default search action
Bernhard Pfahringer
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
Journal Articles
- 2024
- [j42]Hongyu Wang, Eibe Frank, Bernhard Pfahringer, Michael Mayo, Geoff Holmes:
Feature extractor stacking for cross-domain few-shot learning. Mach. Learn. 113(1): 121-158 (2024) - [j41]Nuwan Gunasekara, Bernhard Pfahringer, Heitor Murilo Gomes, Albert Bifet:
Gradient boosted trees for evolving data streams. Mach. Learn. 113(5): 3325-3352 (2024) - 2023
- [j40]Mi Li, Eibe Frank, Bernhard Pfahringer:
Large scale K-means clustering using GPUs. Data Min. Knowl. Discov. 37(1): 67-109 (2023) - [j39]Jesus Antonanzas, Yunzhe Jia, Eibe Frank, Albert Bifet, Bernhard Pfahringer:
teex: A toolbox for the evaluation of explanations. Neurocomputing 555: 126642 (2023) - [j38]Guilherme Weigert Cassales, Heitor Murilo Gomes, Albert Bifet, Bernhard Pfahringer, Hermes Senger:
Balancing Performance and Energy Consumption of Bagging Ensembles for the Classification of Data Streams in Edge Computing. IEEE Trans. Netw. Serv. Manag. 20(3): 3038-3054 (2023) - 2022
- [j37]Felipe Bravo-Marquez, Arun Khanchandani, Bernhard Pfahringer:
Incremental Word Vectors for Time-Evolving Sentiment Lexicon Induction. Cogn. Comput. 14(1): 425-441 (2022) - [j36]Yibin Sun, Bernhard Pfahringer, Heitor Murilo Gomes, Albert Bifet:
SOKNL: A novel way of integrating K-nearest neighbours with adaptive random forest regression for data streams. Data Min. Knowl. Discov. 36(5): 2006-2032 (2022) - [j35]Emanuele Pio Barracchia, Gianvito Pio, Albert Bifet, Heitor Murilo Gomes, Bernhard Pfahringer, Michelangelo Ceci:
LP-ROBIN: Link prediction in dynamic networks exploiting incremental node embedding. Inf. Sci. 606: 702-721 (2022) - 2021
- [j34]Guilherme Weigert Cassales, Heitor Murilo Gomes, Albert Bifet, Bernhard Pfahringer, Hermes Senger:
Improving the performance of bagging ensembles for data streams through mini-batching. Inf. Sci. 580: 260-282 (2021) - [j33]Jesse Read, Bernhard Pfahringer, Geoff Holmes, Eibe Frank:
Classifier Chains: A Review and Perspectives. J. Artif. Intell. Res. 70: 683-718 (2021) - [j32]Henry Gouk, Eibe Frank, Bernhard Pfahringer, Michael J. Cree:
Regularisation of neural networks by enforcing Lipschitz continuity. Mach. Learn. 110(2): 393-416 (2021) - 2020
- [j31]Vithya Yogarajan, Bernhard Pfahringer, Michael Mayo:
A review of Automatic end-to-end De-Identification: Is High Accuracy the Only Metric? Appl. Artif. Intell. 34(3): 251-269 (2020) - [j30]Adriano Rivolli, Jesse Read, Carlos Soares, Bernhard Pfahringer, André C. P. L. F. de Carvalho:
An empirical analysis of binary transformation strategies and base algorithms for multi-label learning. Mach. Learn. 109(8): 1509-1563 (2020) - 2019
- [j29]Jean Paul Barddal, Fabrício Enembreck, Heitor Murilo Gomes, Albert Bifet, Bernhard Pfahringer:
Merit-guided dynamic feature selection filter for data streams. Expert Syst. Appl. 116: 227-242 (2019) - [j28]Jean Paul Barddal, Fabrício Enembreck, Heitor Murilo Gomes, Albert Bifet, Bernhard Pfahringer:
Boosting decision stumps for dynamic feature selection on data streams. Inf. Syst. 83: 13-29 (2019) - [j27]Felipe Bravo-Marquez, Eibe Frank, Bernhard Pfahringer, Saif M. Mohammad:
AffectiveTweets: a Weka Package for Analyzing Affect in Tweets. J. Mach. Learn. Res. 20: 92:1-92:6 (2019) - [j26]Heitor Murilo Gomes, Albert Bifet, Jesse Read, Jean Paul Barddal, Fabrício Enembreck, Bernhard Pfahringer, Geoff Holmes, Talel Abdessalem:
Correction to: Adaptive random forests for evolving data stream classification. Mach. Learn. 108(10): 1877-1878 (2019) - 2018
- [j25]Jan N. van Rijn, Geoffrey Holmes, Bernhard Pfahringer, Joaquin Vanschoren:
The online performance estimation framework: heterogeneous ensemble learning for data streams. Mach. Learn. 107(1): 149-176 (2018) - [j24]Felipe Bravo-Marquez, Eibe Frank, Bernhard Pfahringer:
Transferring sentiment knowledge between words and tweets. Web Intell. 16(4): 203-220 (2018) - 2017
- [j23]Jean Paul Barddal, Heitor Murilo Gomes, Fabrício Enembreck, Bernhard Pfahringer:
A survey on feature drift adaptation: Definition, benchmark, challenges and future directions. J. Syst. Softw. 127: 278-294 (2017) - [j22]Heitor Murilo Gomes, Albert Bifet, Jesse Read, Jean Paul Barddal, Fabrício Enembreck, Bernhard Pfahringer, Geoff Holmes, Talel Abdessalem:
Adaptive random forests for evolving data stream classification. Mach. Learn. 106(9-10): 1469-1495 (2017) - 2016
- [j21]Jesse Read, Peter Reutemann, Bernhard Pfahringer, Geoff Holmes:
MEKA: A Multi-label/Multi-target Extension to WEKA. J. Mach. Learn. Res. 17: 21:1-21:5 (2016) - [j20]Felipe Bravo-Marquez, Eibe Frank, Bernhard Pfahringer:
Building a Twitter opinion lexicon from automatically-annotated tweets. Knowl. Based Syst. 108: 65-78 (2016) - 2015
- [j19]Luís Torgo, Paula Branco, Rita P. Ribeiro, Bernhard Pfahringer:
Resampling strategies for regression. Expert Syst. J. Knowl. Eng. 32(3): 465-476 (2015) - [j18]Indre Zliobaite, Albert Bifet, Jesse Read, Bernhard Pfahringer, Geoff Holmes:
Evaluation methods and decision theory for classification of streaming data with temporal dependence. Mach. Learn. 98(3): 455-482 (2015) - 2014
- [j17]Andreas Hapfelmeier, Bernhard Pfahringer, Stefan Kramer:
Pruning Incremental Linear Model Trees with Approximate Lookahead. IEEE Trans. Knowl. Data Eng. 26(8): 2072-2076 (2014) - [j16]Indre Zliobaite, Albert Bifet, Bernhard Pfahringer, Geoffrey Holmes:
Active Learning With Drifting Streaming Data. IEEE Trans. Neural Networks Learn. Syst. 25(1): 27-39 (2014) - 2013
- [j15]Quan Sun, Bernhard Pfahringer:
Pairwise meta-rules for better meta-learning-based algorithm ranking. Mach. Learn. 93(1): 141-161 (2013) - 2012
- [j14]Joaquin Vanschoren, Hendrik Blockeel, Bernhard Pfahringer, Geoffrey Holmes:
Experiment databases - A new way to share, organize and learn from experiments. Mach. Learn. 87(2): 127-158 (2012) - [j13]Jesse Read, Albert Bifet, Geoff Holmes, Bernhard Pfahringer:
Scalable and efficient multi-label classification for evolving data streams. Mach. Learn. 88(1-2): 243-272 (2012) - [j12]Albert Bifet, Eibe Frank, Geoff Holmes, Bernhard Pfahringer:
Ensembles of Restricted Hoeffding Trees. ACM Trans. Intell. Syst. Technol. 3(2): 30:1-30:20 (2012) - 2011
- [j11]Jesse Read, Bernhard Pfahringer, Geoff Holmes, Eibe Frank:
Classifier chains for multi-label classification. Mach. Learn. 85(3): 333-359 (2011) - 2010
- [j10]Albert Bifet, Geoff Holmes, Richard Kirkby, Bernhard Pfahringer:
MOA: Massive Online Analysis. J. Mach. Learn. Res. 11: 1601-1604 (2010) - [j9]Remco R. Bouckaert, Eibe Frank, Mark A. Hall, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, Ian H. Witten:
WEKA - Experiences with a Java Open-Source Project. J. Mach. Learn. Res. 11: 2533-2541 (2010) - 2009
- [j8]Mark A. Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, Ian H. Witten:
The WEKA data mining software: an update. SIGKDD Explor. 11(1): 10-18 (2009) - 2004
- [j7]Hendrik Blockeel, Saso Dzeroski, Boris Kompare, Stefan Kramer, Bernhard Pfahringer, Wim Van Laer:
Experiments In Predicting Biodegradability. Appl. Artif. Intell. 18(2): 157-181 (2004) - [j6]Bernhard Pfahringer:
The Weka solution to the 2004 KDD Cup. SIGKDD Explor. 6(2): 117-119 (2004) - 2001
- [j5]Stefan Kramer, Gerhard Widmer, Bernhard Pfahringer, Michael de Groeve:
Prediction of Ordinal Classes Using Regression Trees. Fundam. Informaticae 47(1-2): 1-13 (2001) - 2000
- [j4]Klaus Kovar, Johannes Fürnkranz, Johann Petrak, Bernhard Pfahringer, Robert Trappl, Gerhard Widmer:
Searching for Patterns in Political Event Sequences: Experiments with the Keds Database. Cybern. Syst. 31(6): 649-668 (2000) - [j3]Bernhard Pfahringer:
Winning the KDD99 Classification Cup: Bagged Boosting. SIGKDD Explor. 1(2): 65-66 (2000) - 1998
- [j2]Johannes Fürnkranz, Bernhard Pfahringer:
Guest Editorial: First-Order Knowledge Discovery in Databases. Appl. Artif. Intell. 12(5): 345-361 (1998) - 1988
- [j1]Bernhard Pfahringer, M. Hoberstorfer, Robert Trappl:
A decision support system for village health workers in developing countries. Appl. Artif. Intell. 2(1): 47-63 (1988)
Conference and Workshop Papers
- 2024
- [c150]Reginaldo Luna, Guilherme Weigert Cassales, Bernhard Pfahringer, Albert Bifet, Heitor Murilo Gomes, Hermes Senger:
Mini-batching with Fused Training and Testing for Data Streams Processing on the Edge. CF 2024 - [c149]Filippo Leveni, Guilherme Weigert Cassales, Bernhard Pfahringer, Albert Bifet, Giacomo Boracchi:
Online Isolation Forest. ICML 2024 - [c148]Yun Sing Koh, Albert Bifet, Karin R. Bryan, Guilherme Weigert Cassales, Olivier Graffeuille, Nick Jin Sean Lim, Phil Mourot, Ding Ning, Bernhard Pfahringer, Varvara Vetrova, Heitor Murilo Gomes:
Time-Evolving Data Science and Artificial Intelligence for Advanced Open Environmental Science (TAIAO) Programme. IJCAI 2024: 7314-7322 - [c147]Nuwan Gunasekara, Bernhard Pfahringer, Heitor Murilo Gomes, Albert Bifet, Yun Sing Koh:
Recurrent Concept Drifts on Data Streams. IJCAI 2024: 8029-8037 - [c146]Yibin Sun, Bernhard Pfahringer, Heitor Murilo Gomes, Albert Bifet:
Adaptive Prediction Interval for Data Stream Regression. PAKDD (3) 2024: 130-141 - [c145]Marco Heyden, Heitor Murilo Gomes, Edouard Fouché, Bernhard Pfahringer, Klemens Böhm:
Leveraging Plasticity in Incremental Decision Trees. ECML/PKDD (5) 2024: 38-54 - 2023
- [c144]Anton Lee, Yaqian Zhang, Heitor Murilo Gomes, Albert Bifet, Bernhard Pfahringer:
Look At Me, No Replay! SurpriseNet: Anomaly Detection Inspired Class Incremental Learning. CIKM 2023: 4038-4042 - [c143]Hongyu Wang, Eibe Frank, Bernhard Pfahringer, Geoffrey Holmes:
Self-trained Centroid Classifiers for Semi-supervised Cross-domain Few-shot Learning. CoLLAs 2023: 481-492 - [c142]Nuwan Gunasekara, Bernhard Pfahringer, Heitor Murilo Gomes, Albert Bifet:
Survey on Online Streaming Continual Learning. IJCAI 2023: 6628-6637 - 2022
- [c141]Vithya Yogarajan, Jacob Montiel, Tony Smith, Bernhard Pfahringer:
Predicting COVID-19 Patient Shielding: A Comprehensive Study. AI 2022: 332-343 - [c140]Rajchada Chanajitt, Bernhard Pfahringer, Heitor Murilo Gomes, Vithya Yogarajan:
Multiclass Malware Classification Using Either Static Opcodes or Dynamic API Calls. AI 2022: 427-441 - [c139]Attaullah Sahito, Eibe Frank, Bernhard Pfahringer:
Better Self-training for Image Classification Through Self-supervision. AI 2022: 645-657 - [c138]Nuwan Gunasekara, Heitor Murilo Gomes, Albert Bifet, Bernhard Pfahringer:
Adaptive Neural Networks for Online Domain Incremental Continual Learning. DS 2022: 89-103 - [c137]Hongyu Wang, Huon Fraser, Henry Gouk, Eibe Frank, Bernhard Pfahringer, Michael Mayo, Geoff Holmes:
Experiments in Cross-domain Few-shot Learning for Image Classification: Extended Abstract. Meta-Knowledge Transfer @ ECML/PKDD 2022: 81-83 - [c136]Vithya Yogarajan, Bernhard Pfahringer, Tony Smith, Jacob Montiel:
Concatenating BioMed-Transformers to Tackle Long Medical Documents and to Improve the Prediction of Tail-End Labels. ICANN (2) 2022: 209-221 - [c135]Rajchada Chanajitt, Bernhard Pfahringer, Heitor Murilo Gomes:
A Comparison of Neural Network Architectures for Malware Classification Based on Noriben Operation Sequences. ICANN (1) 2022: 428-440 - [c134]Nuwan Gunasekara, Heitor Murilo Gomes, Albert Bifet, Bernhard Pfahringer:
Adaptive Online Domain Incremental Continual Learning. ICANN (1) 2022: 491-502 - [c133]Nuwan Gunasekara, Heitor Murilo Gomes, Bernhard Pfahringer, Albert Bifet:
Online Hyperparameter Optimization for Streaming Neural Networks. IJCNN 2022: 1-9 - [c132]Chen Zheng, Bernhard Pfahringer, Michael Mayo:
Alzheimer's Disease Detection via a Surrogate Brain Age Prediction Task using 3D Convolutional Neural Networks. IJCNN 2022: 1-8 - [c131]Yaqian Zhang, Bernhard Pfahringer, Eibe Frank, Albert Bifet, Nick Jin Sean Lim, Yunzhe Jia:
A simple but strong baseline for online continual learning: Repeated Augmented Rehearsal. NeurIPS 2022 - 2021
- [c130]Vithya Yogarajan, Jacob Montiel, Tony Smith, Bernhard Pfahringer:
Transformers for Multi-label Classification of Medical Text: An Empirical Comparison. AIME 2021: 114-123 - [c129]Rajchada Chanajitt, Bernhard Pfahringer, Heitor Murilo Gomes:
Combining Static and Dynamic Analysis to Improve Machine Learning-based Malware Classification. DSAA 2021: 1-10 - [c128]Alan Ansell, Felipe Bravo-Marquez, Bernhard Pfahringer:
PolyLM: Learning about Polysemy through Language Modeling. EACL 2021: 563-574 - [c127]Saulo Martiello Mastelini, Jacob Montiel, Heitor Murilo Gomes, Albert Bifet, Bernhard Pfahringer, André C. P. L. F. de Carvalho:
Fast and lightweight binary and multi-branch Hoeffding Tree Regressors. ICDM (Workshops) 2021: 380-388 - [c126]Yunzhe Jia, Eibe Frank, Bernhard Pfahringer, Albert Bifet, Nick Jin Sean Lim:
Studying and Exploiting the Relationship Between Model Accuracy and Explanation Quality. ECML/PKDD (2) 2021: 699-714 - 2020
- [c125]Vithya Yogarajan, Henry Gouk, Tony Smith, Michael Mayo, Bernhard Pfahringer:
Comparing High Dimensional Word Embeddings Trained on Medical Text to Bag-of-Words for Predicting Medical Codes. ACIIDS (1) 2020: 97-108 - [c124]Attaullah Sahito, Eibe Frank, Bernhard Pfahringer:
Transfer of Pretrained Model Weights Substantially Improves Semi-supervised Image Classification. Australasian Conference on Artificial Intelligence 2020: 433-444 - [c123]Hongyu Wang, Henry Gouk, Eibe Frank, Bernhard Pfahringer, Michael Mayo:
A Comparison of Machine Learning Methods for Cross-Domain Few-Shot Learning. Australasian Conference on Artificial Intelligence 2020: 445-457 - [c122]Alessio Bernardo, Heitor Murilo Gomes, Jacob Montiel, Bernhard Pfahringer, Albert Bifet, Emanuele Della Valle:
C-SMOTE: Continuous Synthetic Minority Oversampling for Evolving Data Streams. IEEE BigData 2020: 483-492 - [c121]Guilherme Weigert Cassales, Heitor Murilo Gomes, Albert Bifet, Bernhard Pfahringer, Hermes Senger:
Improving parallel performance of ensemble learners for streaming data through data locality with mini-batching. HPCC/DSS/SmartCity 2020: 138-146 - [c120]Maroua Bahri, Bernhard Pfahringer, Albert Bifet, Silviu Maniu:
Efficient Batch-Incremental Classification Using UMAP for Evolving Data Streams. IDA 2020: 40-53 - [c119]Heitor Murilo Gomes, Jacob Montiel, Saulo Martiello Mastelini, Bernhard Pfahringer, Albert Bifet:
On Ensemble Techniques for Data Stream Regression. IJCNN 2020: 1-8 - [c118]Jacob Montiel, Rory Mitchell, Eibe Frank, Bernhard Pfahringer, Talel Abdessalem, Albert Bifet:
Adaptive XGBoost for Evolving Data Streams. IJCNN 2020: 1-8 - [c117]Matthias Carnein, Heike Trautmann, Albert Bifet, Bernhard Pfahringer:
confStream: Automated Algorithm Selection and Configuration of Stream Clustering Algorithms. LION 2020: 80-95 - 2019
- [c116]Alex Yuxuan Peng, Yun Sing Koh, Patricia Riddle, Bernhard Pfahringer:
Investigating the effect of novel classes in semi-supervised learning. ACML 2019: 615-630 - [c115]Henry Gouk, Bernhard Pfahringer, Eibe Frank:
Stochastic Gradient Trees. ACML 2019: 1094-1109 - [c114]Attaullah Sahito, Eibe Frank, Bernhard Pfahringer:
Semi-supervised Learning Using Siamese Networks. Australasian Conference on Artificial Intelligence 2019: 586-597 - [c113]Heitor Murilo Gomes, Rodrigo Fernandes de Mello, Bernhard Pfahringer, Albert Bifet:
Feature Scoring using Tree-Based Ensembles for Evolving Data Streams. IEEE BigData 2019: 761-769 - [c112]Jörg Wicker, Yan Cathy Hua, Rayner Rebello, Bernhard Pfahringer:
XOR-Based Boolean Matrix Decomposition. ICDM 2019: 638-647 - [c111]Tim Leathart, Eibe Frank, Bernhard Pfahringer, Geoffrey Holmes:
On Calibration of Nested Dichotomies. PAKDD (1) 2019: 69-80 - [c110]Tim Leathart, Eibe Frank, Bernhard Pfahringer, Geoffrey Holmes:
Ensembles of Nested Dichotomies with Multiple Subset Evaluation. PAKDD (1) 2019: 81-93 - [c109]Matthias Carnein, Heike Trautmann, Albert Bifet, Bernhard Pfahringer:
Towards Automated Configuration of Stream Clustering Algorithms. PKDD/ECML Workshops (1) 2019: 137-143 - [c108]Alan Ansell, Felipe Bravo-Marquez, Bernhard Pfahringer:
An ELMo-inspired approach to SemDeep-5's Word-in-Context task. SemDeep@IJCAI 2019: 21-25 - 2018
- [c107]Bartosz Krawczyk, Bernhard Pfahringer, Michal Wozniak:
Combining active learning with concept drift detection for data stream mining. IEEE BigData 2018: 2239-2244 - [c106]Edmond Zhang, Reece Robinson, Bernhard Pfahringer:
Deep Holistic Representation Learning from EHR. ISMICT 2018: 1-6 - [c105]Alex Yuxuan Peng, Yun Sing Koh, Patricia Riddle, Bernhard Pfahringer:
Using Supervised Pretraining to Improve Generalization of Neural Networks on Binary Classification Problems. ECML/PKDD (1) 2018: 410-425 - [c104]Henry Gouk, Bernhard Pfahringer, Eibe Frank, Michael J. Cree:
MaxGain: Regularisation of Neural Networks by Constraining Activation Magnitudes. ECML/PKDD (1) 2018: 541-556 - [c103]Lanqin Yuan, Bernhard Pfahringer, Jean Paul Barddal:
Iterative subset selection for feature drifting data streams. SAC 2018: 510-517 - 2017
- [c102]Tim Leathart, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer:
Probability Calibration Trees. ACML 2017: 145-160 - [c101]Min-Hsien Weng, Bernhard Pfahringer, Mark Utting:
Static techniques for reducing memory usage in the C implementation of whiley programs. ACSW 2017: 15:1-15:8 - [c100]Paula Branco, Luís Torgo, Rita P. Ribeiro, Eibe Frank, Bernhard Pfahringer, Markus Michael Rau:
Learning Through Utility Optimization in Regression Tasks. DSAA 2017: 30-39 - [c99]Vítor Cerqueira, Luís Torgo, Mariana Oliveira, Bernhard Pfahringer:
Dynamic and Heterogeneous Ensembles for Time Series Forecasting. DSAA 2017: 242-251 - [c98]Albert Bifet, Jiajin Zhang, Wei Fan, Cheng He, Jianfeng Zhang, Jianfeng Qian, Geoff Holmes, Bernhard Pfahringer:
Extremely Fast Decision Tree Mining for Evolving Data Streams. KDD 2017: 1733-1742 - 2016
- [c97]Henry Gouk, Bernhard Pfahringer, Michael J. Cree:
Learning Distance Metrics for Multi-Label Classification. ACML 2016: 318-333 - [c96]Felipe Bravo-Marquez, Eibe Frank, Bernhard Pfahringer:
Annotate-Sample-Average (ASA): A New Distant Supervision Approach for Twitter Sentiment Analysis. ECAI 2016: 498-506 - [c95]Jean Paul Barddal, Heitor Murilo Gomes, Fabrício Enembreck, Bernhard Pfahringer, Albert Bifet:
On Dynamic Feature Weighting for Feature Drifting Data Streams. ECML/PKDD (2) 2016: 129-144 - [c94]Tim Leathart, Bernhard Pfahringer, Eibe Frank:
Building Ensembles of Adaptive Nested Dichotomies with Random-Pair Selection. ECML/PKDD (2) 2016: 179-194 - [c93]Felipe Bravo-Marquez, Eibe Frank, Bernhard Pfahringer:
From Opinion Lexicons to Sentiment Classification of Tweets and Vice Versa: A Transfer Learning Approach. WI 2016: 145-152 - [c92]Felipe Bravo-Marquez, Eibe Frank, Saif M. Mohammad, Bernhard Pfahringer:
Determining Word-Emotion Associations from Tweets by Multi-label Classification. WI 2016: 536-539 - 2015
- [c91]Jan N. van Rijn, Geoffrey Holmes, Bernhard Pfahringer, Joaquin Vanschoren:
Having a Blast: Meta-Learning and Heterogeneous Ensembles for Data Streams. ICDM 2015: 1003-1008 - [c90]Felipe Bravo-Marquez, Eibe Frank, Bernhard Pfahringer:
Positive, Negative, or Neutral: Learning an Expanded Opinion Lexicon from Emoticon-Annotated Tweets. IJCAI 2015: 1229-1235 - [c89]Sripirakas Sakthithasan, Russel Pears, Albert Bifet, Bernhard Pfahringer:
Use of ensembles of Fourier spectra in capturing recurrent concepts in data streams. IJCNN 2015: 1-8 - [c88]Albert Bifet, Gianmarco De Francisci Morales, Jesse Read, Geoff Holmes, Bernhard Pfahringer:
Efficient Online Evaluation of Big Data Stream Classifiers. KDD 2015: 59-68 - [c87]Bernhard Pfahringer:
On a Few Recent Developments in Meta-Learning for Algorithm Ranking and Selection. MetaSel@PKDD/ECML 2015: 2 - [c86]Felipe Bravo-Marquez, Eibe Frank, Bernhard Pfahringer:
From Unlabelled Tweets to Twitter-specific Opinion Words. SIGIR 2015: 743-746 - [c85]Min-Hsien Weng, Mark Utting, Bernhard Pfahringer:
Bound Analysis for Whiley Programs. USE@FM 2015: 53-67 - 2014
- [c84]Jan N. van Rijn, Geoffrey Holmes, Bernhard Pfahringer, Joaquin Vanschoren:
Algorithm Selection on Data Streams. Discovery Science 2014: 325-336 - [c83]Jan N. van Rijn, Geoffrey Holmes, Bernhard Pfahringer, Joaquin Vanschoren:
Towards Meta-learning over Data Streams. MetaSel@ECAI 2014: 37-38 - [c82]Dino Ienco, Albert Bifet, Bernhard Pfahringer, Pascal Poncelet:
Détection de changements dans des flots de données qualitatives. EGC 2014: 517-520 - [c81]Dino Ienco, Indre Zliobaite, Bernhard Pfahringer:
High density-focused uncertainty sampling for active learning over evolving stream data. BigMine 2014: 133-148 - [c80]Quan Sun, Bernhard Pfahringer:
Hierarchical Meta-Rules for Scalable Meta-Learning. PRICAI 2014: 383-395 - [c79]Dino Ienco, Albert Bifet, Bernhard Pfahringer, Pascal Poncelet:
Change detection in categorical evolving data streams. SAC 2014: 792-797 - 2013
- [c78]Bernhard Pfahringer:
The MOA Data Stream Mining Tool: A Mid-Term Report. MLSDA@AUS-AI 2013: 3 - [c77]Eibe Frank, Bernhard Pfahringer:
Propositionalisation of Multi-instance Data Using Random Forests. Australasian Conference on Artificial Intelligence 2013: 362-373 - [c76]Dino Ienco, Albert Bifet, Indre Zliobaite, Bernhard Pfahringer:
Clustering Based Active Learning for Evolving Data Streams. Discovery Science 2013: 79-93 - [c75]Luís Torgo, Rita P. Ribeiro, Bernhard Pfahringer, Paula Branco:
SMOTE for Regression. EPIA 2013: 378-389 - [c74]Albert Bifet, Jesse Read, Bernhard Pfahringer, Geoff Holmes, Indre Zliobaite:
CD-MOA: Change Detection Framework for Massive Online Analysis. IDA 2013: 92-103 - [c73]Samuel Sarjant, Bernhard Pfahringer, Kurt Driessens, Tony Smith:
A Direct Policy-Search Algorithm for Relational Reinforcement Learning. ILP 2013: 76-92 - [c72]Quan Sun, Bernhard Pfahringer, Michael Mayo:
Towards a Framework for Designing Full Model Selection and Optimization Systems. MCS 2013: 259-270 - [c71]Albert Bifet, Jesse Read, Indre Zliobaite, Bernhard Pfahringer, Geoff Holmes:
Pitfalls in Benchmarking Data Stream Classification and How to Avoid Them. ECML/PKDD (1) 2013: 465-479 - [c70]Madeleine Seeland, Stefan Kramer, Bernhard Pfahringer:
Model selection based product kernel learning for regression on graphs. SAC 2013: 136-143 - [c69]Albert Bifet, Bernhard Pfahringer, Jesse Read, Geoff Holmes:
Efficient data stream classification via probabilistic adaptive windows. SAC 2013: 801-806 - 2012
- [c68]Quan Sun, Bernhard Pfahringer:
Bagging Ensemble Selection for Regression. Australasian Conference on Artificial Intelligence 2012: 695-706 - [c67]Philipp Kranen, Hardy Kremer, Timm Jansen, Thomas Seidl, Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Jesse Read:
Stream Data Mining Using the MOA Framework. DASFAA (2) 2012: 309-313 - [c66]Quan Sun, Bernhard Pfahringer, Michael Mayo:
Full model selection in the space of data mining operators. GECCO (Companion) 2012: 1503-1504 - [c65]Jesse Read, Albert Bifet, Bernhard Pfahringer, Geoff Holmes:
Batch-Incremental versus Instance-Incremental Learning in Dynamic and Evolving Data. IDA 2012: 313-323 - [c64]Madeleine Seeland, Fabian Buchwald, Stefan Kramer, Bernhard Pfahringer:
Maximum Common Subgraph based locally weighted regression. SAC 2012: 165-172 - [c63]Jörg Wicker, Bernhard Pfahringer, Stefan Kramer:
Multi-label classification using boolean matrix decomposition. SAC 2012: 179-186 - 2011
- [c62]Bernhard Pfahringer:
Semi-random Model Tree Ensembles: An Effective and Scalable Regression Method. Australasian Conference on Artificial Intelligence 2011: 231-240 - [c61]Quan Sun, Bernhard Pfahringer:
Bagging Ensemble Selection. Australasian Conference on Artificial Intelligence 2011: 251-260 - [c60]Samuel Sarjant, Bernhard Pfahringer, Kurt Driessens, Tony Smith:
Using the online cross-entropy method to learn relational policies for playing different games. CIG 2011: 182-189 - [c59]Albert Bifet, Geoffrey Holmes, Bernhard Pfahringer:
MOA-TweetReader: Real-Time Analysis in Twitter Streaming Data. Discovery Science 2011: 46-60 - [c58]Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Ricard Gavaldà:
Mining frequent closed graphs on evolving data streams. KDD 2011: 591-599 - [c57]Hardy Kremer, Philipp Kranen, Timm Jansen, Thomas Seidl, Albert Bifet, Geoff Holmes, Bernhard Pfahringer:
An effective evaluation measure for clustering on evolving data streams. KDD 2011: 868-876 - [c56]Indre Zliobaite, Albert Bifet, Bernhard Pfahringer, Geoff Holmes:
Active Learning with Evolving Streaming Data. ECML/PKDD (3) 2011: 597-612 - [c55]Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Jesse Read, Philipp Kranen, Hardy Kremer, Timm Jansen, Thomas Seidl:
MOA: A Real-Time Analytics Open Source Framework. ECML/PKDD (3) 2011: 617-620 - [c54]Albert Bifet, Geoffrey Holmes, Bernhard Pfahringer, Ricard Gavaldà:
Detecting Sentiment Change in Twitter Streaming Data. WAPA 2011: 5-11 - [c53]Jesse Read, Albert Bifet, Geoff Holmes, Bernhard Pfahringer:
Streaming Multi-label Classification. WAPA 2011: 19-25 - [c52]Indre Zliobaite, Albert Bifet, Geoff Holmes, Bernhard Pfahringer:
MOA Concept Drift Active Learning Strategies for Streaming Data. WAPA 2011: 48-55 - 2010
- [c51]Philipp Kranen, Hardy Kremer, Timm Jansen, Thomas Seidl, Albert Bifet, Geoff Holmes, Bernhard Pfahringer:
Clustering Performance on Evolving Data Streams: Assessing Algorithms and Evaluation Measures within MOA. ICDM Workshops 2010: 1400-1403 - [c50]Albert Bifet, Geoffrey Holmes, Bernhard Pfahringer, Eibe Frank:
Fast Perceptron Decision Tree Learning from Evolving Data Streams. PAKDD (2) 2010: 299-310 - [c49]Albert Bifet, Geoffrey Holmes, Bernhard Pfahringer:
Leveraging Bagging for Evolving Data Streams. ECML/PKDD (1) 2010: 135-150 - [c48]Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Philipp Kranen, Hardy Kremer, Timm Jansen, Thomas Seidl:
MOA: Massive Online Analysis, a Framework for Stream Classification and Clustering. WAPA 2010: 44-50 - [c47]Albert Bifet, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer:
Accurate Ensembles for Data Streams: Combining Restricted Hoeffding Trees using Stacking. ACML 2010: 225-240 - 2009
- [c46]Albert Bifet, Geoffrey Holmes, Bernhard Pfahringer, Ricard Gavaldà:
Improving Adaptive Bagging Methods for Evolving Data Streams. ACML 2009: 23-37 - [c45]Stefan Mutter, Bernhard Pfahringer, Geoffrey Holmes:
The Positive Effects of Negative Information: Extending One-Class Classification Models in Binary Proteomic Sequence Classification. Australasian Conference on Artificial Intelligence 2009: 260-269 - [c44]Grant Anderson, Bernhard Pfahringer:
Relational Random Forests Based on Random Relational Rules. IJCAI 2009: 986-991 - [c43]Albert Bifet, Geoffrey Holmes, Bernhard Pfahringer, Richard Kirkby, Ricard Gavaldà:
New ensemble methods for evolving data streams. KDD 2009: 139-148 - [c42]Jesse Read, Bernhard Pfahringer, Geoffrey Holmes, Eibe Frank:
Classifier Chains for Multi-label Classification. ECML/PKDD (2) 2009: 254-269 - 2008
- [c41]Stefan Mutter, Bernhard Pfahringer, Geoffrey Holmes:
Propositionalisation of Profile Hidden Markov Models for Biological Sequence Analysis. Australasian Conference on Artificial Intelligence 2008: 278-288 - [c40]Xing Wu, Geoffrey Holmes, Bernhard Pfahringer:
Mining Arbitrarily Large Datasets Using Heuristic k-Nearest Neighbour Search. Australasian Conference on Artificial Intelligence 2008: 355-361 - [c39]Jesse Read, Bernhard Pfahringer, Geoffrey Holmes:
Multi-label Classification Using Ensembles of Pruned Sets. ICDM 2008: 995-1000 - [c38]Joaquin Vanschoren, Hendrik Blockeel, Bernhard Pfahringer, Geoffrey Holmes:
Organizing the World's Machine Learning Information. ISoLA 2008: 693-708 - [c37]Bernhard Pfahringer, Geoffrey Holmes, Richard Kirkby:
Handling Numeric Attributes in Hoeffding Trees. PAKDD 2008: 296-307 - [c36]Grant Anderson, Bernhard Pfahringer:
Exploiting Propositionalization Based on Random Relational Rules for Semi-supervised Learning. PAKDD 2008: 494-502 - [c35]Joaquin Vanschoren, Bernhard Pfahringer, Geoffrey Holmes:
Learning from the Past with Experiment Databases. PRICAI 2008: 485-496 - 2007
- [c34]Bernhard Pfahringer, Geoffrey Holmes, Richard Kirkby:
New Options for Hoeffding Trees. Australian Conference on Artificial Intelligence 2007: 90-99 - [c33]Grant Anderson, Bernhard Pfahringer:
Clustering Relational Data Based on Randomized Propositionalization. ILP 2007: 39-48 - [c32]Bernhard Pfahringer, Claire Leschi, Peter Reutemann:
Scaling Up Semi-supervised Learning: An Efficient and Effective LLGC Variant. PAKDD 2007: 236-247 - 2006
- [c31]Kurt Driessens, Peter Reutemann, Bernhard Pfahringer, Claire Leschi:
Using Weighted Nearest Neighbor to Benefit from Unlabeled Data. PAKDD 2006: 60-69 - [c30]Eibe Frank, Bernhard Pfahringer:
Improving on Bagging with Input Smearing. PAKDD 2006: 97-106 - 2005
- [c29]Geoffrey Holmes, Bernhard Pfahringer, Richard Kirkby:
Cache Hierarchy Inspired Compression: a Novel Architecture for Data Streams. CITA 2005: 130-36 - [c28]Geoffrey Holmes, Richard Kirkby, Bernhard Pfahringer:
Stress-Testing Hoeffding Trees. PKDD 2005: 495-502 - 2004
- [c27]Mi Li, Geoffrey Holmes, Bernhard Pfahringer:
Clustering Large Datasets Using Cobweb and K-Means in Tandem. Australian Conference on Artificial Intelligence 2004: 368-379 - [c26]Ashraf M. Kibriya, Eibe Frank, Bernhard Pfahringer, Geoffrey Holmes:
Multinomial Naive Bayes for Text Categorization Revisited. Australian Conference on Artificial Intelligence 2004: 488-499 - [c25]Peter Reutemann, Bernhard Pfahringer, Eibe Frank:
A Toolbox for Learning from Relational Data with Propositional and Multi-instance Learners. Australian Conference on Artificial Intelligence 2004: 1017-1023 - 2003
- [c24]Nils Weidmann, Eibe Frank, Bernhard Pfahringer:
A Two-Level Learning Method for Generalized Multi-instance Problems. ECML 2003: 468-479 - [c23]Maximilien Sauban, Bernhard Pfahringer:
Text Categorisation Using Document Profiling. PKDD 2003: 411-422 - [c22]Eibe Frank, Mark A. Hall, Bernhard Pfahringer:
Locally Weighted Naive Bayes. UAI 2003: 249-256 - 2002
- [c21]Geoffrey Holmes, Bernhard Pfahringer, Richard Kirkby, Eibe Frank, Mark A. Hall:
Multiclass Alternating Decision Trees. ECML 2002: 161-172 - [c20]Roger Clayton, John G. Cleary, Bernhard Pfahringer, Mark Utting:
Tabling Structures for Bottom-Up Logic Programming. LOPSTR 2002: 50-51 - 2001
- [c19]Bernhard Pfahringer, Geoffrey Holmes, Gabi Schmidberger:
Wrapping Boosters against Noise. Australian Joint Conference on Artificial Intelligence 2001: 402-413 - [c18]Bernhard Pfahringer, Geoffrey Holmes, Richard Kirkby:
Optimizing the Induction of Alternating Decision Trees. PAKDD 2001: 477-487 - 2000
- [c17]Johannes Fürnkranz, Bernhard Pfahringer, Hermann Kaindl, Stefan Kramer:
Learning to Use Operational Advice. ECAI 2000: 291-295 - [c16]Bernhard Pfahringer, Hilan Bensusan, Christophe G. Giraud-Carrier:
Meta-Learning by Landmarking Various Learning Algorithms. ICML 2000: 743-750 - [c15]Stefan Kramer, Gerhard Widmer, Bernhard Pfahringer, Michael de Groeve:
Prediction of Ordinal Classes Using Regression Trees. ISMIS 2000: 426-434 - 1999
- [c14]Saso Dzeroski, Hendrik Blockeel, Boris Kompare, Stefan Kramer, Bernhard Pfahringer, Wim Van Laer:
Experiments in Predicting Biodegradability. ILP 1999: 80-91 - 1998
- [c13]Stefan Kramer, Bernhard Pfahringer, Christoph Helma:
Stochastic Propositionalization of Non-determinate Background Knowledge. ILP 1998: 80-94 - 1997
- [c12]Bernhard Pfahringer:
Compression-Based Pruning of Decision Lists. ECML 1997: 199-212 - [c11]Stefan Kramer, Bernhard Pfahringer, Christoph Helma:
Mining for Causes of Cancer: Machine Learning Experiments at Various Levels of Detail. KDD 1997: 223-226 - 1996
- [c10]Stefan Kramer, Bernhard Pfahringer:
Efficient Search for Strong Partial Determinations. KDD 1996: 371-374 - 1995
- [c9]Bernhard Pfahringer:
A New MDL Measure for Robust Rule Induction (Extended Abstract). ECML 1995: 331-334 - [c8]Bernhard Pfahringer:
Compression-Based Discretization of Continuous Attributes. ICML 1995: 456-463 - [c7]Bernhard Pfahringer, Stefan Kramer:
Compression-Based Evaluation of Partial Determinations. KDD 1995: 234-239 - 1994
- [c6]Bernhard Pfahringer:
Controlling Constructive Induction in CIPF: An MDL Approach. ECML 1994: 242-256 - [c5]Bernhard Pfahringer:
Robust Constructive Induction. KI 1994: 118-129 - 1992
- [c4]Bernhard Pfahringer:
The Logical Way to Build a DL-based KR System. Description Logics 1992: 76-77 - 1991
- [c3]Ernst Buchberger, Elizabeth Garner, Wolfgang Heinz, Johannes Matiasek, Bernhard Pfahringer:
VIE-DU: Dialogue by Unification. ÖGAI 1991: 42-51 - 1989
- [c2]Bernhard Pfahringer:
Extending Explanation-Based Generalization. ÖGAI 1989: 149-153 - 1985
- [c1]Bernhard Pfahringer, Christian Holzbaur:
VIE-KET: Frames + Prolog. ÖGAI 1985: 132-139
Parts in Books or Collections
- 2010
- [p2]Eibe Frank, Mark A. Hall, Geoffrey Holmes, Richard Kirkby, Bernhard Pfahringer, Ian H. Witten, Len Trigg:
Weka-A Machine Learning Workbench for Data Mining. Data Mining and Knowledge Discovery Handbook 2010: 1269-1277 - 2005
- [p1]Eibe Frank, Mark A. Hall, Geoffrey Holmes, Richard Kirkby, Bernhard Pfahringer:
WEKA - A Machine Learning Workbench for Data Mining. The Data Mining and Knowledge Discovery Handbook 2005: 1305-1314
Editorship
- 2015
- [e3]Bernhard Pfahringer, Jochen Renz:
AI 2015: Advances in Artificial Intelligence - 28th Australasian Joint Conference, Canberra, ACT, Australia, November 30 - December 4, 2015, Proceedings. Lecture Notes in Computer Science 9457, Springer 2015, ISBN 978-3-319-26349-6 [contents] - 2010
- [e2]Bernhard Pfahringer, Geoffrey Holmes, Achim G. Hoffmann:
Discovery Science - 13th International Conference, DS 2010, Canberra, Australia, October 6-8, 2010. Proceedings. Lecture Notes in Computer Science 6332, Springer 2010, ISBN 978-3-642-16183-4 [contents] - 2005
- [e1]Stefan Kramer, Bernhard Pfahringer:
Inductive Logic Programming, 15th International Conference, ILP 2005, Bonn, Germany, August 10-13, 2005, Proceedings. Lecture Notes in Computer Science 3625, Springer 2005, ISBN 3-540-28177-0 [contents]
Reference Works
- 2017
- [r3]Bernhard Pfahringer:
Conjunctive Normal Form. Encyclopedia of Machine Learning and Data Mining 2017: 260-261 - [r2]Bernhard Pfahringer:
Disjunctive Normal Form. Encyclopedia of Machine Learning and Data Mining 2017: 371-372 - 2010
- [r1]Bernhard Pfahringer:
Conjunctive Normal Form. Encyclopedia of Machine Learning 2010: 209-210
Informal and Other Publications
- 2024
- [i28]Yibin Sun, Heitor Murilo Gomes, Bernhard Pfahringer, Albert Bifet:
Real-Time Energy Pricing in New Zealand: An Evolving Stream Analysis. CoRR abs/2408.16187 (2024) - 2023
- [i27]Anton Lee, Yaqian Zhang, Heitor Murilo Gomes, Albert Bifet, Bernhard Pfahringer:
Look At Me, No Replay! SurpriseNet: Anomaly Detection Inspired Class Incremental Learning. CoRR abs/2310.20052 (2023) - 2022
- [i26]Guilherme Weigert Cassales, Heitor Murilo Gomes, Albert Bifet, Bernhard Pfahringer, Hermes Senger:
Balancing Performance and Energy Consumption of Bagging Ensembles for the Classification of Data Streams in Edge Computing. CoRR abs/2201.06205 (2022) - [i25]Hongyu Wang, Eibe Frank, Bernhard Pfahringer, Michael Mayo, Geoffrey Holmes:
Cross-domain Few-shot Meta-learning Using Stacking. CoRR abs/2205.05831 (2022) - [i24]Yaqian Zhang, Bernhard Pfahringer, Eibe Frank, Albert Bifet, Nick Jin Sean Lim, Yunzhe Jia:
A simple but strong baseline for online continual learning: Repeated Augmented Rehearsal. CoRR abs/2209.13917 (2022) - 2021
- [i23]Alan Ansell, Felipe Bravo-Marquez, Bernhard Pfahringer:
PolyLM: Learning about Polysemy through Language Modeling. CoRR abs/2101.10448 (2021) - [i22]Attaullah Sahito, Eibe Frank, Bernhard Pfahringer:
Better Self-training for Image Classification through Self-supervision. CoRR abs/2109.00778 (2021) - [i21]Attaullah Sahito, Eibe Frank, Bernhard Pfahringer:
Transfer of Pretrained Model Weights Substantially Improves Semi-Supervised Image Classification. CoRR abs/2109.00788 (2021) - [i20]Attaullah Sahito, Eibe Frank, Bernhard Pfahringer:
Semi-Supervised Learning using Siamese Networks. CoRR abs/2109.00794 (2021) - [i19]Vithya Yogarajan, Jacob Montiel, Tony Smith, Bernhard Pfahringer:
Predicting COVID-19 Patient Shielding: A Comprehensive Study. CoRR abs/2110.00183 (2021) - [i18]Vithya Yogarajan, Bernhard Pfahringer, Tony Smith, Jacob Montiel:
Improving Predictions of Tail-end Labels using Concatenated BioMed-Transformers for Long Medical Documents. CoRR abs/2112.01718 (2021) - [i17]Guilherme Weigert Cassales, Heitor Murilo Gomes, Albert Bifet, Bernhard Pfahringer, Hermes Senger:
Improving the performance of bagging ensembles for data streams through mini-batching. CoRR abs/2112.09834 (2021) - 2020
- [i16]Vithya Yogarajan, Jacob Montiel, Tony Smith, Bernhard Pfahringer:
Seeing The Whole Patient: Using Multi-Label Medical Text Classification Techniques to Enhance Predictions of Medical Codes. CoRR abs/2004.00430 (2020) - [i15]Jacob Montiel, Rory Mitchell, Eibe Frank, Bernhard Pfahringer, Talel Abdessalem, Albert Bifet:
Adaptive XGBoost for Evolving Data Streams. CoRR abs/2005.07353 (2020) - [i14]Fabricio Ceschin, Heitor Murilo Gomes, Marcus Botacin, Albert Bifet, Bernhard Pfahringer, Luiz S. Oliveira, André Grégio:
Machine Learning (In) Security: A Stream of Problems. CoRR abs/2010.16045 (2020) - 2019
- [i13]Henry Gouk, Bernhard Pfahringer, Eibe Frank:
Stochastic Gradient Trees. CoRR abs/1901.07777 (2019) - [i12]Vithya Yogarajan, Bernhard Pfahringer, Michael Mayo:
Automatic end-to-end De-identification: Is high accuracy the only metric? CoRR abs/1901.10583 (2019) - [i11]Jesse Read, Bernhard Pfahringer, Geoff Holmes, Eibe Frank:
Classifier Chains: A Review and Perspectives. CoRR abs/1912.13405 (2019) - 2018
- [i10]Henry Gouk, Eibe Frank, Bernhard Pfahringer, Michael J. Cree:
Regularisation of Neural Networks by Enforcing Lipschitz Continuity. CoRR abs/1804.04368 (2018) - [i9]Henry Gouk, Bernhard Pfahringer, Eibe Frank, Michael J. Cree:
MaxGain: Regularisation of Neural Networks by Constraining Activation Magnitudes. CoRR abs/1804.05965 (2018) - [i8]Tim Leathart, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer:
Probability Calibration Trees. CoRR abs/1808.00111 (2018) - [i7]Tim Leathart, Eibe Frank, Bernhard Pfahringer, Geoffrey Holmes:
Ensembles of Nested Dichotomies with Multiple Subset Evaluation. CoRR abs/1809.02740 (2018) - [i6]Tim Leathart, Eibe Frank, Bernhard Pfahringer, Geoffrey Holmes:
On the Calibration of Nested Dichotomies for Large Multiclass Tasks. CoRR abs/1809.02744 (2018) - [i5]Vithya Yogarajan, Michael Mayo, Bernhard Pfahringer:
A survey of automatic de-identification of longitudinal clinical narratives. CoRR abs/1810.06765 (2018) - 2016
- [i4]Tim Leathart, Bernhard Pfahringer, Eibe Frank:
Building Ensembles of Adaptive Nested Dichotomies with Random-Pair Selection. CoRR abs/1604.01854 (2016) - 2015
- [i3]Sripirakas Sakthithasan, Russel Pears, Albert Bifet, Bernhard Pfahringer:
Use of Ensembles of Fourier Spectra in Capturing Recurrent Concepts in Data Streams. CoRR abs/1504.06366 (2015) - [i2]Henry Gouk, Bernhard Pfahringer, Michael J. Cree:
Learning Similarity Metrics by Factorising Adjacency Matrices. CoRR abs/1511.06442 (2015) - 2012
- [i1]Eibe Frank, Mark A. Hall, Bernhard Pfahringer:
Locally Weighted Naive Bayes. CoRR abs/1212.2487 (2012)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-07 21:35 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint