (2015) - [j8]Bokai Cao, Xiangnan Kong, Philip S. Yu:
A review of heterogeneous data mining for brain disorder identification. Brain Informatics 2(4): 253-264 (2015) - [j7]Li-Jia Li, David A. Shamma, Xiangnan Kong, Sina Jafarpour, Roelof van Zwol, Xuanhui Wang:
CelebrityNet: A Social Network Constructed from Large-Scale Online Celebrity Images. ACM Trans. Multim. Comput. Commun. Appl. 12(1): 3:1-3:22 (2015) - 2014
- [j6]Chong-Jing Sun, Philip S. Yu, Xiangnan Kong, Yan Fu:
Privacy Preserving Social Network Publication Against Mutual Friend Attacks. Trans. Data Priv. 7(2): 71-97 (2014) - [j5]Chuan Shi, Xiangnan Kong, Di Fu, Philip S. Yu, Bin Wu:
Multi-Label Classification Based on Multi-Objective Optimization. ACM Trans. Intell. Syst. Technol. 5(2): 35:1-35:22 (2014) - [j4]Chuan Shi, Xiangnan Kong, Yue Huang, Philip S. Yu, Bin Wu:
HeteSim: A General Framework for Relevance Measure in Heterogeneous Networks. IEEE Trans. Knowl. Data Eng. 26(10): 2479-2492 (2014) - 2013
- [j3]Xiangnan Kong, Philip S. Yu:
Brain network analysis: a data mining perspective. SIGKDD Explor. 15(2): 30-38 (2013) - [j2]Xiangnan Kong, Michael K. Ng, Zhi-Hua Zhou:
Transductive Multilabel Learning via Label Set Propagation. IEEE Trans. Knowl. Data Eng. 25(3): 704-719 (2013) - 2012
- [j1]Xiangnan Kong, Philip S. Yu:
gMLC: a multi-label feature selection framework for graph classification. Knowl. Inf. Syst. 31(2): 281-305 (2012)
Conference and Workshop Papers
- 2024
- [c109]Jidapa Thadajarassiri, Walter Gerych, Xiangnan Kong, Elke A. Rundensteiner:
Amalgamating Multi-Task Models with Heterogeneous Architectures. AAAI 2024: 15346-15354 - 2023
- [c108]Jidapa Thadajarassiri, Thomas Hartvigsen, Walter Gerych, Xiangnan Kong, Elke A. Rundensteiner:
Knowledge Amalgamation for Multi-Label Classification via Label Dependency Transfer. AAAI 2023: 9980-9988 - [c107]Hang Yin, Yao Su, Xinyue Liu, Thomas Hartvigsen, Yanhua Li, Xiangnan Kong:
Multi-State Brain Network Discovery. IEEE Big Data 2023: 453-462 - [c106]Jianjun Luo, Ryan A. Rossi, Xiangnan Kong, Yanhua Li:
Multi-Item Continuous Influence Maximization. IEEE Big Data 2023: 5282-5291 - [c105]Yao Su, Zhentian Qian, Lei Ma, Lifang He, Xiangnan Kong:
One-shot Joint Extraction, Registration and Segmentation of Neuroimaging Data. KDD 2023: 2049-2060 - 2022
- [c104]Thomas Hartvigsen, Walter Gerych, Jidapa Thadajarassiri, Xiangnan Kong, Elke A. Rundensteiner:
Stop&Hop: Early Classification of Irregular Time Series. CIKM 2022: 696-705 - [c103]Yao Su, Xin Dai, Lifang He, Xiangnan Kong:
ABN: Anti-Blur Neural Networks for Multi-Stage Deformable Image Registration. ICDM 2022: 468-477 - [c102]Yingxue Zhang, Yanhua Li, Xun Zhou, Xiangnan Kong, Jun Luo:
STrans-GAN: Spatially-Transferable Generative Adversarial Networks for Urban Traffic Estimation. ICDM 2022: 743-752 - [c101]Yao Su, Zhentian Qian, Lifang He, Xiangnan Kong:
ERNet: Unsupervised Collective Extraction and Registration in Neuroimaging Data. KDD 2022: 1666-1675 - 2021
- [c100]Jidapa Thadajarassiri, Thomas Hartvigsen, Xiangnan Kong, Elke A. Rundensteiner:
Semi-Supervised Knowledge Amalgamation for Sequence Classification. AAAI 2021: 9859-9867 - [c99]Dongyu Zhang, Cansu Sen, Jidapa Thadajarassiri, Thomas Hartvigsen, Xiangnan Kong, Elke A. Rundensteiner:
Human-like Explanation for Text Classification With Limited Attention Supervision. IEEE BigData 2021: 957-967 - [c98]Xin Dai, Xiangnan Kong, Tian Guo, Xinlu He:
FiShNet: Fine-Grained Filter Sharing for Resource-Efficient Multi-Task Learning. CIKM 2021: 322-331 - [c97]Chao Chen, Yifan Shen, Guixiang Ma, Xiangnan Kong, Srinivas Rangarajan, Xi Zhang, Sihong Xie:
Self-learn to Explain Siamese Networks Robustly. ICDM 2021: 1018-1023 - [c96]Hang Yin, John Boaz Lee, Xiangnan Kong, Thomas Hartvigsen, Sihong Xie:
Energy-Efficient Models for High-Dimensional Spike Train Classification using Sparse Spiking Neural Networks. KDD 2021: 2017-2025 - [c95]Xin Dai, Xiangnan Kong, Tian Guo, Yixian Huang:
CiNet: Redesigning Deep Neural Networks for Efficient Mobile-Cloud Collaborative Inference. SDM 2021: 459-467 - [c94]Samuel S. Ogden, Xiangnan Kong, Tian Guo:
PieSlicer: Dynamically Improving Response Time for Cloud-based CNN Inference. ICPE 2021: 249-256 - 2020
- [c93]Cansu Sen, Thomas Hartvigsen, Biao Yin, Xiangnan Kong, Elke A. Rundensteiner:
Human Attention Maps for Text Classification: Do Humans and Neural Networks Focus on the Same Words? ACL 2020: 4596-4608 - [c92]Yao Zhang, Yun Xiong, Xiangnan Kong, Xinyue Liu, Yangyong Zhu:
Multi-task Attributed Graphical Lasso. APWeb/WAIM (1) 2020: 670-684 - [c91]Xiao Qin, Cao Xiao, Tengfei Ma, Tabassum Kakar, Susmitha Wunnava, Xiangnan Kong, Elke A. Rundensteiner, Fei Wang:
Supervised Topic Compositional Neural Language Model for Clinical Narrative Understanding. IEEE BigData 2020: 758-767 - [c90]Jidapa Thadajarassiri, Cansu Sen, Thomas Hartvigsen, Xiangnan Kong, Elke A. Rundensteiner:
Learning Similarity-Preserving Meta-Embedding for Text Mining. IEEE BigData 2020: 808-817 - [c89]Hang Yin, Xinyue Liu, Xiangnan Kong:
Gaussian Mixture Graphical Lasso with Application to Edge Detection in Brain Networks. IEEE BigData 2020: 1430-1435 - [c88]Zhongfang Zhuang, Xiangnan Kong, Elke A. Rundensteiner, Jihane Zouaoui, Aditya Arora:
MLAS: Metric Learning on Attributed Sequences. IEEE BigData 2020: 1449-1454 - [c87]Xin Dai, Xiangnan Kong, Tian Guo:
EPNet: Learning to Exit with Flexible Multi-Branch Network. CIKM 2020: 235-244 - [c86]Thomas Hartvigsen, Cansu Sen, Xiangnan Kong, Elke A. Rundensteiner:
Learning to Selectively Update State Neurons in Recurrent Networks. CIKM 2020: 485-494 - [c85]Yun Xiong, Shaofeng Xu, Keyao Rong, Xinyue Liu, Xiangnan Kong, Shanshan Li, Philip S. Yu, Yangyong Zhu:
Code2Text: Dual Attention Syntax Annotation Networks for Structure-Aware Code Translation. DASFAA (3) 2020: 87-103 - [c84]Susmitha Wunnava, Xiao Qin, Tabassum Kakar, Xiangnan Kong, Elke A. Rundensteiner:
A Dual-Attention Network for Joint Named Entity Recognition and Sentence Classification of Adverse Drug Events. EMNLP (Findings) 2020: 3414-3423 - [c83]Xin Dai, Xiangnan Kong, Tian Guo, John Boaz Lee, Xinyue Liu, Constance M. Moore:
Recurrent Networks for Guided Multi-Attention Classification. KDD 2020: 412-420 - [c82]Yingxue Zhang, Yanhua Li, Xun Zhou, Xiangnan Kong, Jun Luo:
Curb-GAN: Conditional Urban Traffic Estimation through Spatio-Temporal Generative Adversarial Networks. KDD 2020: 842-852 - [c81]Thomas Hartvigsen, Cansu Sen, Xiangnan Kong, Elke A. Rundensteiner:
Recurrent Halting Chain for Early Multi-label Classification. KDD 2020: 1382-1392 - [c80]Xin Dai, Xiangnan Kong, Xinyue Liu, John Boaz Lee, Constance M. Moore:
Dual-Attention Recurrent Networks for Affine Registration of Neuroimaging Data. SDM 2020: 379-387 - [c79]John Boaz Lee, Xiangnan Kong, Constance M. Moore, Nesreen K. Ahmed:
Deep Parametric Model for Discovering Group-cohesive Functional Brain Regions. SDM 2020: 631-639 - 2019
- [c78]Jianjun Luo, Xinyue Liu, Xiangnan Kong:
Competitive opinion maximization in social networks. ASONAM 2019: 250-257 - [c77]Jidapa Thadajarassiri, Cansu Sen, Thomas Hartvigsen, Xiangnan Kong, Elke A. Rundensteiner:
Comparing General and Locally-Learned Word Embeddings for Clinical Text Mining. BHI 2019: 1-4 - [c76]Cansu Sen, Thomas Hartvigsen, Xiangnan Kong, Elke A. Rundensteiner:
Patient-level Classification on Clinical Note Sequences Guided by Attributed Hierarchical Attention. IEEE BigData 2019: 930-939 - [c75]Zhongfang Zhuang, Xiangnan Kong, Elke A. Rundensteiner, Jihane Zouaoui, Aditya Arora:
Attributed Sequence Embedding. IEEE BigData 2019: 1723-1728 - [c74]Cansu Sen, Thomas Hartvigsen, Xiangnan Kong, Elke A. Rundensteiner:
Learning Temporal Relevance in Longitudinal Medical Notes. IEEE BigData 2019: 2474-2483 - [c73]John Boaz Lee, Ryan A. Rossi, Xiangnan Kong, Sungchul Kim, Eunyee Koh, Anup Rao:
Graph Convolutional Networks with Motif-based Attention. CIKM 2019: 499-508 - [c72]Yuyan Zheng, Chuan Shi, Xiangnan Kong, Yanfang Ye:
Author Set Identification via Quasi-Clique Discovery. CIKM 2019: 771-780 - [c71]Shaofeng Xu, Yun Xiong, Xiangnan Kong, Yangyong Zhu:
Net2Text: An Edge Labelling Language Model for Personalized Review Generation. DASFAA (1) 2019: 484-500 - [c70]Yingxue Zhang, Yanhua Li, Xun Zhou, Xiangnan Kong, Jun Luo:
TrafficGAN: Off-Deployment Traffic Estimation with Traffic Generative Adversarial Networks. ICDM 2019: 1474-1479 - [c69]Thomas Hartvigsen, Cansu Sen, Xiangnan Kong, Elke A. Rundensteiner:
Adaptive-Halting Policy Network for Early Classification. KDD 2019: 101-110 - [c68]Zhongfang Zhuang, Xiangnan Kong, Elke A. Rundensteiner:
AMAS: Attention Model for Attributed Sequence Classification. SDM 2019: 109-117 - [c67]Yao Zhang, Yun Xiong, Lu Ruan, Xiangnan Kong, Yangyong Zhu:
NetMerger: Predicting Cross-network Links in Merged Heterogeneous Networks. WI (Companion) 2019: 21-28 - [c66]Thanh Tran, Xinyue Liu, Kyumin Lee, Xiangnan Kong:
Signed Distance-based Deep Memory Recommender. WWW 2019: 1841-1852 - 2018
- [c65]Yafang Li, Xiangnan Kong, Caiyan Jia, Jianqiang Li:
Clustering Uncertain Graphs with Node Attributes. ACML 2018: 232-247 - [c64]Susmitha Wunnava, Xiao Qin, Tabassum Kakar, Elke A. Rundensteiner, Xiangnan Kong:
Deep Learning Strategies for Automatic Detection of Medication and Adverse Drug Events from Electronic Health Records. AMIA 2018 - [c63]Yun Xiong, Lu Ruan, Mengjie Guo, Chunlei Tang, Xiangnan Kong, Yangyong Zhu, Wei Wang:
Predicting Disease-related Associations by Heterogeneous Network Embedding. BIBM 2018: 548-555 - [c62]Zhongfang Zhuang, Xiangnan Kong, Elke A. Rundensteiner, Aditya Arora, Jihane Zouaoui:
One-Shot Learning on Attributed Sequences. IEEE BigData 2018: 921-930 - [c61]Thomas Hartvigsen, Cansu Sen, Sarah Brownell, Erin Teeple, Xiangnan Kong, Elke A. Rundensteiner:
Early Prediction of MRSA Infections using Electronic Health Records. HEALTHINF 2018: 156-167 - [c60]Susmitha Wunnava, Xiao Qin, Tabassum Kakar, Xiangnan Kong, Elke A. Rundensteiner, Sanjay K. Sahoo, Suranjan De:
One Size Does Not Fit All: An Ensemble Approach Towards Information Extraction from Adverse Drug Event Narratives. HEALTHINF 2018: 176-188 - [c59]Susmitha Wunnava, Xiao Qin, Tabassum Kakar, M. L. Tlachac, Xiangnan Kong, Elke A. Rundensteiner, Sanjay K. Sahoo, Suranjan De:
Multi-layered Learning for Information Extraction from Adverse Drug Event Narratives. BIOSTEC (Selected Papers) 2018: 420-446 - [c58]Chang Liao, Yun Xiong, Xiangnan Kong, Yangyong Zhu:
Tracking Dynamic Magnet Communities: Insights from a Network Perspective. DASFAA (1) 2018: 406-424 - [c57]Chang Liao, Yun Xiong, Xiangnan Kong, Yangyong Zhu, Shimin Zhao, Shanshan Li:
Functional-Oriented Relationship Strength Estimation: From Online Events to Offline Interactions. DASFAA (1) 2018: 442-459 - [c56]Dongqing Xiao, Mohamed Y. Eltabakh, Xiangnan Kong:
Sharing Uncertain Graphs Using Syntactic Private Graph Models. ICDE 2018: 1336-1339 - [c55]Xinyue Liu, Xiangnan Kong, Lei Liu, Kuorong Chiang:
TreeGAN: Syntax-Aware Sequence Generation with Generative Adversarial Networks. ICDM 2018: 1140-1145 - [c54]Hang Yin, Xiangnan Kong, Xinyue Liu:
Coherent Graphical Lasso for Brain Network Discovery. ICDM 2018: 1392-1397 - [c53]John Boaz Lee, Ryan A. Rossi, Xiangnan Kong:
Graph Classification using Structural Attention. KDD 2018: 1666-1674 - [c52]Xinyue Liu, Xiangnan Kong, Philip S. Yu:
Active Opinion Maximization in Social Networks. KDD 2018: 1840-1849 - [c51]Susmitha Wunnava, Xiao Qin, Tabassum Kakar, Elke A. Rundensteiner, Xiangnan Kong:
Bidirectional LSTM-CRF for Adverse Drug Event Tagging in Electronic Health Records. Medication and Adverse Drug Event Detection 2018: 48-56 - [c50]Yizhou Zhang, Yun Xiong, Xiangnan Kong, Shanshan Li, Jinhong Mi, Yangyong Zhu:
Deep Collective Classification in Heterogeneous Information Networks. WWW 2018: 399-408 - 2017
- [c49]Yao Zhang, Yun Xiong, Xiangnan Kong, Yangyong Zhu:
Learning Node Embeddings in Interaction Graphs. CIKM 2017: 397-406 - [c48]Xinyue Liu, Yuanfang Song, Charu C. Aggarwal, Yao Zhang, Xiangnan Kong:
BiCycle: Item Recommendation with Life Cycles. ICDM 2017: 297-306 - [c47]Saket Sathe, Charu C. Aggarwal, Xiangnan Kong, Xinyue Liu:
Kernel-Based Feature Extraction for Collaborative Filtering. ICDM 2017: 1057-1062 - [c46]Xinyue Liu, Xiangnan Kong, Philip S. Yu:
Collective discovery of brain networks with unknown groups. IJCNN 2017: 3569-3576 - [c45]Xinyue Liu, Xiangnan Kong, Ann B. Ragin:
Unified and Contrasting Graphical Lasso for Brain Network Discovery. SDM 2017: 180-188 - [c44]John Boaz Lee, Xiangnan Kong, Yihan Bao, Constance M. Moore:
Identifying Deep Contrasting Networks from Time Series Data: Application to Brain Network Analysis. SDM 2017: 543-551 - [c43]Yao Zhang, Yun Xiong, Xinyue Liu, Xiangnan Kong, Yangyong Zhu:
Meta-Path Graphical Lasso for Learning Heterogeneous Connectivities. SDM 2017: 642-650 - [c42]Maryam Hasan, Elke A. Rundensteiner, Xiangnan Kong, Emmanuel Agu:
Using Social Sensing to Discover Trends in Public Emotion. ICSC 2017: 172-179 - 2016
- [c41]Jiawei Zhang, Xiangnan Kong, Philip S. Yu:
Social badge system analysis. ASONAM 2016: 453-460 - [c40]Xinyue Liu, Xiangnan Kong, Yanhua Li:
Collective Traffic Prediction with Partially Observed Traffic History using Location-Based Social Media. CIKM 2016: 2179-2184 - [c39]Yizhou Zhang, Yun Xiong, Xiangnan Kong, Yangyong Zhu:
NetCycle: Collective Evolution Inference in Heterogeneous Information Networks. KDD 2016: 1365-1374 - [c38]Xinyue Liu, Charu C. Aggarwal, Yufeng Li, Xiangnan Kong, Xinyuan Sun, Saket Sathe:
Kernelized Matrix Factorization for Collaborative Filtering. SDM 2016: 378-386 - [c37]Dongqing Xiao, Mohamed Y. Eltabakh, Xiangnan Kong:
Bermuda: An Efficient MapReduce Triangle Listing Algorithm for Web-Scale Graphs. SSDBM 2016: 10:1-10:12 - 2015
- [c36]Bokai Cao, Liang Zhan, Xiangnan Kong, Philip S. Yu, Nathalie Vizueta, Lori L. Altshuler, Alex D. Leow:
Identification of Discriminative Subgraph Patterns in fMRI Brain Networks in Bipolar Affective Disorder. BIH 2015: 105-114 - [c35]Bokai Cao, Xiangnan Kong, Jingyuan Zhang, Philip S. Yu, Ann B. Ragin:
Mining Brain Networks Using Multiple Side Views for Neurological Disorder Identification. ICDM 2015: 709-714 - [c34]Jiawei Zhang, Weixiang Shao, Senzhang Wang, Xiangnan Kong, Philip S. Yu:
PNA: Partial Network Alignment with Generic Stable Matching. IRI 2015: 166-173 - [c33]Randy C. Paffenroth, Xiangnan Kong:
Python in Data Science Research and Education. SciPy 2015: 164-170 - 2014
- [c32]Jingyuan Zhang, Xiangnan Kong, Roger Jie Luo, Yi Chang, Philip S. Yu:
NCR: A Scalable Network-Based Approach to Co-Ranking in Question-and-Answer Sites. CIKM 2014: 709-718 - [c31]Bokai Cao, Lifang He, Xiangnan Kong, Philip S. Yu, Zhifeng Hao, Ann B. Ragin:
Tensor-Based Multi-view Feature Selection with Applications to Brain Diseases. ICDM 2014: 40-49 - [c30]Bokai Cao, Xiangnan Kong, Philip S. Yu:
Collective Prediction of Multiple Types of Links in Heterogeneous Information Networks. ICDM 2014: 50-59 - [c29]Jingyuan Zhang, Xiaoxiao Shi, Xiangnan Kong, Hong-Han Shuai, Philip S. Yu:
Discovering Organizational Correlations from Twitter. ICDM Workshops 2014: 243-250 - [c28]Lifang He, Hong-Han Shuai, Xiangnan Kong, Zhifeng Hao, Xiaowei Yang, Philip S. Yu:
Low-Density Cut Based Tree Decomposition for Large-Scale SVM Problems. ICDM 2014: 839-844 - [c27]Li-Jia Li, Xiangnan Kong, Philip S. Yu:
Visual Recognition by Exploiting Latent Social Links in Image Collections. MMM (1) 2014: 121-132 - [c26]Lifang He, Xiangnan Kong, Philip S. Yu, Xiaowei Yang, Ann B. Ragin, Zhifeng Hao:
DuSK: A Dual Structure-preserving Kernel for Supervised Tensor Learning with Applications to Neuroimages. SDM 2014: 127-135 - [c25]Ning Yang, Xiangnan Kong, Fengjiao Wang, Philip S. Yu:
When and Where: Predicting Human Movements Based on Social Spatial-Temporal Events. SDM 2014: 515-523 - [c24]Xiangnan Kong, Zhaoming Wu, Li-Jia Li, Ruofei Zhang, Philip S. Yu, Hang Wu, Wei Fan:
Large-Scale Multi-Label Learning with Incomplete Label Assignments. SDM 2014: 920-928 - [c23]Jiawei Zhang, Xiangnan Kong, Philip S. Yu:
Transferring heterogeneous links across location-based social networks. WSDM 2014: 303-312 - [c22]Chun-Ta Lu, Sihong Xie, Xiangnan Kong, Philip S. Yu:
Inferring the impacts of social media on crowdfunding. WSDM 2014: 573-582 - 2013
- [c21]Xiangnan Kong, Jiawei Zhang, Philip S. Yu:
Inferring anchor links across multiple heterogeneous social networks. CIKM 2013: 179-188 - [c20]Shuyang Lin, Xiangnan Kong, Philip S. Yu:
Predicting trends in social networks via dynamic activeness model. CIKM 2013: 1661-1666 - [c19]Chong-Jing Sun, Philip S. Yu, Xiangnan Kong, Yan Fu:
Privacy Preserving Social Network Publication against Mutual Friend Attacks. ICDM Workshops 2013: 883-890 - [c18]Sihong Xie, Xiangnan Kong, Jing Gao, Wei Fan, Philip S. Yu:
Multilabel Consensus Classification. ICDM 2013: 1241-1246 - [c17]Jiawei Zhang, Xiangnan Kong, Philip S. Yu:
Predicting Social Links for New Users across Aligned Heterogeneous Social Networks. ICDM 2013: 1289-1294 - [c16]Xiangnan Kong, Bokai Cao, Philip S. Yu:
Multi-label classification by mining label and instance correlations from heterogeneous information networks. KDD 2013: 614-622 - [c15]Xiangnan Kong, Ann B. Ragin, Xue Wang, Philip S. Yu:
Discriminative Feature Selection for Uncertain Graph Classification. SDM 2013: 82-93 - 2012
- [c14]Erjia Yan, Ying Ding, Xiangnan Kong:
Monitoring knowledge flow through scholarly networks. ASIST 2012: 1-5 - [c13]Xiangnan Kong, Philip S. Yu, Ying Ding, David J. Wild:
Meta path-based collective classification in heterogeneous information networks. CIKM 2012: 1567-1571 - [c12]Chuan Shi, Xiangnan Kong, Philip S. Yu, Sihong Xie, Bin Wu:
Relevance search in heterogeneous networks. EDBT 2012: 180-191 - [c11]Chuan Shi, Chong Zhou, Xiangnan Kong, Philip S. Yu, Gang Liu, Bai Wang:
HeteRecom: a semantic-based recommendation systemin heterogeneous networks. KDD 2012: 1552-1555 - [c10]Chuan Shi, Xiangnan Kong, Philip S. Yu, Bai Wang:
Multi-Objective Multi-Label Classification. SDM 2012: 355-366 - [c9]Xiaoxiao Shi, Xiangnan Kong, Philip S. Yu:
Transfer Significant Subgraphs across Graph Databases. SDM 2012: 552-563 - [c8]Wangqun Lin, Xiangnan Kong, Philip S. Yu, Quanyuan Wu, Yan Jia, Chuan Li:
Community detection in incomplete information networks. WWW 2012: 341-350 - 2011
- [c7]Xiangnan Kong, Philip S. Yu:
An ensemble-based approach to fast classification of multi-label data streams. CollaborateCom 2011: 95-104 - [c6]Yuchen Zhao, Xiangnan Kong, Philip S. Yu:
Positive and Unlabeled Learning for Graph Classification. ICDM 2011: 962-971 - [c5]Xiangnan Kong, Wei Fan, Philip S. Yu:
Dual active feature and sample selection for graph classification. KDD 2011: 654-662 - [c4]Chuan Shi, Xiangnan Kong, Philip S. Yu, Bai Wang:
Multi-label Ensemble Learning. ECML/PKDD (3) 2011: 223-239 - [c3]Xiangnan Kong, Xiaoxiao Shi, Philip S. Yu:
Multi-Label Collective Classification. SDM 2011: 618-629 - 2010
- [c2]Xiangnan Kong, Philip S. Yu:
Multi-label Feature Selection for Graph Classification. ICDM 2010: 274-283 - [c1]Xiangnan Kong, Philip S. Yu:
Semi-supervised feature selection for graph classification. KDD 2010: 793-802
Parts in Books or Collections
- 2014
- [p1]Charu C. Aggarwal, Xiangnan Kong, Quanquan Gu, Jiawei Han, Philip S. Yu:
Active Learning: A Survey. Data Classification: Algorithms and Applications 2014: 571-606
Reference Works
- 2018
- [r1]Xiangnan Kong, Philip S. Yu:
Graph Classification in Heterogeneous Networks. Encyclopedia of Social Network Analysis and Mining. 2nd Ed. 2018
Informal and Other Publications
- 2023
- [i33]Thomas Hartvigsen, Jidapa Thadajarassiri, Xiangnan Kong, Elke A. Rundensteiner:
Finding Short Signals in Long Irregular Time Series with Continuous-Time Attention Policy Networks. CoRR abs/2302.04052 (2023) - [i32]Yao Su, Zhentian Qian, Lei Ma, Lifang He, Xiangnan Kong:
One-shot Joint Extraction, Registration and Segmentation of Neuroimaging Data. CoRR abs/2307.15198 (2023) - [i31]Hang Yin, Yao Su, Xinyue Liu, Thomas Hartvigsen, Yanhua Li, Xiangnan Kong:
Multi-State Brain Network Discovery. CoRR abs/2311.02466 (2023) - 2022
- [i30]Zhongfang Zhuang, Xiangnan Kong, Elke A. Rundensteiner, Aditya Arora, Jihane Zouaoui:
One-Shot Learning on Attributed Sequences. CoRR abs/2201.09202 (2022) - [i29]Thomas Hartvigsen, Walter Gerych, Jidapa Thadajarassiri, Xiangnan Kong, Elke A. Rundensteiner:
Stop&Hop: Early Classification of Irregular Time Series. CoRR abs/2208.09795 (2022) - [i28]Yao Su, Xin Dai, Lifang He, Xiangnan Kong:
ABN: Anti-Blur Neural Networks for Multi-Stage Deformable Image Registration. CoRR abs/2212.03277 (2022) - [i27]Yao Su, Zhentian Qian, Lifang He, Xiangnan Kong:
ERNet: Unsupervised Collective Extraction and Registration in Neuroimaging Data. CoRR abs/2212.03306 (2022) - 2021
- [i26]Hang Yin, Xinyue Liu, Xiangnan Kong:
Gaussian Mixture Graphical Lasso with Application to Edge Detection in Brain Networks. CoRR abs/2101.05348 (2021) - [i25]Chao Chen, Yifan Shen, Guixiang Ma, Xiangnan Kong, Srinivas Rangarajan, Xi Zhang, Sihong Xie:
Self-learn to Explain Siamese Networks Robustly. CoRR abs/2109.07371 (2021) - 2020
- [i24]Zhongfang Zhuang, Xiangnan Kong, Elke A. Rundensteiner, Jihane Zouaoui, Aditya Arora:
MLAS: Metric Learning on Attributed Sequences. CoRR abs/2011.04062 (2020) - 2019
- [i23]Thanh Tran, Xinyue Liu, Kyumin Lee, Xiangnan Kong:
Signed Distance-based Deep Memory Recommender. CoRR abs/1905.00453 (2019) - [i22]Zhongfang Zhuang, Xiangnan Kong, Elke A. Rundensteiner, Jihane Zouaoui, Aditya Arora:
Attributed Sequence Embedding. CoRR abs/1911.00949 (2019) - 2018
- [i21]Nesreen K. Ahmed, Ryan A. Rossi, John Boaz Lee, Xiangnan Kong, Theodore L. Willke, Rong Zhou, Hoda Eldardiry:
Learning Role-based Graph Embeddings. CoRR abs/1802.02896 (2018) - [i20]Xinyue Liu, Xiangnan Kong, Lei Liu, Kuorong Chiang:
TreeGAN: Syntax-Aware Sequence Generation with Generative Adversarial Networks. CoRR abs/1808.07582 (2018) - [i19]John Boaz Lee, Ryan A. Rossi, Xiangnan Kong, Sungchul Kim, Eunyee Koh, Anup Rao:
Higher-order Graph Convolutional Networks. CoRR abs/1809.07697 (2018) - 2017
- [i18]Nesreen K. Ahmed, Ryan A. Rossi, Rong Zhou, John Boaz Lee, Xiangnan Kong, Theodore L. Willke, Hoda Eldardiry:
A Framework for Generalizing Graph-based Representation Learning Methods. CoRR abs/1709.04596 (2017) - [i17]John Boaz Lee, Ryan A. Rossi, Xiangnan Kong:
Deep Graph Attention Model. CoRR abs/1709.06075 (2017) - [i16]Nesreen K. Ahmed, Ryan A. Rossi, Rong Zhou, John Boaz Lee, Xiangnan Kong, Theodore L. Willke, Hoda Eldardiry:
Representation Learning in Large Attributed Graphs. CoRR abs/1710.09471 (2017) - 2016
- [i15]Jiawei Zhang, Xiangnan Kong, Philip S. Yu:
Badge System Analysis and Design. CoRR abs/1607.00537 (2016) - 2015
- [i14]Jiawei Zhang, Weixiang Shao, Senzhang Wang, Xiangnan Kong, Philip S. Yu:
Partial Network Alignment with Anchor Meta Path and Truncated Generic Stable Matching. CoRR abs/1506.05164 (2015) - [i13]Bokai Cao, Xiangnan Kong, Philip S. Yu:
A review of heterogeneous data mining for brain disorders. CoRR abs/1508.01023 (2015) - [i12]Bokai Cao, Xiangnan Kong, Jingyuan Zhang, Philip S. Yu, Ann B. Ragin:
Mining Brain Networks using Multiple Side Views for Neurological Disorder Identification. CoRR abs/1508.04554 (2015) - 2014
- [i11]Chong-Jing Sun, Philip S. Yu, Xiangnan Kong, Yan Fu:
Privacy Preserving Social Network Publication Against Mutual Friend Attacks. CoRR abs/1401.3201 (2014) - [i10]Ning Yang, Xiangnan Kong, Fengjiao Wang, Philip S. Yu:
When and Where: Predicting Human Movements Based on Social Spatial-Temporal Events. CoRR abs/1407.1450 (2014) - [i9]Xiangnan Kong, Zhaoming Wu, Li-Jia Li, Ruofei Zhang, Philip S. Yu, Hang Wu, Wei Fan:
Large-Scale Multi-Label Learning with Incomplete Label Assignments. CoRR abs/1407.1538 (2014) - [i8]Lifang He, Xiangnan Kong, Philip S. Yu, Ann B. Ragin, Zhifeng Hao, Xiaowei Yang:
DuSK: A Dual Structure-preserving Kernel for Supervised Tensor Learning with Applications to Neuroimages. CoRR abs/1407.8289 (2014) - [i7]Jingyuan Zhang, Xiaoxiao Shi, Xiangnan Kong, Hong-Han Shuai, Philip S. Yu:
Discovering Organizational Correlations from Twitter. CoRR abs/1410.6001 (2014) - 2013
- [i6]Xiangnan Kong, Philip S. Yu, Xue Wang, Ann B. Ragin:
Discriminative Feature Selection for Uncertain Graph Classification. CoRR abs/1301.6626 (2013) - [i5]Xiangnan Kong, Bokai Cao, Philip S. Yu, Ying Ding, David J. Wild:
Meta Path-Based Collective Classification in Heterogeneous Information Networks. CoRR abs/1305.4433 (2013) - [i4]Shuyang Lin, Xiangnan Kong, Philip S. Yu:
Predicting Trends in Social Networks via Dynamic Activeness Model. CoRR abs/1308.1995 (2013) - [i3]Chuan Shi, Xiangnan Kong, Yue Huang, Philip S. Yu, Bin Wu:
HeteSim: A General Framework for Relevance Measure in Heterogeneous Networks. CoRR abs/1309.7393 (2013) - [i2]Jiawei Zhang, Xiangnan Kong, Philip S. Yu:
Predicting Social Links for New Users across Aligned Heterogeneous Social Networks. CoRR abs/1310.3492 (2013) - [i1]Sihong Xie, Xiangnan Kong, Jing Gao, Wei Fan, Philip S. Yu:
Multilabel Consensus Classification. CoRR abs/1310.4252 (2013)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-11 22:25 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint