default search action
Li Shen 0001
Person information
- affiliation: University of Pennsylvania, Philadelphia, USA
- affiliation (2007 - 2017): Indiana University School of Medicine, Indianapolis, IN, USA
- affiliation (2004 - 2007): University of Massachusetts Dartmouth, MA, USA
- affiliation (PhD 2004): Dartmouth College, Hanover, NH, USA
Other persons with the same name
- Li Shen — disambiguation page
- Li Shen 0002 — Chinese Academy of Sciences, Institute of Computing Technology, Beijing, China
- Li Shen 0003 — Institute for Infocomm Research, Singapore
- Li Shen 0004 — Southwest Jiaotong University, Faculty of Geosciences and Environmental Engineering, Chengdu, China (and 1 more)
- Li Shen 0005 — Alibaba Group, Beijing, China (and 3 more)
- Li Shen 0006 — Osaka University, Graduate School of Information Science and Technology, Japan
- Li Shen 0007 — National University of Defense Technology, School of Computer, Changsha, Hunan, China
- Li Shen 0008 — JD Explore Academy, Beijing, China (and 2 more)
- Li Shen 0009 — Beihang University, School of Automation Science and Electrical Engineering, Beijing, China
- Li Shen 0010 — Huazhong University of Science and Technology, School of Optical and Electronic Information, Wuhan, China
- Li Shen 0011 — Beijing Institute of Remote Sensing, China
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2025
- [j77]Selena Wang, Yiting Wang, Frederick H. Xu, Li Shen, Yize Zhao:
Establishing group-level brain structural connectivity incorporating anatomical knowledge under latent space modeling. Medical Image Anal. 99: 103309 (2025) - 2024
- [j76]Bojian Hou, Zixuan Wen, Jingxuan Bao, Richard Zhang, Boning Tong, Shu Yang, Junhao Wen, Yuhan Cui, Jason H. Moore, Andrew J. Saykin, Heng Huang, Paul M. Thompson, Marylyn D. Ritchie, Christos Davatzikos, Li Shen:
Interpretable deep clustering survival machines for Alzheimer's disease subtype discovery. Medical Image Anal. 97: 103231 (2024) - [c130]Bing He, Neel Sangani, Ruiming Wu, Pradeep Varathan, Alice Patania, Shannon L. Risacher, Kwangsik Nho, Liana G. Apostolova, Andrew J. Saykin, Li Shen, Jingwen Yan:
Integrative Analysis of Amyloid Imaging and Genetics Reveals Subtypes of Alzheimer Progression in Early Stage. AIME (2) 2024: 204-211 - [c129]Davoud Ataee Tarzanagh, Parvin Nazari, Bojian Hou, Li Shen, Laura Balzano:
Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods. AISTATS 2024: 2854-2862 - [c128]Duy Duong-Tran, Mark Magsino, Joaquín Goñi, Li Shen:
Preserving Human Large-Scale Brain Connectivity Fingerprint Identifiability with Random Projections. ISBI 2024: 1-5 - [c127]Lina Takemaru, Shu Yang, Ruiming Wu, Bing He, Christos Davtzikos, Jingwen Yan, Li Shen:
Mapping Alzheimer's Disease Pseudo-Progression With Multimodal Biomarker Trajectory Embeddings. ISBI 2024: 1-5 - [c126]Zixuan Wen, Jingxuan Bao, Shu Yang, Junhao Wen, Qipeng Zhan, Yuhan Cui, Güray Erus, Zhijian Yang, Paul M. Thompson, Yize Zhao, Christos Davatzikos, Li Shen:
Multiscale Estimation of Morphometricity for Revealing Neuroanatomical Basis of Cognitive Traits. ISBI 2024: 1-5 - [i18]Diego Machado Reyes, Hanqing Chao, Juergen Hahn, Li Shen, Pingkun Yan:
Multimodal Neurodegenerative Disease Subtyping Explained by ChatGPT. CoRR abs/2402.00137 (2024) - [i17]Dawei Li, Shu Yang, Zhen Tan, Jae Young Baik, Sukwon Yun, Joseph Lee, Aaron Chacko, Bojian Hou, Duy Duong-Tran, Ying Ding, Huan Liu, Li Shen, Tianlong Chen:
DALK: Dynamic Co-Augmentation of LLMs and KG to answer Alzheimer's Disease Questions with Scientific Literature. CoRR abs/2405.04819 (2024) - [i16]Duy M. H. Nguyen, An T. Le, Trung Q. Nguyen, Nghiem T. Diep, Tai Nguyen, Duy Duong-Tran, Jan Peters, Li Shen, Mathias Niepert, Daniel Sonntag:
Dude: Dual Distribution-Aware Context Prompt Learning For Large Vision-Language Model. CoRR abs/2407.04489 (2024) - [i15]Ruochen Jin, Bojian Hou, Jiancong Xiao, Weijie J. Su, Li Shen:
Fine-Tuning Linear Layers Only Is a Simple yet Effective Way for Task Arithmetic. CoRR abs/2407.07089 (2024) - [i14]Duy Duong-Tran, Siqing Wei, Li Shen:
Theorizing neuro-induced relationships between cognitive diversity, motivation, grit and academic performance in multidisciplinary engineering education context. CoRR abs/2407.17584 (2024) - [i13]Zhuoping Zhou, Davoud Ataee Tarzanagh, Bojian Hou, Qi Long, Li Shen:
Fairness-Aware Estimation of Graphical Models. CoRR abs/2408.17396 (2024) - 2023
- [j75]Jingxuan Bao, Changgee Chang, Qiyiwen Zhang, Andrew J. Saykin, Li Shen, Qi Long:
Integrative analysis of multi-omics and imaging data with incorporation of biological information via structural Bayesian factor analysis. Briefings Bioinform. 24(2) (2023) - [j74]Jingxuan Bao, Junhao Wen, Zixuan Wen, Shu Yang, Yuhan Cui, Zhijian Yang, Güray Erus, Andrew J. Saykin, Qi Long, Christos Davatzikos, Li Shen:
Brain-wide genome-wide colocalization study for integrating genetics, transcriptomics and brain morphometry in Alzheimer's disease. NeuroImage 280: 120346 (2023) - [c125]Zhuoping Zhou, Boning Tong, Davoud Ataee Tarzanagh, Bojian Hou, Andrew J. Saykin, Qi Long, Li Shen:
Multi-Group Tensor Canonical Correlation Analysis. BCB 2023: 12:1-12:10 - [c124]Houliang Zhou, Yu Zhang, Lifang He, Li Shen, Brian Y. Chen:
Interpretable Graph Convolutional Network for Alzheimer's Disease Diagnosis using Multi-Modal Imaging Genetics. BIBM 2023: 1004-1007 - [c123]Rong Zhou, Houliang Zhou, Li Shen, Brian Y. Chen, Yu Zhang, Lifang He:
Integrating Multimodal Contrastive Learning and Cross-Modal Attention for Alzheimer's Disease Prediction in Brain Imaging Genetics. BIBM 2023: 1806-1811 - [c122]Daniele Pala, Yuezhi Xie, Jia Xu, Yuqin Zhang, Li Shen:
Causal Effects of Environmental Exposures and Biological Traits on the Difference between Phenotypic and Chronological Ages. BIBM 2023: 4382-4388 - [c121]Zixuan Wen, Jingxuan Bao, Shu Yang, Shannon L. Risacher, Andrew J. Saykin, Paul M. Thompson, Christos Davatzikos, Heng Huang, Yize Zhao, Li Shen:
Identifying Shared Neuroanatomic Architecture Between Cognitive Traits Through Multiscale Morphometric Correlation Analysis. MTSAIL/LEAF/AI4Treat/MMMI/REMIA@MICCAI 2023: 227-240 - [c120]Rong Zhou, Houliang Zhou, Brian Y. Chen, Li Shen, Yu Zhang, Lifang He:
Attentive Deep Canonical Correlation Analysis for Diagnosing Alzheimer's Disease Using Multimodal Imaging Genetics. MICCAI (2) 2023: 681-691 - [c119]Zexuan Wang, Jiong Chen, Wenxi Yang, Sumita Garai, Frederick H. Xu, Junhao Wen, Christos Davatzikos, Li Shen:
Shape analysis of amygdala atrophy using SPHARM-OT. Medical Imaging: Image Processing 2023 - [c118]Boning Tong, Zhuoping Zhou, Davoud Ataee Tarzanagh, Bojian Hou, Andrew J. Saykin, Jason H. Moore, Marylyn D. Ritchie, Li Shen:
Class-Balanced Deep Learning with Adaptive Vector Scaling Loss for Dementia Stage Detection. MLMI@MICCAI (2) 2023: 144-154 - [c117]Zhuoping Zhou, Davoud Ataee Tarzanagh, Bojian Hou, Boning Tong, Jia Xu, Yanbo Feng, Qi Long, Li Shen:
Fair Canonical Correlation Analysis. NeurIPS 2023 - [c116]Davoud Ataee Tarzanagh, Bojian Hou, Boning Tong, Qi Long, Li Shen:
Fairness-aware class imbalanced learning on multiple subgroups. UAI 2023: 2123-2133 - [i12]Zhijian Yang, Junhao Wen, Ahmed Abdulkadir, Yuhan Cui, Güray Erus, Elizabeth Mamourian, Randa Melhem, Dhivya Srinivasan, Sindhuja T. Govindarajan, Jiong Chen, Mohamad Habes, Colin L. Masters, Paul Maruff, Jurgen Fripp, Luigi Ferrucci, Marilyn S. Albert, Sterling C. Johnson, John C. Morris, Pamela LaMontagne, Daniel S. Marcus, Tammie L. S. Benzinger, David A. Wolk, Li Shen, Jingxuan Bao, Susan M. Resnick, Haochang Shou, Ilya M. Nasrallah, Christos Davatzikos:
Gene-SGAN: a method for discovering disease subtypes with imaging and genetic signatures via multi-view weakly-supervised deep clustering. CoRR abs/2301.10772 (2023) - [i11]Reza Shirkavand, Liang Zhan, Heng Huang, Li Shen, Paul M. Thompson:
Incomplete Multimodal Learning for Complex Brain Disorders Prediction. CoRR abs/2305.16222 (2023) - [i10]Zhuoping Zhou, Davoud Ataee Tarzanagh, Bojian Hou, Boning Tong, Jia Xu, Yanbo Feng, Qi Long, Li Shen:
Fair Canonical Correlation Analysis. CoRR abs/2309.15809 (2023) - [i9]Shunian Xiang, Patrick J. Lawrence, Bo Peng, Chienwei Chiang, Dokyoon Kim, Li Shen, Xia Ning:
Modeling Path Importance for Effective Alzheimer's Disease Drug Repurposing. CoRR abs/2310.15211 (2023) - 2022
- [j73]Chong Jin, Brian Lee, Li Shen, Qi Long:
Integrating multi-omics summary data using a Mendelian randomization framework. Briefings Bioinform. 23(6) (2022) - [j72]Hung Mai, Jingxuan Bao, Paul M. Thompson, Dokyoon Kim, Li Shen:
Identifying genes associated with brain volumetric differences through tissue specific transcriptomic inference from GWAS summary data. BMC Bioinform. 23-S(3): 398 (2022) - [j71]Yixue Feng, Mansu Kim, Xiaohui Yao, Kefei Liu, Qi Long, Li Shen:
Deep multiview learning to identify imaging-driven subtypes in mild cognitive impairment. BMC Bioinform. 23-S(3): 402 (2022) - [j70]Peng Yang, Cheng Zhao, Qiong Yang, Zheng Wei, Xiaohua Xiao, Li Shen, Tianfu Wang, Baiying Lei, Ziwen Peng:
Diagnosis of obsessive-compulsive disorder via spatial similarity-aware learning and fused deep polynomial network. Medical Image Anal. 75: 102244 (2022) - [j69]Mansu Kim, Eun Jeong Min, Kefei Liu, Jingwen Yan, Andrew J. Saykin, Jason H. Moore, Qi Long, Li Shen:
Multi-task learning based structured sparse canonical correlation analysis for brain imaging genetics. Medical Image Anal. 76: 102297 (2022) - [c115]Diego Machado Reyes, Mansu Kim, Hanqing Chao, Li Shen, Pingkun Yan:
Connectome transformer with anatomically inspired attention for Parkinson's diagnosis. BCB 2022: 35:1-35:4 - [c114]Diego Machado Reyes, Mansu Kim, Hanqing Chao, Juergen Hahn, Li Shen, Pingkun Yan:
Genomics transformer for diagnosing Parkinson's disease. BHI 2022: 1-4 - [c113]Jiahang Sha, Jingxuan Bao, Kefei Liu, Shu Yang, Zixuan Wen, Yuhan Cui, Junhao Wen, Christos Davatzikos, Jason H. Moore, Andrew J. Saykin, Qi Long, Li Shen:
Preference Matrix Guided Sparse Canonical Correlation Analysis for Genetic Study of Quantitative Traits in Alzheimer's Disease. BIBM 2022: 541-548 - [c112]Jun Yu, Benjamin Zalatan, Yong Chen, Li Shen, Lifang He:
Tensor-Based Multi-Modal Multi-Target Regression for Alzheimer's Disease Prediction. BIBM 2022: 639-646 - [c111]Zexuan Wang, Wenxi Yang, Katharine Ryan, Sumita Garai, Benjamin M. Auerbach, Li Shen:
Using Optimal Transport to Improve Spherical Harmonic Quantification of Complex Biological Shapes. BIBM 2022: 1255-1261 - [c110]Frederick H. Xu, Sumita Garai, Duy Duong-Tran, Andrew J. Saykin, Yize Zhao, Li Shen:
Consistency of Graph Theoretical Measurements of Alzheimer's Disease Fiber Density Connectomes Across Multiple Parcellation Scales. BIBM 2022: 1323-1328 - [c109]Daniele Pala, Brian Lee, Xia Ning, Dokyoon Kim, Li Shen:
Mediation Analysis and Mixed-Effects Models for the Identification of Stage-specific Imaging Genetics Patterns in Alzheimer's Disease. BIBM 2022: 2667-2673 - [c108]Houliang Zhou, Lifang He, Yu Zhang, Li Shen, Brian Chen:
Interpretable Graph Convolutional Network Of Multi-Modality Brain Imaging For Alzheimer's Disease Diagnosis. ISBI 2022: 1-5 - [c107]Houliang Zhou, Yu Zhang, Brian Y. Chen, Li Shen, Lifang He:
Sparse Interpretation of Graph Convolutional Networks for Multi-modal Diagnosis of Alzheimer's Disease. MICCAI (8) 2022: 469-478 - [c106]Honghui Shang, Li Shen, Yi Fan, Zhiqian Xu, Chu Guo, Jie Liu, Wenhao Zhou, Huan Ma, Rongfen Lin, Yuling Yang, Fang Li, Zhuoya Wang, Yunquan Zhang, Zhenyu Li:
Large-Scale Simulation of Quantum Computational Chemistry on a New Sunway Supercomputer. SC 2022: 14:1-14:14 - [i8]Houliang Zhou, Lifang He, Yu Zhang, Li Shen, Brian Chen:
Interpretable Graph Convolutional Network of Multi-Modality Brain Imaging for Alzheimer's Disease Diagnosis. CoRR abs/2204.13188 (2022) - [i7]Jun Yu, Zhaoming Kong, Liang Zhan, Li Shen, Lifang He:
Tensor-Based Multi-Modality Feature Selection and Regression for Alzheimer's Disease Diagnosis. CoRR abs/2209.11372 (2022) - 2021
- [j68]Mansu Kim, Jingxuan Bao, Kefei Liu, Bo-yong Park, Hyunjin Park, Jae Young Baik, Li Shen:
A structural enriched functional network: An application to predict brain cognitive performance. Medical Image Anal. 71: 102026 (2021) - [j67]Lyujian Lu, Saad Elbeleidy, Lauren Zoe Baker, Hua Wang, Li Shen, Heng Huang:
Improved Prediction of Cognitive Outcomes via Globally Aligned Imaging Biomarker Enrichments Over Progressions. IEEE Trans. Biomed. Eng. 68(11): 3336-3346 (2021) - [j66]Lei Du, Kefei Liu, Xiaohui Yao, Shannon L. Risacher, Junwei Han, Andrew J. Saykin, Lei Guo, Li Shen:
Multi-Task Sparse Canonical Correlation Analysis with Application to Multi-Modal Brain Imaging Genetics. IEEE ACM Trans. Comput. Biol. Bioinform. 18(1): 227-239 (2021) - [j65]Meiling Wang, Wei Shao, Xiaoke Hao, Li Shen, Daoqiang Zhang:
Identify Consistent Cross-Modality Imaging Genetic Patterns via Discriminant Sparse Canonical Correlation Analysis. IEEE ACM Trans. Comput. Biol. Bioinform. 18(4): 1549-1561 (2021) - [c105]Huang Li, Shiaofen Fang, Joaquín Goñi, Andrew J. Saykin, Li Shen:
Interactive Visualization of Deep Learning for 3D Brain Data Analysis. ICCI*CC 2021: 85-91 - [c104]Li Shen:
Brain imaging genetics: integrated analysis and machine learning. BIBM 2021: 1 - [c103]Mansu Kim, Jaesik Kim, Jeffrey Qu, Heng Huang, Qi Long, Kyung-Ah Sohn, Dokyoon Kim, Li Shen:
Interpretable temporal graph neural network for prognostic prediction of Alzheimer's disease using longitudinal neuroimaging data. BIBM 2021: 1381-1384 - [c102]Tananun Songdechakraiwut, Li Shen, Moo K. Chung:
Topological Learning and Its Application to Multimodal Brain Network Integration. MICCAI (2) 2021: 166-176 - [c101]Yize Zhao, Xiwen Zhao, Mansu Kim, Jingxuan Bao, Li Shen:
A Novel Bayesian Semi-parametric Model for Learning Heritable Imaging Traits. MICCAI (5) 2021: 678-687 - [i6]Junhao Wen, Cynthia H. Y. Fu, Duygu Tosun, Yogasudha Veturi, Zhijian Yang, Ahmed Abdulkadir, Elizabeth Mamourian, Dhivya Srinivasan, Jingxuan Bao, Güray Erus, Haochang Shou, Mohamad Habes, Jimit Doshi, Erdem Varol, Scott R. Mackin, Aristeidis Sotiras, Yong Fan, Andrew J. Saykin, Yvette I. Sheline, Li Shen, Marylyn D. Ritchie, David A. Wolk, Marilyn S. Albert, Susan M. Resnick, Christos Davatzikos:
Multidimensional representations in late-life depression: convergence in neuroimaging, cognition, clinical symptomatology and genetics. CoRR abs/2110.11347 (2021) - 2020
- [j64]Jason H. Moore, Ian Barnett, Mary Regina Boland, Yong Chen, George Demiris, Graciela Gonzalez-Hernandez, Daniel S. Herman, Blanca E. Himes, Rebecca A. Hubbard, Dokyoon Kim, Jeffrey S. Morris, Danielle L. Mowery, Marylyn D. Ritchie, Li Shen, Ryan J. Urbanowicz, John H. Holmes:
Ideas for how informaticians can get involved with COVID-19 research. BioData Min. 13(1): 3 (2020) - [j63]Xiaohui Yao, Shan Cong, Jingwen Yan, Shannon L. Risacher, Andrew J. Saykin, Jason H. Moore, Li Shen:
Regional imaging genetic enrichment analysis. Bioinform. 36(8): 2554-2560 (2020) - [j62]Lei Du, Fang Liu, Kefei Liu, Xiaohui Yao, Shannon L. Risacher, Junwei Han, Lei Guo, Andrew J. Saykin, Li Shen:
Identifying diagnosis-specific genotype-phenotype associations via joint multitask sparse canonical correlation analysis and classification. Bioinform. 36(Supplement-1): i371-i379 (2020) - [j61]Jin Li, Chenyuan Bian, Dandan Chen, Xianglian Meng, Haoran Luo, Hong Liang, Li Shen:
Effect of APOE ε4 on multimodal brain connectomic traits: a persistent homology study. BMC Bioinform. 21-S(21): 535 (2020) - [j60]Yan Guo, Li Shen, Xinghua Shi, Kai Wang, Yulin Dai, Zhongming Zhao:
Accelerating bioinformatics research with International Conference on Intelligent Biology and Medicine 2020. BMC Bioinform. 21-S(21): 563 (2020) - [j59]Wen-Hao Chiang, Li Shen, Lang Li, Xia Ning:
Drug-drug interaction prediction based on co-medication patterns and graph matching. Int. J. Comput. Biol. Drug Des. 13(1): 36-57 (2020) - [j58]Jingwen Yan, V. Vinesh Raja, Zhi Huang, Enrico Amico, Kwangsik Nho, Shiaofen Fang, Olaf Sporns, Yu-Chien Wu, Andrew J. Saykin, Joaquín Goñi, Li Shen:
Brain-wide structural connectivity alterations under the control of Alzheimer risk genes. Int. J. Comput. Biol. Drug Des. 13(1): 58-70 (2020) - [j57]Xiaojun Chen, Weijun Hong, Feiping Nie, Joshua Zhexue Huang, Li Shen:
Enhanced Balanced Min Cut. Int. J. Comput. Vis. 128(7): 1982-1995 (2020) - [j56]Xiaoke Hao, Yongjin Bao, Yingchun Guo, Ming Yu, Daoqiang Zhang, Shannon L. Risacher, Andrew J. Saykin, Xiaohui Yao, Li Shen:
Multi-modal neuroimaging feature selection with consistent metric constraint for diagnosis of Alzheimer's disease. Medical Image Anal. 60 (2020) - [j55]Lei Du, Kefei Liu, Xiaohui Yao, Shannon L. Risacher, Junwei Han, Andrew J. Saykin, Lei Guo, Li Shen:
Detecting genetic associations with brain imaging phenotypes in Alzheimer's disease via a novel structured SCCA approach. Medical Image Anal. 61: 101656 (2020) - [j54]Bo Peng, Xiaohui Yao, Shannon L. Risacher, Andrew J. Saykin, Li Shen, Xia Ning:
Cognitive biomarker prioritization in Alzheimer's Disease using brain morphometric data. BMC Medical Informatics Decis. Mak. 20(1): 319 (2020) - [j53]Xiaohui Yao, Tiffany Tsang, Qing Sun, Sara K. Quinney, Pengyue Zhang, Xia Ning, Lang Li, Li Shen:
Mining and visualizing high-order directional drug interaction effects using the FAERS database. BMC Medical Informatics Decis. Mak. 20-S(2): 50 (2020) - [j52]Li Shen, Xinghua Shi, Zhongming Zhao, Kai Wang:
Informatics and machine learning methods for health applications. BMC Medical Informatics Decis. Mak. 20-S(11): 342 (2020) - [j51]Manhua Liu, Fan Li, Hao Yan, Kundong Wang, Yixin Ma, Li Shen, Mingqing Xu:
A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease. NeuroImage 208: 116459 (2020) - [j50]Mingliang Wang, Xiaoke Hao, Jiashuang Huang, Kangcheng Wang, Li Shen, Xijia Xu, Daoqiang Zhang, Mingxia Liu:
Hierarchical Structured Sparse Learning for Schizophrenia Identification. Neuroinformatics 18(1): 43-57 (2020) - [j49]Li Shen, Paul M. Thompson:
Brain Imaging Genomics: Integrated Analysis and Machine Learning. Proc. IEEE 108(1): 125-162 (2020) - [j48]Lodewijk Brand, Kai Nichols, Hua Wang, Li Shen, Heng Huang:
Joint Multi-Modal Longitudinal Regression and Classification for Alzheimer's Disease Prediction. IEEE Trans. Medical Imaging 39(6): 1845-1855 (2020) - [j47]Lei Du, Fang Liu, Kefei Liu, Xiaohui Yao, Shannon L. Risacher, Junwei Han, Andrew J. Saykin, Li Shen:
Associating Multi-Modal Brain Imaging Phenotypes and Genetic Risk Factors via a Dirty Multi-Task Learning Method. IEEE Trans. Medical Imaging 39(11): 3416-3428 (2020) - [c100]Yingxuan Eng, Xiaohui Yao, Kefei Liu, Shannon L. Risacher, Andrew J. Saykin, Qi Long, Yize Zhao, Li Shen:
Polygenic mediation analysis of Alzheimer's disease implicated intermediate amyloid imaging phenotypes. AMIA 2020 - [c99]Yixue Feng, Mansu Kim, Xiaohui Yao, Kefei Liu, Qi Long, Li Shen:
Deep Multiview Learning to Identify Population Structure with Multimodal Imaging. BIBE 2020: 308-314 - [c98]Jingxuan Bao, Mansu Kim, Qing Sun, Anderson T. Hara, Gerardo Maupome, Li Shen:
Estimating Hard-tissue Conditions from Dental Images via Machine Learning. BIBE 2020: 315-322 - [c97]Mansu Kim, Ji Hye Won, Jisu Hong, Junmo Kwon, Hyunjin Park, Li Shen:
Deep Network-Based Feature Selection for Imaging Genetics: Application to Identifying Biomarkers for Parkinson's Disease. ISBI 2020: 1920-1923 - [c96]Jin Li, Chenyuan Bian, Dandan Chen, Xianglian Meng, Haoran Luo, Hong Liang, Li Shen:
Persistent Feature Analysis of Multimodal Brain Networks Using Generalized Fused Lasso for EMCI Identification. MICCAI (7) 2020: 44-52 - [c95]Mansu Kim, Jingxaun Bao, Kefei Liu, Bo-yong Park, Hyunjin Park, Li Shen:
Structural Connectivity Enriched Functional Brain Network Using Simplex Regression with GraphNet. MLMI@MICCAI 2020: 292-302 - [c94]Peng Yang, Qiong Yang, Wei Zheng, Li Shen, Tianfu Wang, Ziwen Peng, Baiying Lei:
Spatial Similarity-Aware Learning and Fused Deep Polynomial Network for Detection of Obsessive-Compulsive Disorder. MICCAI (7) 2020: 603-612 - [c93]Lodewijk Brand, Kai Nichols, Hua Wang, Heng Huang, Li Shen:
Predicting Longitudinal Outcomes of Alzheimer's Disease via a Tensor-Based Joint Classification andRegression Model. PSB 2020: 7-18 - [i5]Bo Peng, Xiaohui Yao, Shannon L. Risacher, Andrew J. Saykin, Li Shen, Xia Ning:
Personalized Prioritization of Cognitive Biomarkers in Alzheimer's Disease via Learning to Rank using Brain Morphometric Data. CoRR abs/2002.07699 (2020) - [i4]Kefei Liu, Qi Long, Li Shen:
Grouping effects of sparse CCA models in variable selection. CoRR abs/2008.03392 (2020)
2010 – 2019
- 2019
- [j46]Lei Du, Kefei Liu, Lei Zhu, Xiaohui Yao, Shannon L. Risacher, Lei Guo, Andrew J. Saykin, Li Shen:
Identifying progressive imaging genetic patterns via multi-task sparse canonical correlation analysis: a longitudinal study of the ADNI cohort. Bioinform. 35(14): i474-i483 (2019) - [j45]Kefei Liu, Li Shen, Hui Jiang:
Joint between-sample normalization and differential expression detection through ℓ 0-regularized regression. BMC Bioinform. 20-S(16): 593:1-593:16 (2019) - [j44]Kefei Liu, Jieping Ye, Yang Yang, Li Shen, Hui Jiang:
A Unified Model for Joint Normalization and Differential Gene Expression Detection in RNA-Seq Data. IEEE ACM Trans. Comput. Biol. Bioinform. 16(2): 442-454 (2019) - [j43]Xiaoke Hao, Xiaohui Yao, Shannon L. Risacher, Andrew J. Saykin, Jintai Yu, Huifu Wang, Lan Tan, Li Shen, Daoqiang Zhang:
Identifying Candidate Genetic Associations with MRI-Derived AD-Related ROI via Tree-Guided Sparse Learning. IEEE ACM Trans. Comput. Biol. Bioinform. 16(6): 1986-1996 (2019) - [j42]Danai Chasioti, Xiaohui Yao, Pengyue Zhang, Samuel Lerner, Sara K. Quinney, Xia Ning, Lang Li, Li Shen:
Mining Directional Drug Interaction Effects on Myopathy Using the FAERS Database. IEEE J. Biomed. Health Informatics 23(5): 2156-2163 (2019) - [c92]Bo Peng, Xiaohui Yao, Shannon L. Risacher, Andrew J. Saykin, Li Shen, Xia Ning:
Prioritization of Cognitive Assessments in Alzheimer's Disease via Learning to Rank using Brain Morphometric Data. BHI 2019: 1-4 - [c91]Xiaohui Yao, Shan Cong, Jingwen Yan, Shannon L. Risacher, Andrew J. Saykin, Jason H. Moore, Li Shen:
Mining Regional Imaging Genetic Associations via Voxel-wise Enrichment Analysis. BHI 2019: 1-4 - [c90]Moo K. Chung, Shih-Gu Huang, Andrey Gritsenko, Li Shen, Hyekyoung Lee:
Statistical Inference on the Number of Cycles in Brain Networks. ISBI 2019: 113-116 - [c89]Lei Du, Kefei Liu, Xiaohui Yao, Shannon L. Risacher, Lei Guo, Andrew J. Saykin, Li Shen:
Diagnosis Status Guided Brain Imaging Genetics Via Integrated Regression And Sparse Canonical Correlation Analysis. ISBI 2019: 356-359 - [c88]Moo K. Chung, Linhui Xie, Shih-Gu Huang, Yixian Wang, Jingwen Yan, Li Shen:
Rapid Acceleration of the Permutation Test via Transpositions. CNI@MICCAI 2019: 42-53 - [c87]Bo Peng, Zhiyun Ren, Xiaohui Yao, Kefei Liu, Andrew J. Saykin, Li Shen, Xia Ning:
Prioritizing Amyloid Imaging Biomarkers in Alzheimer's Disease via Learning to Rank. MBIA/MFCA@MICCAI 2019: 139-148 - [c86]Lyujian Lu, Saad Elbeleidy, Lauren Zoe Baker, Hua Wang, Heng Huang, Li Shen:
Improved Prediction of Cognitive Outcomes via Globally Aligned Imaging Biomarker Enrichments over Progressions. MICCAI (4) 2019: 140-148 - [c85]Ayagoz Mussabayeva, Maxim Pisov, Anvar Kurmukov, Alexey Kroshnin, Yulia Denisova, Li Shen, Shan Cong, Lei Wang, Boris Gutman:
Diffeomorphic Metric Learning and Template Optimization for Registration-Based Predictive Models. MBIA/MFCA@MICCAI 2019: 151-161 - [c84]Lei Du, Fang Liu, Kefei Liu, Xiaohui Yao, Shannon L. Risacher, Junwei Han, Lei Guo, Andrew J. Saykin, Li Shen:
A Dirty Multi-task Learning Method for Multi-modal Brain Imaging Genetics. MICCAI (4) 2019: 447-455 - [e5]Dajiang Zhu, Jingwen Yan, Heng Huang, Li Shen, Paul M. Thompson, Carl-Fredrik Westin, Xavier Pennec, Sarang C. Joshi, Mads Nielsen, Tom Fletcher, Stanley Durrleman, Stefan Sommer:
Multimodal Brain Image Analysis and Mathematical Foundations of Computational Anatomy - 4th International Workshop, MBIA 2019, and 7th International Workshop, MFCA 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings. Lecture Notes in Computer Science 11846, Springer 2019, ISBN 978-3-030-33225-9 [contents] - [i3]Wen-Hao Chiang, Li Shen, Lang Li, Xia Ning:
Drug-drug interaction prediction based on co-medication patterns and graph matching. CoRR abs/1902.08675 (2019) - 2018
- [j41]Jingwen Yan, Shannon L. Risacher, Li Shen, Andrew J. Saykin:
Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data. Briefings Bioinform. 19(6): 1370-1381 (2018) - [j40]