


default search action
Wil M. P. van der Aalst
Willibrordus Martinus Pancratius van der Aalst
Person information
- affiliation: RWTH Aachen University, Chair of Process and Data Science, Germany
- affiliation (former): Eindhoven University of Technology, Department of Mathematics and Computer Science
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2025
- [j299]Frederik Hering, Oliver Hinz, Jella Pfeiffer, Wil M. P. van der Aalst:
The Damocles Sword of Cyber Attacks. Bus. Inf. Syst. Eng. 67(2): 141-147 (2025) - [j298]Humam Kourani, Sebastiaan J. van Zelst, Daniel Schuster, Wil M. P. van der Aalst:
Discovering partially ordered workflow models. Inf. Syst. 128: 102493 (2025) - [j297]Majid Rafiei
, Mahsa Pourbafrani
, Wil M. P. van der Aalst
:
Federated conformance checking. Inf. Syst. 131: 102525 (2025) - [j296]Sander J. J. Leemans, Tobias Brockhoff, Wil M. P. van der Aalst, Artem Polyvyanyy:
Partially ordered stochastic conformance checking. Knowl. Inf. Syst. 67(3): 2291-2319 (2025) - [j295]Francesco Vitale
, Marco Pegoraro
, Wil M. P. van der Aalst
, Nicola Mazzocca:
Control-flow anomaly detection by process mining-based feature extraction and dimensionality reduction. Knowl. Based Syst. 310: 112970 (2025) - [i147]Majid Rafiei, Mahsa Pourbafrani, Wil M. P. van der Aalst:
Federated Conformance Checking. CoRR abs/2501.13576 (2025) - [i146]Francesco Vitale, Marco Pegoraro, Wil M. P. van der Aalst, Nicola Mazzocca:
Control-flow anomaly detection by process mining-based feature extraction and dimensionality reduction. CoRR abs/2502.10211 (2025) - [i145]Tsung-Hao Huang, Tarek Junied, Marco Pegoraro, Wil M. P. van der Aalst:
ProReco: A Process Discovery Recommender System. CoRR abs/2502.10230 (2025) - 2024
- [j294]Paolo Ceravolo
, Sylvio Barbon Junior
, Ernesto Damiani
, Wil M. P. van der Aalst
:
Tuning Machine Learning to Address Process Mining Requirements. IEEE Access 12: 24583-24595 (2024) - [j293]Christof Weinhardt, Jonas Fegert
, Oliver Hinz, Wil M. P. van der Aalst:
Digital Democracy: A Wake-Up Call. Bus. Inf. Syst. Eng. 66(2): 127-134 (2024) - [j292]Wil M. P. van der Aalst:
Matthias Jarke (1952-2024), A Pioneer in Information Systems and Data Management. Bus. Inf. Syst. Eng. 66(2): 135 (2024) - [j291]Björn Hanneke
, Oliver Hinz, Jella Pfeiffer, Wil M. P. van der Aalst:
The Internet of Value: Unleashing the Blockchain's Potential with Tokenization. Bus. Inf. Syst. Eng. 66(4): 411-419 (2024) - [j290]Jella Pfeiffer
, Jens F. Lachenmaier, Oliver Hinz, Wil M. P. van der Aalst:
New Laws and Regulation. Bus. Inf. Syst. Eng. 66(6): 653-666 (2024) - [j289]Moe Thandar Wynn
, Wil M. P. van der Aalst, Eric Verbeek, Bruno N. Di Stefano
:
The IEEE XES Standard for Process Mining: Experiences, Adoption, and Revision [Society Briefs]. IEEE Comput. Intell. Mag. 19(1): 20-23 (2024) - [j288]Lisa Luise Mannel, Wil M. P. van der Aalst:
Discovering Process Models with Long-Term Dependencies while Providing Guarantees and Filtering Infrequent Behavior Patterns. Fundam. Informaticae 190(2-4): 109-158 (2024) - [j287]Alessandro Berti, Johannes Herforth
, Mahnaz Sadat Qafari, Wil M. P. van der Aalst:
Graph-based feature extraction on object-centric event logs. Int. J. Data Sci. Anal. 18(2): 139-155 (2024) - [j286]Adam T. Burke
, Sander J. J. Leemans
, Moe Thandar Wynn
, Wil M. P. van der Aalst
, Arthur H. M. ter Hofstede
:
A chance for models to show their quality: Stochastic process model-log dimensions. Inf. Syst. 124: 102382 (2024) - [j285]Daniel Schuster
, Francesca Zerbato
, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
:
Defining and visualizing process execution variants from partially ordered event data. Inf. Sci. 657: 119958 (2024) - [j284]Daniel Schuster
, Elisabetta Benevento
, Davide Aloini
, Wil M. P. van der Aalst
:
Analyzing Healthcare Processes with Incremental Process Discovery: Practical Insights from a Real-World Application. J. Heal. Informatics Res. 8(3): 523-554 (2024) - [j283]Harry H. Beyel
, Omar Makke, Mahsa Pourbafrani, Oleg Gusikhin, Wil M. P. van der Aalst:
Analyzing Data Streams from Cyber-Physical-Systems: A Case Study. SN Comput. Sci. 5(6): 706 (2024) - [j282]Edyta Brzychczy
, Agnieszka Zuber, Wil M. P. van der Aalst
:
Process Mining of Mining Processes: Analyzing Longwall Coal Excavation Using Event Data. IEEE Trans. Syst. Man Cybern. Syst. 54(5): 2723-2734 (2024) - [c652]Wil M. P. van der Aalst:
Lifting Process Discovery and Conformance Checking to the Next Level: A General Approach to Object-Centric Process Mining (Invited Talk). PNSE@Petri Nets 2024: 1-12 - [c651]Tobias Brockhoff
, Moritz Nicolas Gose, Merih Seran Uysal
, Wil M. P. van der Aalst
:
Process Comparison Using Petri Net Decomposition. Petri Nets 2024: 83-105 - [c650]Harry H. Beyel, Marlo Verket
, Viki Peeva, Christian Rennert, Marco Pegoraro, Katharina Schütt, Wil M. P. van der Aalst, Nikolaus Marx:
Process-Aware Analysis of Treatment Paths in Heart Failure Patients: A Case Study. BIOSTEC (2) 2024: 506-515 - [c649]Wil M. P. van der Aalst
, Sander J. J. Leemans
:
Learning Generalized Stochastic Petri Nets From Event Data. Principles of Verification (3) 2024: 3-17 - [c648]Ali Norouzifar
, Humam Kourani
, Marcus Dees
, Wil M. P. van der Aalst
:
Bridging Domain Knowledge and Process Discovery Using Large Language Models. Business Process Management Workshops 2024: 44-56 - [c647]Zahra Sadeghibogar
, Alessandro Berti
, Marco Pegoraro
, Wil M. P. van der Aalst
:
Applying Process Mining on Scientific Workflows: A Case Study on High Performance Computing Data. Business Process Management Workshops 2024: 84-96 - [c646]Aaron Küsters, Wil M. P. van der Aalst:
Rust4PM: A Versatile Process Mining Library for When Performance Matters. BPM (Demos / Resources Forum) 2024: 91-95 - [c645]Lukas Liss
, Jan Niklas Adams
, Wil M. P. van der Aalst
:
TOTeM: Temporal Object Type Model for Object-Centric Process Mining. BPM (Forum) 2024: 107-123 - [c644]Jan Niklas Adams
, Emilie Hastrup-Kiil, Gyunam Park
, Wil M. P. van der Aalst
:
Super Variants. BPM 2024: 111-128 - [c643]Alessandro Berti, Wil M. P. van der Aalst:
CSV-PM-LLM-Parsing: Automatic Ingestion of CSV Event Logs for Process Mining using LLMs. BPM (Demos / Resources Forum) 2024: 131-135 - [c642]Harry H. Beyel
, Wil M. P. van der Aalst
:
Improving Process Discovery Using Translucent Activity Relationships. BPM 2024: 146-163 - [c641]Alessandro Berti, Urszula Jessen, Wil M. P. van der Aalst, Dirk Fahland:
Explainable Object-Centric Anomaly Detection: the Role of Domain Knowledge. BPM (Demos / Resources Forum) 2024: 162-168 - [c640]Gyunam Park, Jan Niklas Adams, Wil M. P. van der Aalst:
Conformance Checking and Performance Analysis Using Object-Centric Directly-Follows Graphs. BPM (Forum) 2024: 179-196 - [c639]Eduardo Goulart Rocha
, Sebastiaan J. van Zelst
, Wil M. P. van der Aalst
:
Mining Behavioral Patterns for Conformance Diagnostics. BPM 2024: 291-308 - [c638]Eduardo Goulart Rocha
, Wil M. P. van der Aalst
:
Precision-Guided Minimization of Arbitrary Declarative Process Models. BPMDS/EMMSAD@CAiSE 2024: 48-56 - [c637]Ali Norouzifar
, Majid Rafiei
, Marcus Dees
, Wil M. P. van der Aalst
:
Process Variant Analysis Across Continuous Features: A Novel Framework. BPMDS/EMMSAD@CAiSE 2024: 129-142 - [c636]Humam Kourani
, Alessandro Berti
, Daniel Schuster
, Wil M. P. van der Aalst
:
Process Modeling with Large Language Models. BPMDS/EMMSAD@CAiSE 2024: 229-244 - [c635]Tsung-Hao Huang
, Enzo Schneider, Marco Pegoraro
, Wil M. P. van der Aalst
:
Fast & Sound: Accelerating Synthesis-Rules-Based Process Discovery. BPMDS/EMMSAD@CAiSE 2024: 259-274 - [c634]István Koren
, Matthias Jarke
, Judith Michael
, Malte Heithoff
, Leah Tacke genannt Unterberg, Max Stachon
, Bernhard Rumpe
, Wil M. P. van der Aalst
:
Navigating the Data Model Divide in Smart Manufacturing: An Empirical Investigation for Enhanced AI Integration. BPMDS/EMMSAD@CAiSE 2024: 275-290 - [c633]Tobias Brockhoff
, Merih Seran Uysal
, Wil M. P. van der Aalst
:
Process Comparison Based on Selection-Projection Structures. CAiSE 2024: 20-35 - [c632]Gyunam Park
, Majid Rafiei
, Hayyan Helal
, Gerhard Lakemeyer
, Wil M. P. van der Aalst
:
Incorporating Behavioral Recommendations Mined from Event Logs into AI Planning. CAiSE Forum 2024: 20-28 - [c631]Tsung-Hao Huang
, Tarek Junied
, Marco Pegoraro
, Wil M. P. van der Aalst
:
ProReco: A Process Discovery Recommender System. CAiSE Forum 2024: 93-101 - [c630]Dina Kretzschmann
, Gyunam Park
, Alessandro Berti
, Wil M. P. van der Aalst
:
Overstock Problems in a Purchase-to-Pay Process: An Object-Centric Process Mining Case Study. CAiSE Workshops 2024: 347-359 - [c629]Harry H. Beyel, Sovin Manuel, Wil M. P. van der Aalst:
ActivityGen: Extracting Enabled Activities from Screenshots. ECAI 2024: 712-720 - [c628]Jan Niklas Adams, Hannes Drescher, Andreas Swoboda, Nikou Günnemann, Gyunam Park, Wil M. P. van der Aalst:
Improving Predictive Process Monitoring Using Object-Centric Process Mining. ECIS 2024 - [c627]Christopher T. Schwanen
, Wied Pakusa, Wil M. P. van der Aalst
:
Process Tree Alignments. EDOC 2024: 300-317 - [c626]Hauke Heidemeyer
, Leo Auhagen, Raphael W. Majeed, Marco Pegoraro, Jonas Bienzeisler, Viki Peeva, Harry H. Beyel, Rainer Röhrig, Wil M. P. van der Aalst, Behrus Puladi:
A Pipeline for the Usage of the Core Data Set of the Medical Informatics Initiative for Process Mining - A Technical Case Report. GMDS 2024: 30-39 - [c625]Tobias Brockhoff, Merih Seran Uysal, Wil M. P. van der Aalst:
Wasserstein Weight Estimation for Stochastic Petri Nets. ICPM 2024: 81-88 - [c624]Henrik Kämmerling, Eduardo Goulart Rocha, Wil M. P. van der Aalst:
ProM4Py - A Python Wrapper For The ProM Framework. ICPM Doctoral Consortium / Demo 2024 - [c623]Eduardo Goulart Rocha, Sander J. J. Leemans, Wil M. P. van der Aalst:
Stochastic Conformance Checking Based on Expected Subtrace Frequency. ICPM 2024: 73-80 - [c622]Humam Kourani, Alessandro Berti, Daniel Schuster, Wil M. P. van der Aalst:
ProMoAI: Process Modeling with Generative AI. IJCAI 2024: 8708-8712 - [c621]Leah Tacke genannt Unterberg, István Koren, Wil M. P. van der Aalst:
Maximizing Reuse and Interoperability in Industry 4.0 with a Minimal Data Exchange Format for Machine Data. Modellierung 2024: 103-118 - [c620]Harry Herbert Beyel
, Wil M. P. van der Aalst
:
Translucent Precision: Exploiting Enabling Information to Evaluate the Quality of Process Models. RCIS (2) 2024: 29-37 - [c619]Ali Norouzifar
, Marcus Dees
, Wil M. P. van der Aalst
:
Imposing Rules in Process Discovery: An Inductive Mining Approach. RCIS (1) 2024: 220-236 - [d4]Nico Elbert
, Lukas Liss
, Wil M. P. van der Aalst
, Christoph M. Flath
:
Game Data Event Log from Age of Empire Interactions. Zenodo, 2024 - [d3]Lukas Liss
, Nico Elbert
, Christoph M. Flath
, Wil M. P. van der Aalst
:
Object-Centric Event Log for Age of Empires Game Interactions. Zenodo, 2024 - [i144]Aaron Küsters, Wil M. P. van der Aalst:
Developing a High-Performance Process Mining Library with Java and Python Bindings in Rust. CoRR abs/2401.14149 (2024) - [i143]Alessandro Berti, István Koren, Jan Niklas Adams
, Gyunam Park, Benedikt Knopp, Nina Graves, Majid Rafiei, Lukas Liß, Leah Tacke genannt Unterberg, Yisong Zhang, Christopher T. Schwanen, Marco Pegoraro, Wil M. P. van der Aalst:
OCEL (Object-Centric Event Log) 2.0 Specification. CoRR abs/2403.01975 (2024) - [i142]Humam Kourani, Alessandro Berti, Daniel Schuster, Wil M. P. van der Aalst:
ProMoAI: Process Modeling with Generative AI. CoRR abs/2403.04327 (2024) - [i141]Humam Kourani, Alessandro Berti, Daniel Schuster, Wil M. P. van der Aalst:
Process Modeling With Large Language Models. CoRR abs/2403.07541 (2024) - [i140]Harry H. Beyel, Marlo Verket, Viki Peeva, Christian Rennert
, Marco Pegoraro, Katharina Schütt, Wil M. P. van der Aalst, Nikolaus Marx:
Process-Aware Analysis of Treatment Paths in Heart Failure Patients: A Case Study. CoRR abs/2403.10544 (2024) - [i139]Bianka Bakullari, Wil M. P. van der Aalst:
High-Level Event Mining: Overview and Future Work. CoRR abs/2405.14435 (2024) - [i138]Ali Norouzifar, Majid Rafiei, Marcus Dees, Wil M. P. van der Aalst:
Process Variant Analysis Across Continuous Features: A Novel Framework. CoRR abs/2406.04347 (2024) - [i137]Alessandro Berti, Urszula Jessen, Wil M. P. van der Aalst, Dirk Fahland
:
Challenges of Anomaly Detection in the Object-Centric Setting: Dimensions and the Role of Domain Knowledge. CoRR abs/2407.09023 (2024) - [i136]Alessandro Berti, Humam Kourani, Wil M. P. van der Aalst:
PM-LLM-Benchmark: Evaluating Large Language Models on Process Mining Tasks. CoRR abs/2407.13244 (2024) - [i135]Humam Kourani, Alessandro Berti, Jasmin Henrich, Wolfgang Kratsch, Robin Weidlich, Chiao-Yun Li, Ahmad Arslan, Daniel Schuster, Wil M. P. van der Aalst:
Leveraging Large Language Models for Enhanced Process Model Comprehension. CoRR abs/2408.08892 (2024) - [i134]Ali Norouzifar, Humam Kourani, Marcus Dees, Wil M. P. van der Aalst:
Bridging Domain Knowledge and Process Discovery Using Large Language Models. CoRR abs/2408.17316 (2024) - [i133]Ali Norouzifar, Marcus Dees, Wil M. P. van der Aalst:
Imposing Rules in Process Discovery: an Inductive Mining Approach. CoRR abs/2408.17326 (2024) - [i132]Christian Rennert
, Mahsa Pourbafrani, Wil M. P. van der Aalst:
Evaluation of Study Plans using Partial Orders. CoRR abs/2410.03314 (2024) - [i131]Dirk Fahland, Marco Montali, Julian Lebherz, Wil M. P. van der Aalst, Maarten van Asseldonk, Peter Blank, Lien Bosmans
, Marcus Brenscheidt, Claudio Di Ciccio, Andrea Delgado, Daniel Calegari, Jari Peeperkorn, Eric Verbeek, Lotte Vugs, Moe Thandar Wynn:
Towards a Simple and Extensible Standard for Object-Centric Event Data (OCED) - Core Model, Design Space, and Lessons Learned. CoRR abs/2410.14495 (2024) - [i130]Viki Peeva, Marvin Porsil, Wil M. P. van der Aalst:
Object-Centric Local Process Models. CoRR abs/2411.10468 (2024) - [i129]Humam Kourani, Alessandro Berti, Daniel Schuster, Wil M. P. van der Aalst:
Evaluating Large Language Models on Business Process Modeling: Framework, Benchmark, and Self-Improvement Analysis. CoRR abs/2412.00023 (2024) - 2023
- [j281]Majid Rafiei
, Wil M. P. van der Aalst
:
An Abstraction-Based Approach for Privacy-Aware Federated Process Mining. IEEE Access 11: 33697-33714 (2023) - [j280]Wil M. P. van der Aalst
, Oliver Hinz, Christof Weinhardt
:
Sustainable Systems Engineering. Bus. Inf. Syst. Eng. 65(1): 1-6 (2023) - [j279]Timm Teubner, Christoph M. Flath, Christof Weinhardt
, Wil M. P. van der Aalst
, Oliver Hinz:
Welcome to the Era of ChatGPT et al. Bus. Inf. Syst. Eng. 65(2): 95-101 (2023) - [j278]Michael Nofer, Kevin Bauer, Oliver Hinz, Wil M. P. van der Aalst, Christof Weinhardt
:
Quantum Computing. Bus. Inf. Syst. Eng. 65(4): 361-367 (2023) - [j277]Wil M. P. van der Aalst, Oliver Hinz, Christof Weinhardt
:
Ranking the Ranker: How to Evaluate Institutions, Researchers, Journals, and Conferences? Bus. Inf. Syst. Eng. 65(6): 615-621 (2023) - [j276]Gyunam Park
, Daniel Schuster
, Wil M. P. van der Aalst
:
Pattern-based action engine: Generating process management actions using temporal patterns of process-centric problems. Comput. Ind. 153: 104020 (2023) - [j275]Jan Niklas Adams
, Gyunam Park
, Wil M. P. van der Aalst
:
Preserving complex object-centric graph structures to improve machine learning tasks in process mining. Eng. Appl. Artif. Intell. 125: 106764 (2023) - [j274]Yogesh K. Dwivedi
, Nir Kshetri, Laurie Hughes, Emma L. Slade, Anand Jeyaraj, Arpan Kumar Kar
, Abdullah M. Baabdullah, Alex Koohang, Vishnupriya Raghavan, Manju Ahuja, Hanaa Albanna, Mousa Ahmad Albashrawi, Adil S. Al-Busaidi, Janarthanan Balakrishnan, Yves Barlette
, Sriparna Basu, Indranil Bose, Laurence D. Brooks
, Dimitrios Buhalis, Lemuria D. Carter, Soumyadeb Chowdhury, Tom Crick, Scott W. Cunningham
, Gareth H. Davies, Robert M. Davison
, Rahul De', Denis Dennehy, Yanqing Duan, Rameshwar Dubey, Rohita Dwivedi
, John S. Edwards
, Carlos Flavián
, Robin Gauld, Varun Grover, Mei-Chih Hu, Marijn Janssen, Paul Jones
, Iris A. Junglas, Sangeeta Khorana, Sascha Kraus, Kai R. Larsen, Paul Latreille, Sven Laumer, F. Tegwen Malik, Abbas Mardani
, Marcello Mariani, Sunil Mithas, Emmanuel Mogaji
, Jeretta Horn Nord, Siobhán O'Connor
, Fevzi Okumus, Margherita Pagani, Neeraj Pandey
, Savvas Papagiannidis, Ilias O. Pappas, Nishith Pathak, Jan Pries-Heje, Ramakrishnan Raman
, Nripendra P. Rana, Sven-Volker Rehm
, Samuel Ribeiro-Navarrete
, Alexander Richter
, Frantz Rowe, Suprateek Sarker, Bernd Carsten Stahl, Manoj Kumar Tiwari, Wil M. P. van der Aalst, Viswanath Venkatesh, Giampaolo Viglia
, Michael R. Wade
, Paul Walton, Jochen Wirtz
, Ryan T. Wright
:
Opinion Paper: "So what if ChatGPT wrote it?" Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. Int. J. Inf. Manag. 71: 102642 (2023) - [j273]Jan Niklas Adams
, Sebastiaan J. van Zelst, Thomas Rose, Wil M. P. van der Aalst
:
Explainable concept drift in process mining. Inf. Syst. 114: 102177 (2023) - [j272]Wil M. P. van der Aalst, Riccardo De Masellis, Chiara Di Francescomarino
, Chiara Ghidini, Humam Kourani
:
Discovering hybrid process models with bounds on time and complexity: When to be formal and when not? Inf. Syst. 116: 102214 (2023) - [j271]Mohammadreza Fani Sani
, Mozhgan Vazifehdoostirani
, Gyunam Park, Marco Pegoraro, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
:
Performance-preserving event log sampling for predictive monitoring. J. Intell. Inf. Syst. 61(1): 53-82 (2023) - [j270]Luciana Barbieri
, Edmundo R. M. Madeira
, Kleber Stroeh, Wil M. P. van der Aalst
:
A natural language querying interface for process mining. J. Intell. Inf. Syst. 61(1): 113-142 (2023) - [j269]Alessandro Berti, Gyunam Park, Majid Rafiei, Wil M. P. van der Aalst:
A generic approach to extract object-centric event data from databases supporting SAP ERP. J. Intell. Inf. Syst. 61(3): 835-857 (2023) - [j268]Jan Niklas Adams
, Cameron Pitsch
, Tobias Brockhoff, Wil M. P. van der Aalst:
An Experimental Evaluation of Process Concept Drift Detection. Proc. VLDB Endow. 16(8): 1856-1869 (2023) - [j267]Michael Martini, Daniel Schuster, Wil M. P. van der Aalst:
Mining Frequent Infix Patterns from Concurrency-Aware Process Execution Variants. Proc. VLDB Endow. 16(10): 2666-2678 (2023) - [j266]Daniel Schuster
, Sebastiaan J. van Zelst, Wil M. P. van der Aalst:
Cortado: A dedicated process mining tool for interactive process discovery. SoftwareX 22: 101373 (2023) - [j265]Alessandro Berti, Wil M. P. van der Aalst
:
OC-PM: analyzing object-centric event logs and process models. Int. J. Softw. Tools Technol. Transf. 25(1): 1-17 (2023) - [c618]Wil M. P. van der Aalst:
Twin Transitions Powered By Event Data - Using Object-Centric Process Mining To Make Processes Digital and Sustainable. ATAED/PN4TT@Petri Nets 2023 - [c617]Aaron Küsters, Wil M. P. van der Aalst:
Revisiting the Alpha Algorithm To Enable Real-Life Process Discovery Applications. ATAED/PN4TT@Petri Nets 2023 - [c616]Christian Rennert, Lisa Luise Mannel, Wil M. P. van der Aalst:
Improving the eST-Miner Models by Replacing Imprecise Structures Using Place Projection. ATAED/PN4TT@Petri Nets 2023 - [c615]Yisong Zhang
, Wil M. P. van der Aalst
:
Explorative Process Discovery Using Activity Projections. Petri Nets 2023: 229-239 - [c614]Chiao-Yun Li, Sebastiaan J. van Zelst, Wil M. P. van der Aalst:
Event Abstraction for Partial Order Patterns. BPM 2023: 38-54 - [c613]Daniel Schuster
, Niklas Föcking
, Sebastiaan J. van Zelst
, Wil M. P. van der Aalst
:
Incremental Discovery of Process Models Using Trace Fragments. BPM 2023: 55-73 - [c612]Gal Engelberg, Moshe Hadad, Marco Pegoraro, Pnina Soffer, Ethan Hadar, Wil M. P. van der Aalst:
An Uncertainty-Aware Event Log of Network Traffic. BPM (Demos / Resources Forum) 2023: 67-71 - [c611]Wil M. P. van der Aalst
:
Experiences from the Internet-of-Production: Using "Data-Models-in-the-Middle" to Fight Complexity and Facilitate Reuse. Business Process Management Workshops 2023: 87-91 - [c610]Timo Pohl, Alessandro Berti, Mahnaz Sadat Qafari, Wil M. P. van der Aalst:
A Collection of Simulated Event Logs for Fairness Assessment in Process Mining. BPM (Demos / Resources Forum) 2023: 87-91 - [c609]Harry H. Beyel
, Omar Makke
, Oleg Gusikhin
, Wil M. P. van der Aalst
:
Analyzing Behavior in Cyber-Physical Systems in Connected Vehicles: A Case Study. Business Process Management Workshops 2023: 92-104 - [c608]Zahra Sadeghibogar, Alessandro Berti, Marco Pegoraro, Wil M. P. van der Aalst:
SLURMminer: A Tool for SLURM System Analysis with Process Mining. BPM (Demos / Resources Forum) 2023: 97-101 - [c607]Mohammadreza Fani Sani, Juan J. Garza Gonzalez, Sebastiaan J. van Zelst, Wil M. P. van der Aalst:
Alignment Approximator: A ProM Plug-In to Approximate Conformance Statistics. BPM (Demos / Resources Forum) 2023: 102-106 - [c606]Eduardo Goulart Rocha
, Wil M. P. van der Aalst
:
Polynomial-Time Conformance Checking for Process Trees. BPM 2023: 109-125 - [c605]Bianka Bakullari
, Jules van Thoor, Dirk Fahland
, Wil M. P. van der Aalst
:
The Interplay Between High-Level Problems and the Process Instances that Give Rise to Them. BPM (Forum) 2023: 145-162 - [c604]Mahsa Pourbafrani
, Niels Lücking
, Matthieu Lucke
, Wil M. P. van der Aalst
:
Steady State Estimation for Business Process Simulations. BPM (Forum) 2023: 178-195 - [c603]Mohammadreza Fani Sani, Martin Kabierski, Sebastiaan J. van Zelst, Wil M. P. van der Aalst:
Model-Independent Error Bound Estimation for Conformance Checking Approximation. Business Process Management Workshops 2023: 369-382 - [c602]Alessandro Berti
, Daniel Schuster
, Wil M. P. van der Aalst
:
Abstractions, Scenarios, and Prompt Definitions for Process Mining with LLMs: A Case Study. Business Process Management Workshops 2023: 427-439 - [c601]Jan Niklas Adams
, Wil M. P. van der Aalst
:
Addressing Convergence, Divergence, and Deficiency Issues. Business Process Management Workshops 2023: 496-507 - [c600]Tsung-Hao Huang
, Wil M. P. van der Aalst
:
Unblocking Inductive Miner - While Preserving Desirable Properties. BPMDS/EMMSAD@CAiSE 2023: 327-342 - [c599]Wil M. P. van der Aalst:
Learning Colored Petri Nets Using Object-Centric Event Data (OCED2CPN). CiSt 2023: 1-6 - [c598]Chiao-Yun Li, Aparna Joshi, Nicholas T. L. Tam, Sean Shing Fung Lau, Jinhui Huang
, Tejaswini Shinde
, Wil M. P. van der Aalst:
Rectify Sensor Data in IoT: A Case Study on Enabling Process Mining for Logistic Process in an Air Cargo Terminal. CoopIS 2023: 293-310 - [c597]Harry H. Beyel, Omar Makke
, Fangbo Yuan, Oleg Gusikhin, Wil M. P. van der Aalst:
Analyzing Cyber-Physical Systems in Cars: A Case Study. DATA 2023: 195-204 - [c596]Anahita Farhang Ghahfarokhi, Fatemeh Akoochekian, Fareed Zandkarimi, Wil M. P. van der Aalst:
Clustering Object-Centric Event Logs. DATA 2023: 444-451 - [c595]Wil M. P. van der Aalst:
Toward More Realistic Simulation Models Using Object-Centric Process Mining. ECMS 2023: 5-13 - [c594]Mahsa Pourbafrani, Wil M. P. van der Aalst:
Data-Driven Simulation In Process Mining: Introducing A Reference Model. ECMS 2023: 411-420 - [c593]Indira Sen, Dennis Assenmacher, Mattia Samory, Isabelle Augenstein
, Wil M. P. van der Aalst, Claudia Wagner:
People Make Better Edits: Measuring the Efficacy of LLM-Generated Counterfactually Augmented Data for Harmful Language Detection. EMNLP 2023: 10480-10504 - [c592]Jan Niklas Adams, Jari Peeperkorn, Tobias Brockhoff, Isabelle Terrier, Heiko Göhner, Merih Seran Uysal, Seppe vanden Broucke, Jochen De Weerdt, Wil M. P. van der Aalst:
Discovering high-quality process models despite data scarcity. ER (Companion) 2023 - [c591]Lukas Liss
, Jan Niklas Adams
, Wil M. P. van der Aalst
:
Object-Centric Alignments. ER 2023: 201-219 - [c590]Benedikt Knopp
, Mahsa Pourbafrani, Wil M. P. van der Aalst:
Discovering Object-Centric Process Simulation Models. ICPM 2023: 81-88 - [c589]Humam Kourani
, Daniel Schuster, Wil M. P. van der Aalst:
Scalable Discovery of Partially Ordered Workflow Models with Formal Guarantees. ICPM 2023: 89-96 - [c588]Majid Rafiei
, Duygu Bayrak
, Mahsa Pourbafrani
, Gyunam Park
, Hayyan Helal
, Gerhard Lakemeyer
, Wil M. P. van der Aalst
:
Extracting Rules from Event Data for Study Planning. ICPM Workshops 2023: 361-374 - [c587]Nina Graves
, István Koren
, Majid Rafiei
, Wil M. P. van der Aalst
:
From Identities to Quantities: Introducing Items and Decoupling Points to Object-Centric Process Mining. ICPM Workshops 2023: 462-474 - [c586]István Koren, Jan Niklas Adams, Alessandro Berti, Wil M. P. van der Aalst:
OCEL 2.0 Resources - www.ocel-standard.org. ICPM Doctoral Consortium / Demo 2023 - [c585]Christian Rennert
, Wil M. P. van der Aalst
:
Improving Precision in Process Trees Using Subprocess Tree Logs. ICPM Workshops 2023: 110-122 - [c584]Felix C. Groß, Lisa Luise Mannel, Wil M. P. van der Aalst:
Enhancing the Applicability of the eST-Miner: Efficient Precision-Guided Implicit Place Avoidance. ICPM 2023: 121-128 - [c583]Tian Li
, Gyunam Park, Wil M. P. van der Aalst:
Checking Constraints for Object-Centric Process Executions. ICPM Workshops 2023: 392-405 - [c582]Gyunam Park, Sevde Aydin, Cüneyt Ugur, Wil M. P. van der Aalst:
Analyzing an After-Sales Service Process Using Object-Centric Process Mining: A Case Study. ICPM Workshops 2023: 406-418 - [c581]Viki Peeva, Wil M. P. van der Aalst:
Grouping Local Process Models. ICPM Workshops 2023: 419-430 - [c580]Chiao-Yun Li
, Tejaswini Shinde
, Wanyi He, Sean Shing Fung Lau, Morgan Xian Biao Hiew, Nicholas T. L. Tam, Aparna Joshi, Wil M. P. van der Aalst
:
Unveiling Bottlenecks in Logistics: A Case Study on Process Mining for Root Cause Identification and Diagnostics in an Air Cargo Terminal. ICSOC (2) 2023: 291-307 - [c579]Nina Graves, István Koren, Wil M. P. van der Aalst:
ReThink Your Processes! A Review of Process Mining for Sustainability. ICT4S 2023: 164-175 - [c578]Majid Rafiei
, Frederik Wangelik
, Mahsa Pourbafrani
, Wil M. P. van der Aalst
:
TraVaG: Differentially Private Trace Variant Generation Using GANs. RCIS 2023: 415-431 - [c577]Ali Norouzifar
, Wil M. P. van der Aalst
:
Discovering Process Models that Support Desired Behavior and Avoid Undesired Behavior. SAC 2023: 365-368 - [d2]Benedikt Knopp
, Wil M. P. van der Aalst
:
Order Management Object-centric Event Log in OCEL 2.0 Standard. Version 1. Zenodo, 2023 [all versions] - [d1]Benedikt Knopp
, Wil M. P. van der Aalst
:
Order Management Object-centric Event Log in OCEL 2.0 Standard. Version 2. Zenodo, 2023 [all versions] - [i128]Tsung-Hao Huang, Wil M. P. van der Aalst:
Comparing Ordering Strategies For Process Discovery Using Synthesis Rules. CoRR abs/2301.02182 (2023) - [i127]Tsung-Hao Huang, Wil M. P. van der Aalst:
Discovering Sound Free-choice Workflow Nets With Non-block Structures. CoRR abs/2301.02185 (2023) - [i126]Mohammadreza Fani Sani, Mozhgan Vazifehdoostirani, Gyunam Park, Marco Pegoraro
, Sebastiaan J. van Zelst, Wil M. P. van der Aalst:
Performance-Preserving Event Log Sampling for Predictive Monitoring. CoRR abs/2301.07624 (2023) - [i125]Ali Norouzifar, Wil M. P. van der Aalst:
Discovering Process Models that Support Desired Behavior and Avoid Undesired Behavior. CoRR abs/2302.10984 (2023) - [i124]Majid Rafiei, Frederik Wangelik, Mahsa Pourbafrani, Wil M. P. van der Aalst:
TraVaG: Differentially Private Trace Variant Generation Using GANs. CoRR abs/2303.16704 (2023) - [i123]Lukas Liss, Jan Niklas Adams
, Wil M. P. van der Aalst:
Object-Centric Alignments. CoRR abs/2305.05113 (2023) - [i122]Aaron Küsters, Wil M. P. van der Aalst:
Revisiting the Alpha Algorithm To Enable Real-Life Process Discovery Applications - Extended Report. CoRR abs/2305.17767 (2023) - [i121]Paolo Ceravolo, Sylvio Barbon Junior, Ernesto Damiani, Wil M. P. van der Aalst:
Tailoring Machine Learning for Process Mining. CoRR abs/2306.10341 (2023) - [i120]Timo Pohl, Alessandro Berti, Mahnaz Sadat Qafari, Wil M. P. van der Aalst:
A Collection of Simulated Event Logs for Fairness Assessment in Process Mining. CoRR abs/2306.11453 (2023) - [i119]Alessandro Berti, Daniel Schuster, Wil M. P. van der Aalst:
Abstractions, Scenarios, and Prompt Definitions for Process Mining with LLMs: A Case Study. CoRR abs/2307.02194 (2023) - [i118]Zahra Sadeghibogar, Alessandro Berti, Marco Pegoraro, Wil M. P. van der Aalst:
Applying Process Mining on Scientific Workflows: a Case Study. CoRR abs/2307.02833 (2023) - [i117]Bianka Bakullari, Jules van Thoor, Dirk Fahland, Wil M. P. van der Aalst:
The Interplay Between High-Level Problems and The Process Instances That Give Rise To Them. CoRR abs/2309.01571 (2023) - [i116]Majid Rafiei, Duygu Bayrak, Mahsa Pourbafrani, Gyunam Park, Hayyan Helal, Gerhard Lakemeyer, Wil M. P. van der Aalst:
Extracting Rules from Event Data for Study Planning. CoRR abs/2310.02735 (2023) - [i115]Gyunam Park, Sevde Aydin, Cuneyt Ugur, Wil M. P. van der Aalst:
Analyzing An After-Sales Service Process Using Object-Centric Process Mining: A Case Study. CoRR abs/2310.10174 (2023) - [i114]Jan Niklas Adams
, Jari Peeperkorn
, Tobias Brockhoff, Isabelle Terrier, Heiko Göhner, Merih Seran Uysal, Seppe vanden Broucke, Jochen De Weerdt
, Wil M. P. van der Aalst:
Discovering High-Quality Process Models Despite Data Scarcity. CoRR abs/2310.11332 (2023) - [i113]Indira Sen, Dennis Assenmacher, Mattia Samory, Isabelle Augenstein, Wil M. P. van der Aalst, Claudia Wagner:
People Make Better Edits: Measuring the Efficacy of LLM-Generated Counterfactually Augmented Data for Harmful Language Detection. CoRR abs/2311.01270 (2023) - [i112]Viki Peeva, Wil M. P. van der Aalst:
Grouping Local Process Models. CoRR abs/2311.03040 (2023) - [i111]Alessandro Berti, Marco Montali, Wil M. P. van der Aalst:
Advancements and Challenges in Object-Centric Process Mining: A Systematic Literature Review. CoRR abs/2311.08795 (2023) - 2022
- [j264]Mahsa Pourbafrani
, Wil M. P. van der Aalst
:
Discovering System Dynamics Simulation Models Using Process Mining. IEEE Access 10: 78527-78547 (2022) - [j263]Cristina Mihale-Wilson
, Oliver Hinz, Wil M. P. van der Aalst
, Christof Weinhardt
:
Corporate Digital Responsibility. Bus. Inf. Syst. Eng. 64(2): 127-132 (2022) - [j262]Christian Peukert, Christof Weinhardt
, Oliver Hinz, Wil M. P. van der Aalst
:
Metaverse: How to Approach Its Challenges from a BISE Perspective. Bus. Inf. Syst. Eng. 64(4): 401-406 (2022) - [j261]Ali Sunyaev, Christof Weinhardt
, Wil M. P. van der Aalst
, Oliver Hinz:
BISE Student. Bus. Inf. Syst. Eng. 64(6): 701-706 (2022) - [j260]Wil M. P. van der Aalst
:
European leadership in process management. Commun. ACM 65(4): 80-83 (2022) - [j259]Daniel Schuster
, Sebastiaan J. van Zelst, Wil M. P. van der Aalst:
Utilizing domain knowledge in data-driven process discovery: A literature review. Comput. Ind. 137: 103612 (2022) - [j258]Jing Yang
, Chun Ouyang, Wil M. P. van der Aalst
, Arthur H. M. ter Hofstede
, Yang Yu
:
OrdinoR: A framework for discovering, evaluating, and analyzing organizational models using event logs. Decis. Support Syst. 158: 113771 (2022) - [j257]Vincent Bloemen, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
, Boudewijn F. van Dongen, Jaco van de Pol:
Aligning observed and modelled behaviour by maximizing synchronous moves and using milestones. Inf. Syst. 103: 101456 (2022) - [j256]Vincenzo Pasquadibisceglie
, Annalisa Appice, Giovanna Castellano, Wil M. P. van der Aalst
:
PROMISE: Coupling predictive process mining to process discovery. Inf. Sci. 606: 250-271 (2022) - [j255]Jorge Munoz-Gama
, Niels Martin
, Carlos Fernández-Llatas, Owen A. Johnson
, Marcos Sepúlveda
, Emmanuel Helm, Victor Galvez-Yanjari, Eric Rojas, Antonio Martinez-Millana, Davide Aloini
, Ilaria Angela Amantea, Robert Andrews, Michael Arias
, Iris Beerepoot, Elisabetta Benevento, Andrea Burattin, Daniel Capurro, Josep Carmona, Marco Comuzzi, Benjamin Dalmas, Rene de la Fuente
, Chiara Di Francescomarino, Claudio Di Ciccio
, Roberto Gatta, Chiara Ghidini, Fernanda Gonzalez-Lopez
, Gema Ibáñez-Sánchez, Hilda B. Klasky, Angelina Prima Kurniati
, Xixi Lu, Felix Mannhardt
, Ronny Mans, Mar Marcos
, Renata Medeiros de Carvalho, Marco Pegoraro
, Simon K. Poon, Luise Pufahl, Hajo A. Reijers
, Simon Remy, Stefanie Rinderle-Ma, Lucia Sacchi, Fernando Seoane
, Minseok Song
, Alessandro Stefanini
, Emilio Sulis, Arthur H. M. ter Hofstede, Pieter J. Toussaint, Vicente Traver, Zoe Valero-Ramon
, Inge van de Weerd
, Wil M. P. van der Aalst
, Rob J. B. Vanwersch, Mathias Weske, Moe Thandar Wynn, Francesca Zerbato
:
Process mining for healthcare: Characteristics and challenges. J. Biomed. Informatics 127: 103994 (2022) - [j254]Elisabetta Benevento, Davide Aloini, Wil M. P. van der Aalst
:
How Can Interactive Process Discovery Address Data Quality Issues in Real Business Settings? Evidence from a Case Study in Healthcare. J. Biomed. Informatics 130: 104083 (2022) - [j253]Jan Niklas Adams
, Gyunam Park, Wil M. P. van der Aalst
:
ocpa: A Python library for object-centric process analysis. Softw. Impacts 14: 100438 (2022) - [j252]Philipp Brauner, Manuela Dalibor, Matthias Jarke, Ike Kunze
, István Koren, Gerhard Lakemeyer, Martin Liebenberg, Judith Michael
, Jan Pennekamp
, Christoph Quix, Bernhard Rumpe
, Wil M. P. van der Aalst
, Klaus Wehrle, Andreas Wortmann, Martina Ziefle:
A Computer Science Perspective on Digital Transformation in Production. ACM Trans. Internet Things 3(2): 15:1-15:32 (2022) - [c576]Jan Niklas Adams
, Wil M. P. van der Aalst
:
OCπ: Object-Centric Process Insights. Petri Nets 2022: 139-150 - [c575]Lisa Luise Mannel, Wil M. P. van der Aalst
:
Discovering Process Models with Long-Term Dependencies While Providing Guarantees and Handling Infrequent Behavior. Petri Nets 2022: 303-324 - [c574]Viki Peeva, Lisa Luise Mannel, Wil M. P. van der Aalst
:
From Place Nets to Local Process Models. Petri Nets 2022: 346-368 - [c573]Wil M. P. van der Aalst:
Discovering Directly-Follows Complete Petri Nets from Event Data. A Journey from Process Algebra via Timed Automata to Model Learning 2022: 539-558 - [c572]Humam Kourani
, Chiara Di Francescomarino, Chiara Ghidini, Wil M. P. van der Aalst, Sebastiaan J. van Zelst:
Mining for Long-Term Dependencies in Causal Graphs. Business Process Management Workshops 2022: 117-131 - [c571]Jing Yang
, Chun Ouyang
, Arthur H. M. ter Hofstede
, Wil M. P. van der Aalst
:
No Time to Dice: Learning Execution Contexts from Event Logs for Resource-Oriented Process Mining. BPM 2022: 163-180 - [c570]Gyunam Park, Janik-Vasily Benzin, Wil M. P. van der Aalst
:
Detecting Context-Aware Deviations in Process Executions. BPM (Forum) 2022: 190-206 - [c569]Marco Pegoraro
, Merih Seran Uysal
, Tom-Hendrik Hülsmann
, Wil M. P. van der Aalst
:
Uncertain Case Identifiers in Process Mining: A User Study of the Event-Case Correlation Problem on Click Data. BPMDS/EMMSAD@CAiSE 2022: 173-187 - [c568]Daniel Schuster
, Lukas Schade, Sebastiaan J. van Zelst
, Wil M. P. van der Aalst
:
Temporal Performance Analysis for Block-Structured Process Models in Cortado. CAiSE Forum 2022: 110-119 - [c567]Majid Rafiei
, Gamal Elkoumy
, Wil M. P. van der Aalst
:
Quantifying Temporal Privacy Leakage in Continuous Event Data Publishing. CoopIS 2022: 75-94 - [c566]Daniel Schuster
, Niklas Föcking
, Sebastiaan J. van Zelst
, Wil M. P. van der Aalst
:
Conformance Checking for Trace Fragments Using Infix and Postfix Alignments. CoopIS 2022: 299-310 - [c565]Tsung-Hao Huang
, Wil M. P. van der Aalst
:
Discovering Sound Free-Choice Workflow Nets with Non-block Structures. EDOC 2022: 200-216 - [c564]Gyunam Park
, Jan Niklas Adams
, Wil M. P. van der Aalst
:
OPerA: Object-Centric Performance Analysis. ER 2022: 281-292 - [c563]Mahsa Pourbafrani
, Firas Gharbi, Wil M. P. van der Aalst
:
Process Diagnostics at Coarse-grained Levels. ICEIS (1) 2022: 484-491 - [c562]Alexandre Goossens
, Johannes De Smedt
, Jan Vanthienen
, Wil M. P. van der Aalst
:
Enhancing Data-Awareness of Object-Centric Event Logs. ICPM Workshops 2022: 18-30 - [c561]Julian Weber, Gyunam Park, Majid Rafiei, Wil M. P. van der Aalst:
Interactive Process Identification and Selection from SAP ERP (Extended Abstract). ICPM Doctoral Consortium / Demo 2022: 61-64 - [c560]Adam T. Burke, Sander J. J. Leemans, Moe Thandar Wynn, Wil M. P. van der Aalst
, Arthur H. M. ter Hofstede:
Stochastic Process Model-Log Quality Dimensions: An Experimental Study. ICPM 2022: 80-87 - [c559]Timo Pohl, Mahnaz Sadat Qafari, Wil M. P. van der Aalst:
Discrimination-Aware Process Mining: A Discussion. ICPM Workshops 2022: 101-113 - [c558]Majid Rafiei
, Frederik Wangelik
, Wil M. P. van der Aalst
:
TraVaS: Differentially Private Trace Variant Selection for Process Mining. ICPM Workshops 2022: 114-126 - [c557]Jan Niklas Adams
, Daniel Schuster, Seth Schmitz
, Günther Schuh, Wil M. P. van der Aalst
:
Defining Cases and Variants for Object-Centric Event Data. ICPM 2022: 128-135 - [c556]Bianka Bakullari, Wil M. P. van der Aalst
:
High-Level Event Mining: A Framework. ICPM 2022: 136-143 - [c555]Christian Kohlschmidt, Mahnaz Sadat Qafari, Wil M. P. van der Aalst:
Detecting Surprising Situations in Event Data. ICPM Workshops 2022: 216-228 - [c554]Elisabetta Benevento
, Marco Pegoraro
, Mattia Antoniazzi
, Harry H. Beyel
, Viki Peeva
, Paul Balfanz
, Wil M. P. van der Aalst
, Lukas Martin
, Gernot Marx:
Process Modeling and Conformance Checking in Healthcare: A COVID-19 Case Study - Case Study. ICPM Workshops 2022: 315-327 - [c553]Harry H. Beyel
, Wil M. P. van der Aalst
:
Creating Translucent Event Logs to Improve Process Discovery. ICPM Workshops 2022: 435-447 - [c552]Gyunam Park
, Wil M. P. van der Aalst
:
Monitoring Constraints in Business Processes Using Object-Centric Constraint Graphs. ICPM Workshops 2022: 479-492 - [c551]Miriam Wagner, Hayyan Helal, Rene Roepke, Sven Judel, Jens Doveren, Sergej Görzen, Pouya Soudmand, Gerhard Lakemeyer, Ulrik Schroeder, Wil M. P. van der Aalst:
A Combined Approach of Process Mining and Rule-Based AI for Study Planning and Monitoring in Higher Education. ICPM Workshops 2022: 513-525 - [c550]Daniel Schuster
, Michael Martini
, Sebastiaan J. van Zelst
, Wil M. P. van der Aalst
:
Control-Flow-Based Querying of Process Executions from Partially Ordered Event Data. ICSOC 2022: 19-35 - [c549]Jan Niklas Adams
, Gyunam Park
, Sergej Levich, Daniel Schuster
, Wil M. P. van der Aalst
:
A Framework for Extracting and Encoding Features from Object-Centric Event Data. ICSOC 2022: 36-53 - [c548]Tsung-Hao Huang
, Wil M. P. van der Aalst
:
Comparing Ordering Strategies for Process Discovery Using Synthesis Rules. ICSOC Workshops 2022: 40-52 - [c547]Gyunam Park, Aaron Küsters
, Mara Tews, Cameron Pitsch, Jonathan Schneider, Wil M. P. van der Aalst:
Explainable Predictive Decision Mining for Operational Support. ICSOC Workshops 2022: 66-79 - [c546]Mahsa Pourbafrani, Firas Gharbi, Wil M. P. van der Aalst:
A Tool for Business Processes Diagnostics. ICSOC Workshops 2022: 350-354 - [c545]Daniel Schuster
, Emanuel Domnitsch, Sebastiaan J. van Zelst
, Wil M. P. van der Aalst
:
A Generic Trace Ordering Framework for Incremental Process Discovery. IDA 2022: 264-277 - [c544]Chiao-Yun Li, Sebastiaan J. van Zelst, Wil M. P. van der Aalst:
A Framework for Automated Abstraction Class Detection for Event Abstraction. ISDA (2) 2022: 126-136 - [c543]Tobias Brockhoff, Merih Seran Uysal, Wil M. P. van der Aalst:
Modeling Digital Shadows in Manufacturing by Using Process Mining. Modellierung (Workshops) 2022: 133-138 - [c542]Gyunam Park
, Marco Comuzzi
, Wil M. P. van der Aalst
:
Analyzing Process-Aware Information System Updates Using Digital Twins of Organizations. RCIS 2022: 159-176 - [c541]Mahsa Pourbafrani
, Wil M. P. van der Aalst
:
Hybrid Business Process Simulation: Updating Detailed Process Simulation Models Using High-Level Simulations. RCIS 2022: 177-194 - [c540]Alessandro Berti, Minh Phan Nghia, Wil M. P. van der Aalst
:
PM4Py-GPU: A High-Performance General-Purpose Library for Process Mining. RCIS 2022: 727-734 - [c539]Mahsa Pourbafrani
, Majid Rafiei, Alessandro Berti, Wil M. P. van der Aalst
:
Interactive Business Process Comparison Using Conformance and Performance Insights - A Tool. RCIS 2022: 735-743 - [p28]Wil M. P. van der Aalst
:
Process Mining: A 360 Degree Overview. Process Mining Handbook 2022: 3-34 - [p27]Wil M. P. van der Aalst
:
Foundations of Process Discovery. Process Mining Handbook 2022: 37-75 - [p26]Eduardo González López de Murillas, Hajo A. Reijers, Wil M. P. van der Aalst:
Data-Aware Process Oriented Query Language. Process Querying Methods 2022: 49-83 - [p25]Wil M. P. van der Aalst, Josep Carmona:
Scaling Process Mining to Turn Insights into Actions. Process Mining Handbook 2022: 495-502 - [e37]Wil M. P. van der Aalst
, Josep Carmona
:
Process Mining Handbook. Lecture Notes in Business Information Processing 448, Springer 2022, ISBN 978-3-031-08847-6 [contents] - [e36]Alfredo Cuzzocrea, Oleg Gusikhin, Wil M. P. van der Aalst, Slimane Hammoudi:
Proceedings of the 11th International Conference on Data Science, Technology and Applications, DATA 2022, Lisbon, Portugal, July 11-13, 2022. SCITEPRESS 2022, ISBN 978-989-758-583-8 [contents] - [i110]Mahsa Pourbafrani, Wil M. P. van der Aalst:
Interactive Process Improvement using Simulation of Enriched Process Trees. CoRR abs/2201.07755 (2022) - [i109]Marco Pegoraro, Madhavi Bangalore Shankara Narayana, Elisabetta Benevento, Wil M. P. van der Aalst, Lukas Martin, Gernot Marx:
Analyzing Medical Data with Process Mining: a COVID-19 Case Study. CoRR abs/2202.04625 (2022) - [i108]Alessandro Berti, Anahita Farhang Ghahfarokhi, Gyunam Park, Wil M. P. van der Aalst:
A Scalable Database for the Storage of Object-Centric Event Logs. CoRR abs/2202.05639 (2022) - [i107]Anahita Farhang Ghahfarokhi, Wil M. P. van der Aalst:
A Python Tool for Object-Centric Process Mining Comparison. CoRR abs/2202.05709 (2022) - [i106]Wil M. P. van der Aalst:
How to Write Beautiful Process-and-Data-Science Papers? CoRR abs/2203.09286 (2022) - [i105]Gyunam Park, Marco Comuzzi, Wil M. P. van der Aalst:
Analyzing Process-Aware Information System Updates Using Digital Twins of Organizations. CoRR abs/2203.12969 (2022) - [i104]Madhavi Bangalore Shankara Narayana, Elisabetta Benevento, Marco Pegoraro, Muhammad Abdullah, Rahim Bin Shahid, Qasim Sajid, Muhammad Usman Mansoor, Wil M. P. van der Aalst:
A Web-Based Tool for Comparative Process Mining. CoRR abs/2204.00547 (2022) - [i103]Mohammadreza Fani Sani, Mozhgan Vazifehdoostirani, Gyunam Park, Marco Pegoraro, Sebastiaan J. van Zelst, Wil M. P. van der Aalst:
Event Log Sampling for Predictive Monitoring. CoRR abs/2204.01470 (2022) - [i102]Marco Pegoraro, Merih Seran Uysal, Wil M. P. van der Aalst:
An XES Extension for Uncertain Event Data. CoRR abs/2204.04135 (2022) - [i101]Marco Pegoraro, Merih Seran Uysal, Tom-Hendrik Hülsmann, Wil M. P. van der Aalst:
Uncertain Case Identifiers in Process Mining: A User Study of the Event-Case Correlation Problem on Click Data. CoRR abs/2204.04164 (2022) - [i100]Alessandro Berti, Minh Phan Nghia, Wil M. P. van der Aalst:
PM4Py-GPU: a High-Performance General-Purpose Library for Process Mining. CoRR abs/2204.04898 (2022) - [i99]Gyunam Park, Jan Niklas Adams
, Wil M. P. van der Aalst:
OPerA: Object-Centric Performance Analysis. CoRR abs/2204.10662 (2022) - [i98]Wil M. P. van der Aalst:
Six Levels of Autonomous Process Execution Management (APEM). CoRR abs/2204.11328 (2022) - [i97]Gyunam Park, Janik-Vasily Benzin, Wil M. P. van der Aalst:
Detecting Context-Aware Deviations in Process Executions. CoRR abs/2206.05532 (2022) - [i96]Timo Rohrer, Anahita Farhang Ghahfarokhi, Mohamed Behery
, Gerhard Lakemeyer, Wil M. P. van der Aalst:
Predictive Object-Centric Process Monitoring. CoRR abs/2207.10017 (2022) - [i95]Anahita Farhang Ghahfarokhi, Fatemeh Akoochekian, Fareed Zandkarimi, Wil M. P. van der Aalst:
Clustering Object-Centric Event Logs. CoRR abs/2207.12764 (2022) - [i94]Majid Rafiei, Gamal Elkoumy, Wil M. P. van der Aalst:
Quantifying Temporal Privacy Leakage in Continuous Event Data Publishing. CoRR abs/2208.01886 (2022) - [i93]Jan Niklas Adams
, Daniel Schuster
, Seth Schmitz
, Günther Schuh, Wil M. P. van der Aalst:
Defining Cases and Variants for Object-Centric Event Data. CoRR abs/2208.03235 (2022) - [i92]Christian Kohlschmidt, Mahnaz Sadat Qafari, Wil M. P. van der Aalst:
Detecting Surprising Situations in Event Data. CoRR abs/2208.13515 (2022) - [i91]Jan Niklas Adams
, Gyunam Park, Sergej Levich, Daniel Schuster
, Wil M. P. van der Aalst:
A Framework for Extracting and Encoding Features from Object-Centric Event Data. CoRR abs/2209.01219 (2022) - [i90]Daniel Schuster
, Niklas Föcking, Sebastiaan J. van Zelst, Wil M. P. van der Aalst:
Conformance Checking for Trace Fragments Using Infix and Postfix Alignments. CoRR abs/2209.04290 (2022) - [i89]Alessandro Berti, Wil M. P. van der Aalst:
OC-PM: Analyzing Object-Centric Event Logs and Process Models. CoRR abs/2209.09725 (2022) - [i88]Elisabetta Benevento, Marco Pegoraro
, Mattia Antoniazzi, Harry H. Beyel, Viki Peeva, Paul Balfanz
, Wil M. P. van der Aalst, Lukas Martin, Gernot Marx:
Process Modeling and Conformance Checking in Healthcare: A COVID-19 Case Study. CoRR abs/2209.10897 (2022) - [i87]Gyunam Park, Wil M. P. van der Aalst:
Monitoring Constraints in Business Processes Using Object-Centric Constraint Graphs. CoRR abs/2210.12080 (2022) - [i86]Majid Rafiei, Frederik Wangelik, Wil M. P. van der Aalst:
TraVaS: Differentially Private Trace Variant Selection for Process Mining. CoRR abs/2210.14951 (2022) - [i85]Gyunam Park, Aaron Küsters, Mara Tews, Cameron Pitsch, Jonathan Schneider, Wil M. P. van der Aalst:
Explainable Predictive Decision Mining for Operational Support. CoRR abs/2210.16786 (2022) - [i84]Bianka Bakullari, Wil M. P. van der Aalst:
High-Level Event Mining: A Framework. CoRR abs/2211.00006 (2022) - [i83]Daniel Schuster, Michael Martini, Sebastiaan J. van Zelst, Wil M. P. van der Aalst:
Control-Flow-Based Querying of Process Executions from Partially Ordered Event Data. CoRR abs/2211.04146 (2022) - [i82]Miriam Wagner, Hayyan Helal, Rene Roepke, Sven Judel, Jens Doveren, Sergej Görzen, Pouya Soudmand, Gerhard Lakemeyer, Ulrik Schroeder, Wil M. P. van der Aalst:
A Combined Approach of Process Mining and Rule-based AI for Study Planning and Monitoring in Higher Education. CoRR abs/2211.12190 (2022) - [i81]Marco Pegoraro
, Merih Seran Uysal, Tom-Hendrik Hülsmann, Wil M. P. van der Aalst:
Resolving Uncertain Case Identifiers in Interaction Logs: A User Study. CoRR abs/2212.00009 (2022) - [i80]Alexandre Goossens, Johannes De Smedt, Jan Vanthienen, Wil M. P. van der Aalst:
Enhancing Data-Awareness of Object-Centric Event Logs. CoRR abs/2212.02858 (2022) - [i79]Julian Weber, Alessandro Berti, Gyunam Park, Majid Rafiei, Wil M. P. van der Aalst:
Interactive Process Identification and Selection from SAP ERP. CoRR abs/2212.06514 (2022) - [i78]Lisa Luise Mannel, Wil M. P. van der Aalst:
Discovering Process Models With Long-Term Dependencies While Providing Guarantees and Handling Infrequent Behavior. CoRR abs/2212.11047 (2022) - 2021
- [j251]Kevin Bauer, Oliver Hinz, Wil M. P. van der Aalst
, Christof Weinhardt
:
Expl(AI)n It to Me - Explainable AI and Information Systems Research. Bus. Inf. Syst. Eng. 63(2): 79-82 (2021) - [j250]Daniel Beverungen, Joos C. A. M. Buijs, Jörg Becker, Claudio Di Ciccio
, Wil M. P. van der Aalst
, Christian Bartelheimer, Jan vom Brocke, Marco Comuzzi, Karsten Kraume, Henrik Leopold, Martin Matzner, Jan Mendling, Nadine Ogonek, Till Post, Manuel Resinas, Kate Revoredo
, Adela del-Río-Ortega, Marcello La Rosa, Flávia Maria Santoro, Andreas Solti, Minseok Song, Armin Stein
, Matthias Stierle
, Verena Wolf:
Seven Paradoxes of Business Process Management in a Hyper-Connected World. Bus. Inf. Syst. Eng. 63(2): 145-156 (2021) - [j249]Christof Weinhardt
, Christian Peukert, Oliver Hinz, Wil M. P. van der Aalst
:
Welcome to Economies in IS! Bus. Inf. Syst. Eng. 63(4): 325-328 (2021) - [j248]Niels Martin
, Dominik Andreas Fischer, Georgi Dimov Kerpedzhiev, Kanika Goel
, Sander J. J. Leemans
, Maximilian Röglinger, Wil M. P. van der Aalst
, Marlon Dumas
, Marcello La Rosa, Moe Thandar Wynn:
Opportunities and Challenges for Process Mining in Organizations: Results of a Delphi Study. Bus. Inf. Syst. Eng. 63(5): 511-527 (2021) - [j247]Wil M. P. van der Aalst
, Oliver Hinz, Christof Weinhardt
:
Resilient Digital Twins. Bus. Inf. Syst. Eng. 63(6): 615-619 (2021) - [j246]Andrea Burattin, Jochen De Weerdt
, Boudewijn F. van Dongen, Jan Claes, Wil M. P. van der Aalst
:
Special issue on business process intelligence. Computing 103(1): 1-2 (2021) - [j245]Mohammadreza Fani Sani
, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
:
The impact of biased sampling of event logs on the performance of process discovery. Computing 103(6): 1085-1104 (2021) - [j244]Majid Rafiei
, Wil M. P. van der Aalst
:
Group-based privacy preservation techniques for process mining. Data Knowl. Eng. 134: 101908 (2021) - [j243]Wil M. P. van der Aalst
:
Free-choice Nets with Home Clusters are Lucent. Fundam. Informaticae 181(4): 273-302 (2021) - [j242]Dirk Fahland
, Vadim Denisov, Wil M. P. van der Aalst
:
Inferring Unobserved Events in Systems with Shared Resources and Queues. Fundam. Informaticae 183(3-4): 203-242 (2021) - [j241]Sander J. J. Leemans
, Wil M. P. van der Aalst, Tobias Brockhoff, Artem Polyvyanyy
:
Stochastic process mining: Earth movers' stochastic conformance. Inf. Syst. 102: 101724 (2021) - [j240]Marco Pegoraro
, Merih Seran Uysal
, Wil M. P. van der Aalst
:
Conformance checking over uncertain event data. Inf. Syst. 102: 101810 (2021) - [j239]Reiner Hähnle
, Wil M. P. van der Aalst
:
Automated model analysis tools and techniques presented at FASE 2019. Int. J. Softw. Tools Technol. Transf. 23(3): 285-287 (2021) - [j238]Alessandro Berti
, Wil M. P. van der Aalst
:
A Novel Token-Based Replay Technique to Speed Up Conformance Checking and Process Enhancement. Trans. Petri Nets Other Model. Concurr. 15: 1-26 (2021) - [c538]Anahita Farhang Ghahfarokhi, Gyunam Park
, Alessandro Berti, Wil M. P. van der Aalst
:
OCEL: A Standard for Object-Centric Event Logs. ADBIS (Short Papers) 2021: 169-175 - [c537]Wil M. P. van der Aalst
:
Reduction Using Induced Subnets to Systematically Prove Properties for Free-Choice Nets. Petri Nets 2021: 208-229 - [c536]Daniel Schuster
, Sebastiaan J. van Zelst
, Wil M. P. van der Aalst
:
Cortado - An Interactive Tool for Data-Driven Process Discovery and Modeling. Petri Nets 2021: 465-475 - [c535]Marco Pegoraro
, Merih Seran Uysal
, Wil M. P. van der Aalst
:
PROVED: A Tool for Graph Representation and Analysis of Uncertain Event Data. Petri Nets 2021: 476-486 - [c534]Marco Pegoraro
, Madhavi Bangalore Shankara Narayana
, Elisabetta Benevento
, Wil M. P. van der Aalst
, Lukas Martin
, Gernot Marx:
Analyzing Medical Data with Process Mining: A COVID-19 Case Study. BIS (Workshops) 2021: 39-44 - [c533]Merih Seran Uysal, Dominik Hüser, Wil M. P. van der Aalst
:
Optimization-Based Business Process Model Matching. BIS 2021: 61-72 - [c532]Marco Pegoraro
, Merih Seran Uysal, David Benedikt Georgi, Wil M. P. van der Aalst
:
Text-Aware Predictive Monitoring of Business Processes. BIS 2021: 221-232 - [c531]Mahsa Pourbafrani, Wil M. P. van der Aalst:
Forward-Looking Process Mining. BPM (PhD/Demos) 2021: 56-61 - [c530]Wil M. P. van der Aalst
, Luis F. R. Santos:
May I Take Your Order? - On the Interplay Between Time and Order in Process Mining. Business Process Management Workshops 2021: 99-110 - [c529]Majid Rafiei, Alexander Schnitzler, Wil M. P. van der Aalst:
PC4PM: A Tool for Privacy/Confidentiality Preservation in Process Mining. BPM (PhD/Demos) 2021: 106-110 - [c528]Marco Pegoraro, Merih Seran Uysal, Wil M. P. van der Aalst:
An XES Extension for Uncertain Event Data. BPM (PhD/Demos) 2021: 116-120 - [c527]Herath Mudiyanselage Nelanga Dilum Bandara, Hendrik Bockrath, Richard Hobeck, Christopher Klinkmüller, Luise Pufahl, Martin Rebesky, Wil M. P. van der Aalst, Ingo Weber:
Event Logs of Ethereum-Based Applications: A Collection of Resources for Process Mining on Blockchain Data. BPM (PhD/Demos) 2021: 161-165 - [c526]Majid Rafiei
, Wil M. P. van der Aalst
:
Privacy-Preserving Continuous Event Data Publishing. BPM (Forum) 2021: 178-194 - [c525]Richard Hobeck, Christopher Klinkmüller, H. M. N. Dilum Bandara
, Ingo Weber, Wil M. P. van der Aalst
:
Process Mining on Blockchain Data: A Case Study of Augur. BPM 2021: 306-323 - [c524]Jing Yang
, Chun Ouyang, Arthur H. M. ter Hofstede, Wil M. P. van der Aalst
, Michael Leyer:
Seeing the Forest for the Trees: Group-Oriented Workforce Analytics. BPM 2021: 345-362 - [c523]Jan Niklas Adams
, Sebastiaan J. van Zelst
, Lara Quack, Kathrin Hausmann, Wil M. P. van der Aalst
, Thomas Rose:
A Framework for Explainable Concept Drift Detection in Process Mining. BPM 2021: 400-416 - [c522]Mahnaz Sadat Qafari, Wil M. P. van der Aalst:
Case Level Counterfactual Reasoning in Process Mining. CAiSE Forum 2021: 55-63 - [c521]Sebastiaan J. van Zelst, Luis F. R. Santos, Wil M. P. van der Aalst:
Data-Driven Process Performance Measurement and Prediction: A Process-Tree-Based Approach. CAiSE Forum 2021: 73-81 - [c520]Gyunam Park
, Wil M. P. van der Aalst
:
Towards Reliable Business Process Simulation: A Framework to Integrate ERP Systems. BPMDS/EMMSAD@CAiSE 2021: 112-127 - [c519]Mahsa Pourbafrani
, Wil M. P. van der Aalst
:
Extracting Process Features from Event Logs to Learn Coarse-Grained Simulation Models. CAiSE 2021: 125-140 - [c518]Daniel Schuster
, Sebastiaan J. van Zelst
, Wil M. P. van der Aalst
:
Freezing Sub-models During Incremental Process Discovery. ER 2021: 14-24 - [c517]Wil M. P. van der Aalst
:
Using Free-Choice Nets for Process Mining and Business Process Management. FedCSIS 2021: 9-15 - [c516]Moe Thandar Wynn, Julian Lebherz, Wil M. P. van der Aalst
, Rafael Accorsi, Claudio Di Ciccio
, Lakmali Jayarathna, H. M. W. Verbeek:
Rethinking the Input for Process Mining: Insights from the XES Survey and Workshop. ICPM Workshops 2021: 3-16 - [c515]Marco Pegoraro
, Bianka Bakullari
, Merih Seran Uysal
, Wil M. P. van der Aalst
:
Probability Estimation of Uncertain Process Trace Realizations. ICPM Workshops 2021: 21-33 - [c514]Daniel Schuster
, Lukas Schade, Sebastiaan J. van Zelst
, Wil M. P. van der Aalst
:
Visualizing Trace Variants from Partially Ordered Event Data. ICPM Workshops 2021: 34-46 - [c513]Tobias Brockhoff
, Merih Seran Uysal
, Isabelle Terrier, Heiko Göhner, Wil M. P. van der Aalst
:
Analyzing Multi-level BOM-Structured Event Data. ICPM Workshops 2021: 47-59 - [c512]Gyunam Park, Wil M. P. van der Aalst
:
Realizing A Digital Twin of An Organization Using Action-oriented Process Mining. ICPM 2021: 104-111 - [c511]Jan Niklas Adams
, Wil M. P. van der Aalst
:
Precision and Fitness in Object-Centric Process Mining. ICPM 2021: 128-135 - [c510]Mahsa Pourbafrani
, Shreya Kar, Sebastian Kaiser, Wil M. P. van der Aalst
:
Remaining Time Prediction for Processes with Inter-case Dynamics. ICPM Workshops 2021: 140-153 - [c509]Mohammadreza Fani Sani, Mozhgan Vazifehdoostirani
, Gyunam Park
, Marco Pegoraro
, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
:
Event Log Sampling for Predictive Monitoring. ICPM Workshops 2021: 154-166 - [c508]Chiao-Yun Li, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
:
An Activity Instance Based Hierarchical Framework for Event Abstraction. ICPM 2021: 160-167 - [c507]Alessandro Berti, Gyunam Park
, Majid Rafiei, Wil M. P. van der Aalst
:
An Event Data Extraction Approach from SAP ERP for Process Mining. ICPM Workshops 2021: 255-267 - [c506]Luciana Barbieri, Edmundo Roberto Mauro Madeira
, Kleber Stroeh, Wil M. P. van der Aalst
:
Towards a Natural Language Conversational Interface for Process Mining. ICPM Workshops 2021: 268-280 - [c505]Andrew Pery
, Majid Rafiei
, Michael Simon
, Wil M. P. van der Aalst
:
Trustworthy Artificial Intelligence and Process Mining: Challenges and Opportunities. ICPM Workshops 2021: 395-407 - [c504]Mahsa Pourbafrani, Wil M. P. van der Aalst
:
Interactive Process Improvement Using Simulation of Enriched Process Trees. ICSOC Workshops 2021: 61-76 - [c503]Wil M. P. van der Aalst
:
Concurrency and Objects Matter! Disentangling the Fabric of Real Operational Processes to Create Digital Twins. ICTAC 2021: 3-17 - [c502]Wil M. P. van der Aalst
:
Object-Centric Process Mining: An Introduction. ICTAC Summmer School 2021: 73-105 - [c501]Tobias Brockhoff, Malte Heithoff, István Koren, Judith Michael
, Jérôme Pfeiffer, Bernhard Rumpe, Merih Seran Uysal, Wil M. P. van der Aalst
, Andreas Wortmann:
Process Prediction with Digital Twins. MoDELS (Companion) 2021: 182-187 - [c500]Mahsa Pourbafrani
, Shuai Jiao, Wil M. P. van der Aalst
:
SIMPT: Process Improvement Using Interactive Simulation of Time-Aware Process Trees. RCIS 2021: 588-594 - [c499]Wil M. P. van der Aalst
:
Federated Process Mining: Exploiting Event Data Across Organizational Boundaries. SMDS 2021: 1-7 - [p24]Marcus Dees, Massimiliano de Leoni, Wil M. P. van der Aalst, Hajo A. Reijers:
Accurate Predictions, Invalid Recommendations: Lessons Learned at the Dutch Social Security Institute UWV. Business Process Management Cases (2) 2021: 165-178 - [e35]Wil M. P. van der Aalst
, Vladimir Batagelj
, Alexey Buzmakov
, Dmitry I. Ignatov
, Anna A. Kalenkova
, Michael Yu. Khachay
, Olessia Koltsova
, Andrey Kutuzov
, Sergei O. Kuznetsov
, Irina A. Lomazova
, Natalia V. Loukachevitch
, Ilya Makarov
, Amedeo Napoli
, Alexander Panchenko
, Panos M. Pardalos
, Marcello Pelillo
, Andrey V. Savchenko
, Elena Tutubalina
:
Recent Trends in Analysis of Images, Social Networks and Texts - 9th International Conference, AIST 2020, Skolkovo, Moscow, Russia, October 15-16, 2020 Revised Supplementary Proceedings. Communications in Computer and Information Science 1357, Springer 2021, ISBN 978-3-030-71213-6 [contents] - [e34]Wil M. P. van der Aalst
, Vladimir Batagelj
, Dmitry I. Ignatov
, Michael Yu. Khachay
, Olessia Koltsova
, Andrey Kutuzov
, Sergei O. Kuznetsov
, Irina A. Lomazova
, Natalia V. Loukachevitch
, Amedeo Napoli
, Alexander Panchenko
, Panos M. Pardalos
, Marcello Pelillo
, Andrey V. Savchenko
, Elena Tutubalina
:
Analysis of Images, Social Networks and Texts - 9th International Conference, AIST 2020, Skolkovo, Moscow, Russia, October 15-16, 2020, Revised Selected Papers. Lecture Notes in Computer Science 12602, Springer 2021, ISBN 978-3-030-72609-6 [contents] - [e33]Wil M. P. van der Aalst, Remco M. Dijkman, Akhil Kumar, Francesco Leotta, Fabrizio Maria Maggi, Jan Mendling, Brian T. Pentland, Arik Senderovich, Marcos Sepúlveda, Estefanía Serral Asensio, Mathias Weske:
Proceedings of the Best Dissertation Award, Doctoral Consortium, and Demonstration & Resources Track at BPM 2021 co-located with 19th International Conference on Business Process Management (BPM 2021), Rome, Italy, September 6th - to - 10th, 2021. CEUR Workshop Proceedings 2973, CEUR-WS.org 2021 [contents] - [e32]Christoph Quix, Slimane Hammoudi, Wil M. P. van der Aalst:
Proceedings of the 10th International Conference on Data Science, Technology and Applications, DATA 2021, Online Streaming, July 6-8, 2021. SCITEPRESS 2021, ISBN 978-989-758-521-0 [contents] - [i77]Majid Rafiei, Wil M. P. van der Aalst:
Privacy-Preserving Data Publishing in Process Mining. CoRR abs/2101.02627 (2021) - [i76]Mahsa Pourbafrani, Sandhya Vasudevan, Faizan Zafar, Yuan Xingran, Ravikumar Singh, Wil M. P. van der Aalst:
A Python Extension to Simulate Petri nets in Process Mining. CoRR abs/2102.08774 (2021) - [i75]Mahnaz Sadat Qafari, Wil M. P. van der Aalst:
Case Level Counterfactual Reasoning in Process Mining. CoRR abs/2102.13490 (2021) - [i74]Dirk Fahland, Vadim Denisov, Wil M. P. van der Aalst:
Inferring Unobserved Events in Systems With Shared Resources and Queues. CoRR abs/2103.00167 (2021) - [i73]Marco Pegoraro, Merih Seran Uysal, Wil M. P. van der Aalst:
PROVED: A Tool for Graph Representation and Analysis of Uncertain Event Data. CoRR abs/2103.05564 (2021) - [i72]Anahita Farhang Ghahfarokhi, Alessandro Berti, Wil M. P. van der Aalst:
Process Comparison Using Object-Centric Process Cubes. CoRR abs/2103.07184 (2021) - [i71]Mohammadreza Fani Sani, Martin Kabierski, Sebastiaan J. van Zelst, Wil M. P. van der Aalst:
Model Independent Error Bound Estimation for Conformance Checking Approximation. CoRR abs/2103.13315 (2021) - [i70]Marco Pegoraro, Merih Seran Uysal, David Benedikt Georgi, Wil M. P. van der Aalst:
Text-Aware Predictive Monitoring of Business Processes. CoRR abs/2104.09962 (2021) - [i69]Daniel Schuster, Sebastiaan J. van Zelst, Wil M. P. van der Aalst:
Cortado - An Interactive Tool for Data-Driven Process Discovery and Modeling. CoRR abs/2105.07666 (2021) - [i68]Majid Rafiei, Wil M. P. van der Aalst:
Group-Based Privacy Preservation Techniques for Process Mining. CoRR abs/2105.11983 (2021) - [i67]Majid Rafiei, Wil M. P. van der Aalst:
Privacy-Preserving Continuous Event Data Publishing. CoRR abs/2105.11991 (2021) - [i66]Jan Niklas Adams, Sebastiaan J. van Zelst, Lara Quack, Kathrin Hausmann, Wil M. P. van der Aalst, Thomas Rose:
A Framework for Explainable Concept Drift Detection in Process Mining. CoRR abs/2105.13155 (2021) - [i65]Wil M. P. van der Aalst:
Free-Choice Nets With Home Clusters Are Lucent. CoRR abs/2106.03554 (2021) - [i64]Wil M. P. van der Aalst:
Reduction Using Induced Subnets To Systematically Prove Properties For Free-Choice Nets. CoRR abs/2106.03658 (2021) - [i63]Wil M. P. van der Aalst, Luis F. R. Santos:
May I Take Your Order? On the Interplay Between Time and Order in Process Mining. CoRR abs/2107.03937 (2021) - [i62]Wil M. P. van der Aalst, Tobias Brockhoff, Anahita Farhang Ghahfarokhi, Mahsa Pourbafrani, Merih Seran Uysal, Sebastiaan J. van Zelst:
Removing Operational Friction Using Process Mining: Challenges Provided by the Internet of Production (IoP). CoRR abs/2107.13066 (2021) - [i61]Majid Rafiei, Alexander Schnitzler, Wil M. P. van der Aalst:
PC4PM: A Tool for Privacy/Confidentiality Preservation in Process Mining. CoRR abs/2107.14499 (2021) - [i60]Daniel Schuster, Sebastiaan J. van Zelst, Wil M. P. van der Aalst:
Freezing Sub-Models During Incremental Process Discovery: Extended Version. CoRR abs/2108.00215 (2021) - [i59]Mahsa Pourbafrani, Shuai Jiao, Wil M. P. van der Aalst:
SIMPT: Process Improvement Using Interactive Simulation of Time-aware Process Trees. CoRR abs/2108.02052 (2021) - [i58]Mahnaz Sadat Qafari, Wil M. P. van der Aalst:
Feature Recommendation for Structural Equation Model Discovery in Process Mining. CoRR abs/2108.07795 (2021) - [i57]Marco Pegoraro, Bianka Bakullari, Merih Seran Uysal, Wil M. P. van der Aalst:
Probability Estimation of Uncertain Process Trace Realizations. CoRR abs/2108.08615 (2021) - [i56]Daniel Schuster, Lukas Schade, Sebastiaan J. van Zelst, Wil M. P. van der Aalst:
Visualizing Trace Variants From Partially Ordered Event Data. CoRR abs/2110.02060 (2021) - [i55]Andrew Pery, Majid Rafiei, Michael Simon, Wil M. P. van der Aalst:
Trustworthy Artificial Intelligence and Process Mining: Challenges and Opportunities. CoRR abs/2110.02707 (2021) - [i54]Alessandro Berti, Gyunam Park, Majid Rafiei, Wil M. P. van der Aalst:
An Event Data Extraction Approach from SAP ERP for Process Mining. CoRR abs/2110.03467 (2021) - [i53]Jan Niklas Adams, Wil M. P. van der Aalst:
Precision and Fitness in Object-Centric Process Mining. CoRR abs/2110.05375 (2021) - 2020
- [j237]Marco Pegoraro
, Merih Seran Uysal
, Wil M. P. van der Aalst
:
Efficient Time and Space Representation of Uncertain Event Data. Algorithms 13(11): 285 (2020) - [j236]Oliver Hinz, Wil M. P. van der Aalst
, Christof Weinhardt
:
Research in the Attention Economy. Bus. Inf. Syst. Eng. 62(2): 83-85 (2020) - [j235]Christof Weinhardt
, Simon Kloker
, Oliver Hinz, Wil M. P. van der Aalst
:
Citizen Science in Information Systems Research. Bus. Inf. Syst. Eng. 62(4): 273-277 (2020) - [j234]Wil M. P. van der Aalst
, Oliver Hinz, Christof Weinhardt
:
Impact of COVID-19 on BISE Research and Education. Bus. Inf. Syst. Eng. 62(6): 463-466 (2020) - [j233]Mohammadreza Fani Sani, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
:
Improving the performance of process discovery algorithms by instance selection. Comput. Sci. Inf. Syst. 17(3): 927-958 (2020) - [j232]Wil M. P. van der Aalst
, Alessandro Berti:
Discovering Object-centric Petri Nets. Fundam. Informaticae 175(1-4): 1-40 (2020) - [j231]Eduardo González López de Murillas
, Hajo A. Reijers
, Wil M. P. van der Aalst
:
Case notion discovery and recommendation: automated event log building on databases. Knowl. Inf. Syst. 62(7): 2539-2575 (2020) - [j230]Long Cheng
, Boudewijn F. van Dongen, Wil M. P. van der Aalst
:
Scalable Discovery of Hybrid Process Models in a Cloud Computing Environment. IEEE Trans. Serv. Comput. 13(2): 368-380 (2020) - [c498]Lisa Luise Mannel, Robin Bergenthum, Wil M. P. van der Aalst:
Removing Implicit Places Using Regions for Process Discovery. ATAED@Petri Nets 2020: 20-32 - [c497]Vadim Denisov, Dirk Fahland, Wil M. P. van der Aalst
:
Repairing Event Logs with Missing Events to Support Performance Analysis of Systems with Shared Resources. Petri Nets 2020: 239-259 - [c496]Wil M. P. van der Aalst
, Daniel Tacke genannt Unterberg, Vadim Denisov, Dirk Fahland
:
Visualizing Token Flows Using Interactive Performance Spectra. Petri Nets 2020: 369-380 - [c495]Marco Pegoraro
, Merih Seran Uysal
, Wil M. P. van der Aalst
:
Efficient Construction of Behavior Graphs for Uncertain Event Data. BIS 2020: 76-88 - [c494]Mahsa Pourbafrani
, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
:
Supporting Automatic System Dynamics Model Generation for Simulation in the Context of Process Mining. BIS 2020: 249-263 - [c493]Mahsa Pourbafrani, Wil M. P. van der Aalst:
PMSD: Data-Driven Simulation Using System Dynamics and Process Mining. BPM (PhD/Demos) 2020: 77-81 - [c492]Majid Rafiei, Wil M. P. van der Aalst:
Practical Aspect of Privacy-Preserving Data Publishing in Process Mining. BPM (PhD/Demos) 2020: 92-96 - [c491]Majid Rafiei
, Wil M. P. van der Aalst
:
Privacy-Preserving Data Publishing in Process Mining. BPM (Forum) 2020: 122-138 - [c490]Mahnaz Sadat Qafari, Wil M. P. van der Aalst:
Root Cause Analysis in Process Mining Using Structural Equation Models. Business Process Management Workshops 2020: 155-167 - [c489]Gyunam Park
, Wil M. P. van der Aalst
:
A General Framework for Action-Oriented Process Mining. Business Process Management Workshops 2020: 206-218 - [c488]Mohammadreza Fani Sani, Mathilde Boltenhagen, Wil M. P. van der Aalst:
Prototype Selection Using Clustering and Conformance Metrics for Process Discovery. Business Process Management Workshops 2020: 281-294 - [c487]Lisa Luise Mannel, Yannick Epstein, Wil M. P. van der Aalst:
Improving the State-Space Traversal of the eST-Miner by Exploiting Underlying Log Structures. Business Process Management Workshops 2020: 334-347 - [c486]Mohammadreza Fani Sani, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
:
Conformance Checking Approximation Using Subset Selection and Edit Distance. CAiSE 2020: 234-251 - [c485]Wil M. P. van der Aalst, Tobias Brockhoff, Anahita Farhang Ghahfarokhi, Mahsa Pourbafrani
, Merih Seran Uysal, Sebastiaan J. van Zelst:
Removing Operational Friction Using Process Mining: Challenges Provided by the Internet of Production (IoP). DATA (Revised Selected Papers) 2020: 1-31 - [c484]Wil M. P. van der Aalst:
On the Pareto Principle in Process Mining, Task Mining, and Robotic Process Automation. DATA 2020: 5-12 - [c483]Mahsa Pourbafrani
, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
:
Semi-automated Time-Granularity Detection for Data-Driven Simulation Using Process Mining and System Dynamics. ER 2020: 77-91 - [c482]Zahra Toosinezhad, Dirk Fahland, Özge Köroglu, Wil M. P. van der Aalst
:
Detecting System-Level Behavior Leading To Dynamic Bottlenecks. ICPM 2020: 17-24 - [c481]Alessandro Berti, Wil M. P. van der Aalst, David Zang, Magdalena Lang:
An Open-Source Integration of Process Mining Features Into the Camunda Workflow Engine: Data Extraction and Challenges. ICPM Doctoral Consortium / Tools 2020: 23-26 - [c480]Vadim Denisov, Dirk Fahland, Wil M. P. van der Aalst:
Multi-Dimensional Performance Analysis and Monitoring Using Integrated Performance Spectra. ICPM Doctoral Consortium / Tools 2020: 27-30 - [c479]Tobias Brockhoff, Merih Seran Uysal, Wil M. P. van der Aalst
:
Time-aware Concept Drift Detection Using the Earth Mover's Distance. ICPM 2020: 33-40 - [c478]Marcus Dees, Bart Hompes, Wil M. P. van der Aalst
:
Events Put into Context (EPiC). ICPM 2020: 65-72 - [c477]Mohammadreza Fani Sani, Juan J. Garza Gonzalez, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
:
Conformance Checking Approximation Using Simulation. ICPM 2020: 105-112 - [c476]Daniel Schuster
, Sebastiaan J. van Zelst
, Wil M. P. van der Aalst
:
Alignment Approximation for Process Trees. ICPM Workshops 2020: 247-259 - [c475]Majid Rafiei
, Wil M. P. van der Aalst
:
Towards Quantifying Privacy in Process Mining. ICPM Workshops 2020: 385-397 - [c474]Chiao-Yun Li, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
:
Stage-Based Process Performance Analysis. ICSOC Workshops 2020: 349-364 - [c473]Wil M. P. van der Aalst:
Process Mining as the Superglue between Data and Process Management. ICSOFT 2020: 7-8 - [c472]Mahsa Pourbafrani
, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
:
Supporting Decisions in Production Line Processes by Combining Process Mining and System Dynamics. IHSI 2020: 461-467 - [c471]Majid Rafiei
, Miriam Wagner
, Wil M. P. van der Aalst
:
TLKC-Privacy Model for Process Mining. RCIS 2020: 398-416 - [c470]Daniel Schuster
, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
:
Incremental Discovery of Hierarchical Process Models. RCIS 2020: 417-433 - [c469]Landelin Delcoucq
, Fabian Lecron, Philippe Fortemps
, Wil M. P. van der Aalst
:
Resource-centric process mining: clustering using local process models. SAC 2020: 45-52 - [p23]Wil M. P. van der Aalst:
The Data Science Revolution - How Learning Machines Changed the Way We Work and Do Business. Unimagined Futures 2020: 5-19 - [e31]Wil M. P. van der Aalst
, Vladimir Batagelj
, Dmitry I. Ignatov
, Michael Yu. Khachay
, Valentina V. Kuskova
, Andrey Kutuzov
, Sergei O. Kuznetsov
, Irina A. Lomazova
, Natalia V. Loukachevitch
, Amedeo Napoli
, Panos M. Pardalos
, Marcello Pelillo
, Andrey V. Savchenko
, Elena Tutubalina
:
Analysis of Images, Social Networks and Texts - 8th International Conference, AIST 2019, Kazan, Russia, July 17-19, 2019, Revised Selected Papers. Communications in Computer and Information Science 1086, Springer 2020, ISBN 978-3-030-39574-2 [contents] - [e30]Wil M. P. van der Aalst, Robin Bergenthum, Josep Carmona:
Proceedings of the International Workshop on Algorithms & Theories for the Analysis of Event Data 2020 Satellite event of the 41st International Conference on Application and Theory of Petri Nets and Concurrency Petri Nets 2020, virtual workshop, June 24, 2020. CEUR Workshop Proceedings 2625, CEUR-WS.org 2020 [contents] - [e29]Wil M. P. van der Aalst, Jan vom Brocke, Marco Comuzzi, Claudio Di Ciccio, Félix García, Akhil Kumar, Jan Mendling, Brian T. Pentland, Luise Pufahl, Manfred Reichert, Mathias Weske:
Proceedings of the Best Dissertation Award, Doctoral Consortium, and Demonstration & Resources Track at BPM 2020 co-located with the 18th International Conference on Business Process Management (BPM 2020), Sevilla, Spain, September 13-18, 2020. CEUR Workshop Proceedings 2673, CEUR-WS.org 2020 [contents] - [i52]Alessandro Berti, Wil M. P. van der Aalst:
Extracting Multiple Viewpoint Models from Relational Databases. CoRR abs/2001.02562 (2020) - [i51]Christopher Klinkmüller, Ingo Weber, Alexander Ponomarev, An Binh Tran, Wil M. P. van der Aalst:
Efficient Logging for Blockchain Applications. CoRR abs/2001.10281 (2020) - [i50]Marco Pegoraro, Merih Seran Uysal, Wil M. P. van der Aalst:
Efficient Construction of Behavior Graphs for Uncertain Event Data. CoRR abs/2002.08225 (2020) - [i49]Alessandro Berti, Wil M. P. van der Aalst:
A Novel Token-Based Replay Technique to Speed Up Conformance Checking and Process Enhancement. CoRR abs/2007.14237 (2020) - [i48]Alessandro Berti, Wil M. P. van der Aalst, David Zang, Magdalena Lang:
An Open-Source Integration of Process Mining Features into the Camunda Workflow Engine: Data Extraction and Challenges. CoRR abs/2009.06209 (2020) - [i47]Madhavi Bangalore Shankara Narayana, Hossameldin Khalifa, Wil M. P. van der Aalst:
JXES: JSON Support for the XES Event Log Standard. CoRR abs/2009.06363 (2020) - [i46]Majid Rafiei, Wil M. P. van der Aalst:
Practical Aspect of Privacy-Preserving Data Publishing in Process Mining. CoRR abs/2009.11542 (2020) - [i45]Daniel Schuster, Sebastiaan J. van Zelst, Wil M. P. van der Aalst:
Alignment Approximation for Process Trees. CoRR abs/2009.14094 (2020) - [i44]Marco Pegoraro, Merih Seran Uysal, Wil M. P. van der Aalst:
Conformance Checking over Uncertain Event Data. CoRR abs/2009.14452 (2020) - [i43]Marco Pegoraro, Merih Seran Uysal, Wil M. P. van der Aalst:
Efficient Time and Space Representation of Uncertain Event Data. CoRR abs/2010.00334 (2020) - [i42]Mahsa Pourbafrani, Wil M. P. van der Aalst
:
PMSD: Data-Driven Simulation Using System Dynamics and Process Mining. CoRR abs/2010.00943 (2020) - [i41]Wil M. P. van der Aalst
, Alessandro Berti:
Discovering Object-Centric Petri Nets. CoRR abs/2010.02047 (2020) - [i40]Jing Yang, Chun Ouyang, Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Yang Yu:
OrgMining 2.0: A Novel Framework for Organizational Model Mining from Event Logs. CoRR abs/2011.12445 (2020) - [i39]Majid Rafiei, Wil M. P. van der Aalst:
Towards Quantifying Privacy in Process Mining. CoRR abs/2012.12031 (2020)
2010 – 2019
- 2019
- [j229]Oliver Hinz, Wil M. P. van der Aalst
, Christof Weinhardt
:
Blind Spots in Business and Information Systems Engineering. Bus. Inf. Syst. Eng. 61(2): 133-135 (2019) - [j228]Christof Weinhardt
, Wil M. P. van der Aalst
, Oliver Hinz:
Introducing Registered Reports to the Information Systems Community. Bus. Inf. Syst. Eng. 61(4): 381-384 (2019) - [j227]Wil M. P. van der Aalst
, Oliver Hinz, Christof Weinhardt
:
Big Digital Platforms - Growth, Impact, and Challenges. Bus. Inf. Syst. Eng. 61(6): 645-648 (2019) - [j226]Maikel L. van Eck, Natalia Sidorova
, Wil M. P. van der Aalst
:
Guided Interaction Exploration and Performance Analysis in Artifact-Centric Process Models. Bus. Inf. Syst. Eng. 61(6): 649-663 (2019) - [j225]Anna A. Kalenkova
, Andrea Burattin
, Massimiliano de Leoni
, Wil M. P. van der Aalst
, Alessandro Sperduti:
Discovering high-level BPMN process models from event data. Bus. Process. Manag. J. 25(5): 995-1019 (2019) - [j224]Mohammadreza Fani Sani, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
:
Repairing Outlier Behaviour in Event Logs using Contextual Behaviour. Enterp. Model. Inf. Syst. Archit. Int. J. Concept. Model. 14: 5:1-5:24 (2019) - [j223]Wil M. P. van der Aalst
:
Lucent Process Models and Translucent Event Logs. Fundam. Informaticae 169(1-2): 151-177 (2019) - [j222]Sebastiaan J. van Zelst
, Alfredo Bolt
, Marwan Hassani
, Boudewijn F. van Dongen, Wil M. P. van der Aalst
:
Online conformance checking: relating event streams to process models using prefix-alignments. Int. J. Data Sci. Anal. 8(3): 269-284 (2019) - [j221]Niek Tax
, Emin Alasgarov, Natalia Sidorova
, Reinder Haakma, Wil M. P. van der Aalst
:
Generating time-based label refinements to discover more precise process models. J. Ambient Intell. Smart Environ. 11(2): 165-182 (2019) - [j220]Niek Tax
, Natalia Sidorova
, Wil M. P. van der Aalst
:
Discovering more precise process models from event logs by filtering out chaotic activities. J. Intell. Inf. Syst. 52(1): 107-139 (2019) - [j219]Eduardo González López de Murillas
, Hajo A. Reijers
, Wil M. P. van der Aalst
:
Connecting databases with process mining: a meta model and toolset. Softw. Syst. Model. 18(2): 1209-1247 (2019) - [j218]Wil M. P. van der Aalst
, Josep Carmona, Thomas Chatain, Boudewijn F. van Dongen:
A Tour in Process Mining: From Practice to Algorithmic Challenges. Trans. Petri Nets Other Model. Concurr. 14: 1-35 (2019) - [j217]Anja F. Syring, Niek Tax
, Wil M. P. van der Aalst
:
Evaluating Conformance Measures in Process Mining Using Conformance Propositions. Trans. Petri Nets Other Model. Concurr. 14: 192-221 (2019) - [j216]Marwan Hassani
, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
:
On the application of sequential pattern mining primitives to process discovery: Overview, outlook and opportunity identification. WIREs Data Mining Knowl. Discov. 9(6) (2019) - [c468]Mohammadreza Fani Sani, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
:
The Impact of Event Log Subset Selection on the Performance of Process Discovery Algorithms. ADBIS (Short Papers and Workshops) 2019: 391-404 - [c467]Alessandro Berti, Wil M. P. van der Aalst:
Reviving Token-based Replay: Increasing Speed While Improving Diagnostics. ATAED@Petri Nets/ACSD 2019: 87-103 - [c466]Lisa Luise Mannel, Wil M. P. van der Aalst
:
Finding Complex Process-Structures by Exploiting the Token-Game. Petri Nets 2019: 258-278 - [c465]Alessandro Artale, Diego Calvanese, Marco Montali
, Wil M. P. van der Aalst
:
Enriching Data Models with Behavioral Constraints. Ontology Makes Sense 2019: 257-277 - [c464]Wil M. P. van der Aalst
:
Everything You Always Wanted to Know About Petri Nets, but Were Afraid to Ask. BPM 2019: 3-9 - [c463]Marcus Dees, Massimiliano de Leoni, Wil M. P. van der Aalst, Hajo A. Reijers:
What if process predictions are not followed by good recommendations? BPM (Industry Forum) 2019: 61-72 - [c462]Christopher Klinkmüller, Alexander Ponomarev, An Binh Tran, Ingo Weber, Wil M. P. van der Aalst
:
Mining Blockchain Processes: Extracting Process Mining Data from Blockchain Applications. BPM (Blockchain and CEE Forum) 2019: 71-86 - [c461]Sander J. J. Leemans
, Anja F. Syring, Wil M. P. van der Aalst
:
Earth Movers' Stochastic Conformance Checking. BPM Forum 2019: 127-143 - [c460]Mohammadreza Fani Sani, Alessandro Berti, Sebastiaan J. van Zelst, Wil M. P. van der Aalst:
Filtering Toolkit: Interactively Filter Event Logs to Improve the Quality of Discovered Models. BPM (PhD/Demos) 2019: 134-138 - [c459]Alessandro Artale, Alisa Kovtunova
, Marco Montali
, Wil M. P. van der Aalst
:
Modeling and Reasoning over Declarative Data-Aware Processes with Object-Centric Behavioral Constraints. BPM 2019: 139-156 - [c458]Alessandro Berti, Sebastiaan J. van Zelst, Wil M. P. van der Aalst:
PM4Py Web Services: Easy Development, Integration and Deployment of Process Mining Features in any Application Stack. BPM (PhD/Demos) 2019: 174-178 - [c457]Chiao-Yun Li, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
:
A Generic Approach for Process Performance Analysis Using Bipartite Graph Matching. Business Process Management Workshops 2019: 199-211 - [c456]Lisa Luise Mannel, Wil M. P. van der Aalst
:
Finding Uniwired Petri Nets Using eST-Miner. Business Process Management Workshops 2019: 224-237 - [c455]Marco Pegoraro
, Merih Seran Uysal
, Wil M. P. van der Aalst
:
Discovering Process Models from Uncertain Event Data. Business Process Management Workshops 2019: 238-249 - [c454]Anastasiia Pika, Moe Thandar Wynn, Stephanus Budiono, Arthur H. M. ter Hofstede, Wil M. P. van der Aalst
, Hajo A. Reijers:
Towards Privacy-Preserving Process Mining in Healthcare. Business Process Management Workshops 2019: 483-495 - [c453]Elisabetta Benevento, Prabhakar M. Dixit, Mohammadreza Fani Sani, Davide Aloini
, Wil M. P. van der Aalst
:
Evaluating the Effectiveness of Interactive Process Discovery in Healthcare: A Case Study. Business Process Management Workshops 2019: 508-519 - [c452]Majid Rafiei
, Wil M. P. van der Aalst
:
Mining Roles from Event Logs While Preserving Privacy. Business Process Management Workshops 2019: 676-689 - [c451]Wil M. P. van der Aalst
:
A practitioner's guide to process mining: Limitations of the directly-follows graph. CENTERIS/ProjMAN/HCist 2019: 321-328 - [c450]Mohammad Reza Harati Nik, Wil M. P. van der Aalst
, Mohammadreza Fani Sani:
BIpm: Combining BI and Process Mining. DATA 2019: 123-128 - [c449]Cong Liu
, Boudewijn F. van Dongen, Nour Assy, Wil M. P. van der Aalst
:
A General Framework to Identify Software Components from Execution Data. ENASE 2019: 234-241 - [c448]Guangming Li, Renata Medeiros de Carvalho, Wil M. P. van der Aalst
:
A Model-based Framework to Automatically Generate Semi-real Data for Evaluating Data Analysis Techniques. ICEIS (2) 2019: 213-220 - [c447]Marco Pegoraro
, Wil M. P. van der Aalst
:
Mining Uncertain Event Data in Process Mining. ICPM 2019: 89-96 - [c446]Vadim Denisov, Dirk Fahland
, Wil M. P. van der Aalst
:
Predictive Performance Monitoring of Material Handling Systems Using the Performance Spectrum. ICPM 2019: 137-144 - [c445]Junxiong Gao, Sebastiaan J. van Zelst, Xixi Lu, Wil M. P. van der Aalst
:
Automated Robotic Process Automation: A Self-Learning Approach. OTM Conferences 2019: 95-112 - [c444]Mahnaz Sadat Qafari, Wil M. P. van der Aalst
:
Fairness-Aware Process Mining. OTM Conferences 2019: 182-192 - [c443]Mahsa Pourbafrani
, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
:
Scenario-Based Prediction of Business Processes Using System Dynamics. OTM Conferences 2019: 422-439 - [c442]Guangming Li, Renata Medeiros de Carvalho, Wil M. P. van der Aalst
:
Object-centric behavioral constraint models: a hybrid model for behavioral and data perspectives. SAC 2019: 48-56 - [c441]Wil M. P. van der Aalst
:
Object-Centric Process Mining: Dealing with Divergence and Convergence in Event Data. SEFM 2019: 3-25 - [c440]Alessandro Berti
, Wil M. P. van der Aalst
:
Extracting Multiple Viewpoint Models from Relational Databases. SIMPDA 2019: 24-51 - [c439]Majid Rafiei
, Leopold von Waldthausen
, Wil M. P. van der Aalst
:
Supporting Confidentiality in Process Mining Using Abstraction and Encryption. SIMPDA 2019: 101-123 - [p22]Wil M. P. van der Aalst
:
Discovering Petri Nets: A Personal Journey. Carl Adam Petri: Ideas, Personality, Impact 2019: 3-9 - [p21]Wil M. P. van der Aalst
:
Structuring Behavior or Not, That is the Question. The Art of Structuring 2019: 221-226 - [e28]Wil M. P. van der Aalst
, Vladimir Batagelj
, Dmitry I. Ignatov
, Michael Yu. Khachay
, Valentina V. Kuskova
, Andrey Kutuzov
, Sergei O. Kuznetsov
, Irina A. Lomazova
, Natalia V. Loukachevitch
, Amedeo Napoli
, Panos M. Pardalos
, Marcello Pelillo
, Andrey V. Savchenko
, Elena Tutubalina
:
Analysis of Images, Social Networks and Texts - 8th International Conference, AIST 2019, Kazan, Russia, July 17-19, 2019, Revised Selected Papers. Lecture Notes in Computer Science 11832, Springer 2019, ISBN 978-3-030-37333-7 [contents] - [e27]Wil M. P. van der Aalst, Robin Bergenthum, Josep Carmona:
Proceedings of the International Workshop on Algorithms & Theories for the Analysis of Event Data 2019 Satellite event of the conferences: 40th International Conference on Application and Theory of Petri Nets and Concurrency Petri Nets 2019 and 19th International Conference on Application of Concurrency to System Design ACSD 2019, ATAED@Petri Nets/ACSD 2019, Aachen, Germany, June 25, 2019. CEUR Workshop Proceedings 2371, CEUR-WS.org 2019 [contents] - [e26]Benoît Depaire, Johannes De Smedt, Marlon Dumas, Dirk Fahland, Akhil Kumar, Henrik Leopold, Manfred Reichert, Stefanie Rinderle-Ma, Stefan Schulte, Stefan Seidel, Wil M. P. van der Aalst:
Proceedings of the Dissertation Award, Doctoral Consortium, and Demonstration Track at BPM 2019 co-located with 17th International Conference on Business Process Management, BPM 2019, Vienna, Austria, September 1-6, 2019. CEUR Workshop Proceedings 2420, CEUR-WS.org 2019 [contents] - [e25]Reiner Hähnle, Wil M. P. van der Aalst
:
Fundamental Approaches to Software Engineering - 22nd International Conference, FASE 2019, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings. Lecture Notes in Computer Science 11424, Springer 2019, ISBN 978-3-030-16721-9 [contents] - [i38]Alessandro Berti, Sebastiaan J. van Zelst, Wil M. P. van der Aalst:
Process Mining for Python (PM4Py): Bridging the Gap Between Process- and Data Science. CoRR abs/1905.06169 (2019) - [i37]Marcus Dees, Massimiliano de Leoni, Wil M. P. van der Aalst, Hajo A. Reijers:
What if Process Predictions are not followed by Good Recommendations? CoRR abs/1905.10173 (2019) - [i36]Mahnaz Sadat Qafari, Wil M. P. van der Aalst:
Fairness-Aware Process Mining. CoRR abs/1908.11451 (2019) - [i35]Anja F. Syring, Niek Tax, Wil M. P. van der Aalst:
Evaluating Conformance Measures in Process Mining using Conformance Propositions (Extended version). CoRR abs/1909.02393 (2019) - [i34]Marco Pegoraro, Merih Seran Uysal, Wil M. P. van der Aalst
:
Discovering Process Models from Uncertain Event Data. CoRR abs/1909.11567 (2019) - [i33]Marco Pegoraro, Wil M. P. van der Aalst:
Mining Uncertain Event Data in Process Mining. CoRR abs/1910.00089 (2019) - [i32]Mohammadreza Fani Sani, Mathilde Boltenhagen, Wil M. P. van der Aalst:
Prototype Selection Based on Clustering and Conformance Metrics for Model Discovery. CoRR abs/1912.00736 (2019) - [i31]Mohammadreza Fani Sani, Sebastiaan J. van Zelst, Wil M. P. van der Aalst:
Conformance Checking Approximation using Subset Selection and Edit Distance. CoRR abs/1912.05022 (2019) - 2018
- [j215]Sherif Sakr
, Zakaria Maamar
, Ahmed Awad
, Boualem Benatallah
, Wil M. P. van der Aalst
:
Business Process Analytics and Big Data Systems: A Roadmap to Bridge the Gap. IEEE Access 6: 77308-77320 (2018) - [j214]Armin Heinzl, Wil M. P. van der Aalst
, Martin Bichler:
Why the Community Should Care About Technology-Centric Journal Rankings. Bus. Inf. Syst. Eng. 60(2): 91-93 (2018) - [j213]Wil M. P. van der Aalst
, Martin Bichler, Armin Heinzl:
Robotic Process Automation. Bus. Inf. Syst. Eng. 60(4): 269-272 (2018) - [j212]Wil M. P. van der Aalst
, Jörg Becker, Martin Bichler, Hans Ulrich Buhl, Jens Dibbern, Ulrich Frank, Ulrich Hasenkamp, Armin Heinzl, Oliver Hinz, Kai Lung Hui, Matthias Jarke, Dimitris Karagiannis, Natalia Kliewer, Wolfgang König, Jan Mendling, Peter Mertens, Matti Rossi, Stefan Voß, Christof Weinhardt
, Robert Winter, Jelena Zdravkovic
:
Views on the Past, Present, and Future of Business and Information Systems Engineering. Bus. Inf. Syst. Eng. 60(6): 443-477 (2018) - [j211]Wil M. P. van der Aalst
:
Spreadsheets for business process management: Using process mining to deal with "events" rather than "numbers"? Bus. Process. Manag. J. 24(1): 105-127 (2018) - [j210]Mahdi Alizadeh, Xixi Lu, Dirk Fahland
, Nicola Zannone
, Wil M. P. van der Aalst
:
Linking data and process perspectives for conformance analysis. Comput. Secur. 73: 172-193 (2018) - [j209]Sebastiaan J. van Zelst
, Boudewijn F. van Dongen, Wil M. P. van der Aalst
, H. M. W. Verbeek
:
Discovering workflow nets using integer linear programming. Computing 100(5): 529-556 (2018) - [j208]Wil M. P. van der Aalst
, Eike Best, Wojciech Penczek:
Preface. Fundam. Informaticae 161(4): i-ii (2018) - [j207]Niek Tax
, Xixi Lu, Natalia Sidorova
, Dirk Fahland
, Wil M. P. van der Aalst
:
The imprecisions of precision measures in process mining. Inf. Process. Lett. 135: 1-8 (2018) - [j206]Alfredo Bolt
, Massimiliano de Leoni
, Wil M. P. van der Aalst
:
Process variant comparison: Using event logs to detect differences in behavior and business rules. Inf. Syst. 74(Part): 53-66 (2018) - [j205]Felix Mannhardt
, Massimiliano de Leoni
, Hajo A. Reijers
, Wil M. P. van der Aalst
, Pieter J. Toussaint:
Guided Process Discovery - A pattern-based approach. Inf. Syst. 76: 1-18 (2018) - [j204]Niek Tax
, Benjamin Dalmas
, Natalia Sidorova
, Wil M. P. van der Aalst
, Sylvie Norre:
Interest-driven discovery of local process models. Inf. Syst. 77: 105-117 (2018) - [j203]Wai Lam Jonathan Lee
, H. M. W. Verbeek
, Jorge Munoz-Gama, Wil M. P. van der Aalst
, Marcos Sepúlveda
:
Recomposing conformance: Closing the circle on decomposed alignment-based conformance checking in process mining. Inf. Sci. 466: 55-91 (2018) - [j202]Sebastiaan J. van Zelst
, Boudewijn F. van Dongen, Wil M. P. van der Aalst
:
Event stream-based process discovery using abstract representations. Knowl. Inf. Syst. 54(2): 407-435 (2018) - [j201]Sander J. J. Leemans
, Dirk Fahland
, Wil M. P. van der Aalst
:
Scalable process discovery and conformance checking. Softw. Syst. Model. 17(2): 599-631 (2018) - [j200]Jan Mendling
, Ingo Weber
, Wil M. P. van der Aalst
, Jan vom Brocke, Cristina Cabanillas
, Florian Daniel
, Søren Debois, Claudio Di Ciccio
, Marlon Dumas
, Schahram Dustdar
, Avigdor Gal, Luciano García-Bañuelos
, Guido Governatori
, Richard Hull, Marcello La Rosa, Henrik Leopold, Frank Leymann, Jan Recker
, Manfred Reichert, Hajo A. Reijers
, Stefanie Rinderle-Ma, Andreas Solti, Michael Rosemann
, Stefan Schulte
, Munindar P. Singh
, Tijs Slaats, Mark Staples, Barbara Weber
, Matthias Weidlich
, Mathias Weske, Xiwei Xu
, Liming Zhu
:
Blockchains for Business Process Management - Challenges and Opportunities. ACM Trans. Manag. Inf. Syst. 9(1): 4:1-4:16 (2018) - [j199]Jianming Yong
, Giancarlo Fortino
, Weiming Shen
, Yun Yang
, Kuo-Ming Chao
, Wil M. P. van der Aalst
:
Special Issue on Service-Oriented Collaborative Computing and Applications. IEEE Trans. Serv. Comput. 11(2): 277-278 (2018) - [j198]Wil M. P. van der Aalst
:
Process discovery from event data: Relating models and logs through abstractions. WIREs Data Mining Knowl. Discov. 8(3) (2018) - [c438]Vincent Bloemen, Jaco van de Pol, Wil M. P. van der Aalst
:
Symbolically Aligning Observed and Modelled Behaviour. ACSD 2018: 50-59 - [c437]Wil M. P. van der Aalst:
Relating Process Models and Event Logs - 21 Conformance Propositions. ATAED@Petri Nets/ACSD 2018: 56-74 - [c436]Wil M. P. van der Aalst
:
Markings in Perpetual Free-Choice Nets Are Fully Characterized by Their Enabled Transitions. Petri Nets 2018: 315-336 - [c435]Niek Tax
, Natalia Sidorova
, Wil M. P. van der Aalst
, Reinder Haakma:
LocalProcessModelDiscovery: Bringing Petri Nets to the Pattern Mining World. Petri Nets 2018: 374-384 - [c434]Wil M. P. van der Aalst
:
Discovering the "Glue" Connecting Activities - Exploiting Monotonicity to Learn Places Faster. It's All About Coordination 2018: 1-20 - [c433]Mohammadreza Fani Sani, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
:
Repairing Outlier Behaviour in Event Logs. BIS 2018: 115-131 - [c432]Prabhakar M. Dixit, Joos C. A. M. Buijs, H. M. W. Verbeek
, Wil M. P. van der Aalst
:
Fast Incremental Conformance Analysis for Interactive Process Discovery. BIS 2018: 163-175 - [c431]Dennis M. M. Schunselaar, Tijs Slaats, Fabrizio Maria Maggi, Hajo A. Reijers, Wil M. P. van der Aalst
:
Mining Hybrid Business Process Models: A Quest for Better Precision. BIS 2018: 190-205 - [c430]Maikel L. van Eck, Natalia Sidorova
, Wil M. P. van der Aalst
:
Multi-instance Mining: Discovering Synchronisation in Artifact-Centric Processes. Business Process Management Workshops 2018: 18-30 - [c429]Wai Lam Jonathan Lee, Jorge Munoz-Gama
, H. M. W. Verbeek
, Wil M. P. van der Aalst
, Marcos Sepúlveda
:
Improving Merging Conditions for Recomposing Conformance Checking. Business Process Management Workshops 2018: 31-43 - [c428]Vadim Denisov, Elena Belkina, Dirk Fahland, Wil M. P. van der Aalst:
The Performance Spectrum Miner: Visual Analytics for Fine-Grained Performance Analysis of Processes. BPM (Dissertation/Demos/Industry) 2018: 96-100 - [c427]Vadim Denisov, Dirk Fahland
, Wil M. P. van der Aalst
:
Unbiased, Fine-Grained Description of Processes Performance from Event Data. BPM 2018: 139-157 - [c426]Vincent Bloemen, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
, Boudewijn F. van Dongen, Jaco van de Pol:
Maximizing Synchronization for Aligning Observed and Modelled Behaviour. BPM 2018: 233-249 - [c425]Guangming Li, Eduardo González López de Murillas, Renata Medeiros de Carvalho, Wil M. P. van der Aalst
:
Extracting Object-Centric Event Logs to Support Process Mining on Databases. CAiSE Forum 2018: 182-199 - [c424]Prabhakar M. Dixit, Suriadi Suriadi, Robert Andrews, Moe Thandar Wynn
, Arthur H. M. ter Hofstede
, Joos C. A. M. Buijs, Wil M. P. van der Aalst
:
Detection and Interactive Repair of Event Ordering Imperfection in Process Logs. CAiSE 2018: 274-290 - [c423]Diego Calvanese, Tahir Emre Kalayci, Marco Montali, Ario Santoso, Wil M. P. van der Aalst:
Conceptual Schema Transformation in Ontology-based Data Access (Extended Abstract). Description Logics 2018 - [c422]Prabhakar M. Dixit, H. M. W. Verbeek
, Wil M. P. van der Aalst
:
Fast Conformance Analysis Based on Activity Log Abstraction. EDOC 2018: 135-144 - [c421]Diego Calvanese, Tahir Emre Kalayci
, Marco Montali, Ario Santoso, Wil M. P. van der Aalst
:
Conceptual Schema Transformation in Ontology-Based Data Access. EKAW 2018: 50-67 - [c420]Cong Liu
, Boudewijn F. van Dongen, Nour Assy, Wil M. P. van der Aalst
:
A Framework to Support Behavioral Design Pattern Detection from Software Execution Data. ENASE 2018: 65-76 - [c419]Cong Liu
, Boudewijn F. van Dongen, Nour Assy, Wil M. P. van der Aalst:
Detecting Behavioral Design Patterns from Software Execution Data. ENASE (Selected Papers) 2018: 137-164 - [c418]Prabhakar M. Dixit, H. M. W. Verbeek
, Joos C. A. M. Buijs, Wil M. P. van der Aalst
:
Interactive Data-Driven Process Model Construction. ER 2018: 251-265 - [c417]Prabhakar M. Dixit, H. M. W. Verbeek
, Wil M. P. van der Aalst
:
Incremental Computation of Synthesis Rules for Free-Choice Petri Nets. FACS 2018: 97-117 - [c416]Maikel L. van Eck, Else Markslag, Natalia Sidorova
, Angelique Brosens-Kessels, Wil M. P. van der Aalst
:
Data-Driven Usability Test Scenario Creation. HCSE 2018: 88-108 - [c415]Cong Liu
, Boudewijn F. van Dongen, Nour Assy, Wil M. P. van der Aalst
:
A general framework to detect behavioral design patterns. ICSE (Companion Volume) 2018: 234-235 - [c414]Maikel Leemans, Wil M. P. van der Aalst
, Mark G. J. van den Brand
, Ramon R. H. Schiffelers, Leonard Lensink:
Software Process Analysis Methodology - A Methodology Based on Lessons Learned in Embracing Legacy Software. ICSME 2018: 665-674 - [c413]Guangming Li, Renata Medeiros de Carvalho, Wil M. P. van der Aalst
:
Configurable Event Correlation for Process Discovery from Object-Centric Event Data. ICWS 2018: 203-210 - [c412]Wil M. P. van der Aalst
:
Responsible Data Science in a Dynamic World - The Four Essential Elements of Data Science. IFIPIoT@WCC 2018: 3-10 - [c411]Niek Tax
, Natalia Sidorova
, Reinder Haakma, Wil M. P. van der Aalst
:
Mining Local Process Models with Constraints Efficiently: Applications to the Analysis of Smart Home Data. Intelligent Environments 2018: 56-63 - [c410]Maikel Leemans, Wil M. P. van der Aalst
, Mark G. J. van den Brand
:
Hierarchical performance analysis for process mining. ICSSP 2018: 96-105 - [c409]Cong Liu
, Boudewijn F. van Dongen, Nour Assy, Wil M. P. van der Aalst
:
Component interface identification and behavioral model discovery from software execution data. ICPC 2018: 97-107 - [c408]Mohammadreza Fani Sani, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
:
Applying Sequence Mining for Outlier Detection in Process Mining. OTM Conferences (2) 2018: 98-116 - [c407]Bart F. A. Hompes, Wil M. P. van der Aalst
:
Lifecycle-Based Process Performance Analysis. OTM Conferences (1) 2018: 336-353 - [c406]Prabhakar M. Dixit, Joos C. A. M. Buijs, Wil M. P. van der Aalst
:
ProDiGy : Human-in-the-loop process discovery. RCIS 2018: 1-12 - [c405]Nour Assy, Boudewijn F. van Dongen, Wil M. P. van der Aalst
:
Similarity resonance for improving process model matching accuracy. SAC 2018: 86-93 - [c404]Wil M. P. van der Aalst:
Process mining and simulation: a match made in heaven! SummerSim 2018: 4:1-4:12 - [c403]Majid Rafiei, Leopold von Waldthausen, Wil M. P. van der Aalst:
Ensuring Confidentiality in Process Mining. SIMPDA 2018: 3-17 - [c402]Alessandro Berti, Wil M. P. van der Aalst:
StarStar Models: Using Events at Database Level for Process Analysis. SIMPDA 2018: 60-64 - [c401]Maikel Leemans, Wil M. P. van der Aalst
, Mark G. J. van den Brand
:
Recursion aware modeling and discovery for hierarchical software event log analysis. SANER 2018: 185-196 - [c400]Maikel Leemans, Wil M. P. van der Aalst
, Mark G. J. van den Brand
:
The Statechart Workbench: Enabling scalable software event log analysis using process mining. SANER 2018: 502-506 - [e24]Wil M. P. van der Aalst, Vladimir Batagelj, Goran Glavas, Dmitry I. Ignatov, Michael Yu. Khachay, Olessia Koltsova, Sergei O. Kuznetsov, Irina A. Lomazova, Natalia V. Loukachevitch, Amedeo Napoli, Alexander Panchenko, Panos M. Pardalos, Marcello Pelillo, Andrey V. Savchenko:
Supplementary Proceedings of the Seventh International Conference on Analysis of Images, Social Networks and Texts (AIST 2018), Moscow, Russia, July 5 - 7, 2018. CEUR Workshop Proceedings 2268, CEUR-WS.org 2018 [contents] - [e23]Wil M. P. van der Aalst, Dmitry I. Ignatov, Michael Yu. Khachay, Sergei O. Kuznetsov, Victor S. Lempitsky, Irina A. Lomazova, Natalia V. Loukachevitch, Amedeo Napoli, Alexander Panchenko, Panos M. Pardalos, Andrey V. Savchenko, Stanley Wasserman:
Analysis of Images, Social Networks and Texts - 6th International Conference, AIST 2017, Moscow, Russia, July 27-29, 2017, Revised Selected Papers. Lecture Notes in Computer Science 10716, Springer 2018, ISBN 978-3-319-73012-7 [contents] - [e22]Wil M. P. van der Aalst
, Vladimir Batagelj, Goran Glavas, Dmitry I. Ignatov, Michael Yu. Khachay, Sergei O. Kuznetsov, Olessia Koltsova, Irina A. Lomazova, Natalia V. Loukachevitch, Amedeo Napoli, Alexander Panchenko, Panos M. Pardalos, Marcello Pelillo, Andrey V. Savchenko:
Analysis of Images, Social Networks and Texts - 7th International Conference, AIST 2018, Moscow, Russia, July 5-7, 2018, Revised Selected Papers. Lecture Notes in Computer Science 11179, Springer 2018, ISBN 978-3-030-11026-0 [contents] - [e21]Wil M. P. van der Aalst, Robin Bergenthum, Josep Carmona:
Proceedings of the International Workshop on Algorithms & Theories for the Analysis of Event Data 2018 Satellite event of the conferences: 39th International Conference on Application and Theory of Petri Nets and Concurrency Petri Nets 2018 and 18th International Conference on Application of Concurrency to System Design ACSD 2018, Bratislava, Slovakia, June 25, 2018. CEUR Workshop Proceedings 2115, CEUR-WS.org 2018 [contents] - [e20]Wil M. P. van der Aalst, Fabio Casati, Raffaele Conforti, Massimiliano de Leoni, Marlon Dumas, Akhil Kumar, Jan Mendling, Surya Nepal, Brian T. Pentland, Barbara Weber:
Proceedings of the Dissertation Award, Demonstration, and Industrial Track at BPM 2018 co-located with 16th International Conference on Business Process Management (BPM 2018), Sydney, Australia, September 9-14, 2018. CEUR Workshop Proceedings 2196, CEUR-WS.org 2018 [contents] - [r25]Wil M. P. van der Aalst:
Business Process Execution Language. Encyclopedia of Database Systems (2nd ed.) 2018 - [r24]Wil M. P. van der Aalst:
Business Process Management. Encyclopedia of Database Systems (2nd ed.) 2018 - [r23]Wil M. P. van der Aalst:
Business Process Modeling Notation. Encyclopedia of Database Systems (2nd ed.) 2018 - [r22]Wil M. P. van der Aalst:
Choreography. Encyclopedia of Database Systems (2nd ed.) 2018 - [r21]Wil M. P. van der Aalst:
Composition. Encyclopedia of Database Systems (2nd ed.) 2018 - [r20]Wil M. P. van der Aalst:
Coordination. Encyclopedia of Database Systems (2nd ed.) 2018 - [r19]Wil M. P. van der Aalst:
Orchestration. Encyclopedia of Database Systems (2nd ed.) 2018 - [r18]Wil M. P. van der Aalst:
Petri Nets. Encyclopedia of Database Systems (2nd ed.) 2018 - [r17]Wil M. P. van der Aalst:
Process Mining. Encyclopedia of Database Systems (2nd ed.) 2018 - [r16]Wil M. P. van der Aalst:
Workflow Model Analysis. Encyclopedia of Database Systems (2nd ed.) 2018 - [r15]Wil M. P. van der Aalst:
Workflow Patterns. Encyclopedia of Database Systems (2nd ed.) 2018 - [r14]Wil M. P. van der Aalst:
Desire Lines in Big Data. Encyclopedia of Social Network Analysis and Mining. 2nd Ed. 2018 - [i30]Wil M. P. van der Aalst
:
Markings in Perpetual Free-Choice Nets Are Fully Characterized by Their Enabled Transitions. CoRR abs/1801.04315 (2018) - [i29]Toon Jouck, Alfredo Bolt, Benoît Depaire, Massimiliano de Leoni, Wil M. P. van der Aalst:
An Integrated Framework for Process Discovery Algorithm Evaluation. CoRR abs/1806.07222 (2018) - [i28]Alessandro Berti, Wil M. P. van der Aalst:
StarStar Models: Process Analysis on top of Databases. CoRR abs/1811.08143 (2018) - 2017
- [j197]Alexey A. Mitsyuk
, Irina A. Lomazova, Wil M. P. van der Aalst
:
Using Event Logs for Local Correction of Process Models. Autom. Control. Comput. Sci. 51(7): 709-723 (2017) - [j196]Martin Bichler, Armin Heinzl, Wil M. P. van der Aalst
:
Business Analytics and Data Science: Once Again? Bus. Inf. Syst. Eng. 59(2): 77-79 (2017) - [j195]Armin Heinzl, Martin Bichler, Wil M. P. van der Aalst
:
Trans-National Joint Research Projects - Defying the Odds of National Inter-University Competition. Bus. Inf. Syst. Eng. 59(4): 205-206 (2017) - [j194]Wil M. P. van der Aalst
, Martin Bichler, Armin Heinzl:
Responsible Data Science. Bus. Inf. Syst. Eng. 59(5): 311-313 (2017) - [j193]Giovanni Acampora, Autilia Vitiello, Bruno N. Di Stefano
, Wil M. P. van der Aalst
, Christian W. Günther, Eric Verbeek:
IEEE 1849: The XES Standard: The Second IEEE Standard Sponsored by IEEE Computational Intelligence Society [Society Briefs]. IEEE Comput. Intell. Mag. 12(2): 4-8 (2017) - [j192]H. M. W. Verbeek
, Wil M. P. van der Aalst
, Jorge Munoz-Gama:
Divide and Conquer: A Tool Framework for Supporting Decomposed Discovery in Process Mining. Comput. J. 60(11): 1649-1674 (2017) - [j191]Maikel L. van Eck, Murat Firat, Wim P. M. Nuijten, Natalia Sidorova, Wil M. P. van der Aalst
:
Human Performance-Aware Scheduling and Routing of a Multi-Skilled Workforce. Complex Syst. Informatics Model. Q. 12: 1-21 (2017) - [j190]Marcello La Rosa
, Wil M. P. van der Aalst
, Marlon Dumas
, Fredrik Milani
:
Business Process Variability Modeling: A Survey. ACM Comput. Surv. 50(1): 2:1-2:45 (2017) - [j189]Artem Polyvyanyy
, Chun Ouyang, Alistair Barros
, Wil M. P. van der Aalst
:
Process querying: Enabling business intelligence through query-based process analytics. Decis. Support Syst. 100: 41-56 (2017) - [j188]Suriadi Suriadi, Moe Thandar Wynn
, Jingxin Xu, Wil M. P. van der Aalst
, Arthur H. M. ter Hofstede
:
Discovering work prioritisation patterns from event logs. Decis. Support Syst. 100: 77-92 (2017) - [j187]Moe Thandar Wynn
, Erik Poppe
, J. Xu, Arthur H. M. ter Hofstede
, Ross Brown
, Azzurra Pini, Wil M. P. van der Aalst
:
ProcessProfiler3D: A visualisation framework for log-based process performance comparison. Decis. Support Syst. 100: 93-108 (2017) - [j186]Felix Mannhardt, Massimiliano de Leoni, Hajo A. Reijers, Wil M. P. van der Aalst, Pieter J. Toussaint:
From Low-Level Events to Activities - A Pattern-Based Approach. EMISA Forum 37(1): 47-48 (2017) - [j185]Guangming Li, Wil M. P. van der Aalst
:
A framework for detecting deviations in complex event logs. Intell. Data Anal. 21(4): 759-779 (2017) - [j184]Wei Zhe Low
, Wil M. P. van der Aalst
, Arthur H. M. ter Hofstede
, Moe Thandar Wynn
, Jochen De Weerdt
:
Change visualisation: Analysing the resource and timing differences between two event logs. Inf. Syst. 65: 106-123 (2017) - [j183]Alexey A. Mitsyuk
, Ivan S. Shugurov, Anna A. Kalenkova
, Wil M. P. van der Aalst
:
Generating event logs for high-level process models. Simul. Model. Pract. Theory 74: 1-16 (2017) - [j182]Anna A. Kalenkova
, Wil M. P. van der Aalst
, Irina A. Lomazova
, Vladimir A. Rubin:
Process mining using BPMN: relating event logs and process models. Softw. Syst. Model. 16(4): 1019-1048 (2017) - [j181]Anastasiia Pika, Michael Leyer, Moe Thandar Wynn
, Colin J. Fidge
, Arthur H. M. ter Hofstede
, Wil M. P. van der Aalst
:
Mining Resource Profiles from Event Logs. ACM Trans. Manag. Inf. Syst. 8(1): 1:1-1:30 (2017) - [j180]Artem Polyvyanyy
, Wil M. P. van der Aalst
, Arthur H. M. ter Hofstede
, Moe Thandar Wynn
:
Impact-Driven Process Model Repair. ACM Trans. Softw. Eng. Methodol. 25(4): 28:1-28:60 (2017) - [c399]Alexey A. Mitsyuk, Irina A. Lomazova, Ivan S. Shugurov, Wil M. P. van der Aalst:
Process Model Repair by Detecting Unfitting Fragments. AIST (Supplement) 2017: 301-313 - [c398]Prabhakar M. Dixit, H. S. Garcia Caballero, Alberto Corvò, B. F. A. Hompes, Joos C. A. M. Buijs, Wil M. P. van der Aalst
:
Enabling Interactive Process Analysis with Process Mining and Visual Analytics. HEALTHINF 2017: 573-584 - [c397]Guangming Li, Renata Medeiros de Carvalho, Wil M. P. van der Aalst
:
Automatic Discovery of Object-Centric Behavioral Constraint Models. BIS 2017: 43-58 - [c396]Mohammadreza Fani Sani, Wil M. P. van der Aalst
, Alfredo Bolt
, Javier García-Algarra
:
Subgroup Discovery in Process Mining. BIS 2017: 237-252 - [c395]Alifah Syamsiyah, Alfredo Bolt
, Long Cheng
, Bart F. A. Hompes, R. P. Jagadeesh Chandra Bose, Boudewijn F. van Dongen, Wil M. P. van der Aalst
:
Business Process Comparison: A Methodology and Case Study. BIS 2017: 253-267 - [c394]Wil M. P. van der Aalst
, Riccardo De Masellis, Chiara Di Francescomarino, Chiara Ghidini:
Learning Hybrid Process Models from Events - Process Discovery Without Faking Confidence. BPM 2017: 59-76 - [c393]Wai Lam Jonathan Lee, H. M. W. Verbeek, Jorge Munoz-Gama, Wil M. P. van der Aalst, Marcos Sepúlveda:
Replay using Recomposition: Alignment-Based Conformance Checking in the Large. BPM (Demos) 2017 - [c392]Erik Poppe, Moe Thandar Wynn, Arthur H. M. ter Hofstede, Ross Brown, Azzurra Pini, Wil M. P. van der Aalst:
ProcessProfiler3D: A Tool for Visualising Performance Differences Between Process Cohorts and Process Instances. BPM (Demos) 2017 - [c391]Alifah Syamsiyah, Boudewijn F. van Dongen, Wil M. P. van der Aalst
:
Recurrent Process Mining with Live Event Data. Business Process Management Workshops 2017: 178-190 - [c390]Mohammadreza Fani Sani, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
:
Improving Process Discovery Results by Filtering Outliers Using Conditional Behavioural Probabilities. Business Process Management Workshops 2017: 216-229 - [c389]A. A. Kalenkova
, A. A. Ageev, Irina A. Lomazova
, Wil M. P. van der Aalst
:
E-Government Services: Comparing Real and Expected User Behavior. Business Process Management Workshops 2017: 484-496 - [c388]Humberto S. Garcia Caballero
, Michel A. Westenberg, Henricus M. W. (Eric) Verbeek
, Wil M. P. van der Aalst
:
Visual Analytics for Soundness Verification of Process Models. Business Process Management Workshops 2017: 744-756 - [c387]Alifah Syamsiyah, Boudewijn F. van Dongen, Wil M. P. van der Aalst
:
Discovering Social Networks Instantly: Moving Process Mining Computations to the Database and Data Entry Time. BPMDS/EMMSAD@CAiSE 2017: 51-67 - [c386]Bart F. A. Hompes, Abderrahmane Maaradji, Marcello La Rosa, Marlon Dumas
, Joos C. A. M. Buijs, Wil M. P. van der Aalst
:
Discovering Causal Factors Explaining Business Process Performance Variation. CAiSE 2017: 177-192 - [c385]Nour Assy, Boudewijn F. van Dongen, Wil M. P. van der Aalst
:
Discovering Hierarchical Consolidated Models from Process Families. CAiSE 2017: 314-329 - [c384]Felix Mannhardt
, Massimiliano de Leoni
, Hajo A. Reijers
, Wil M. P. van der Aalst
:
Data-Driven Process Discovery - Revealing Conditional Infrequent Behavior from Event Logs. CAiSE 2017: 545-560 - [c383]Long Cheng
, Boudewijn F. van Dongen, Wil M. P. van der Aalst
:
Efficient Event Correlation over Distributed Systems. CCGrid 2017: 1-10 - [c382]Wil M. P. van der Aalst, Alessandro Artale, Marco Montali, Simone Tritini:
Object-Centric Behavioral Constraints: Integrating Data and Declarative Process Modelling. Description Logics 2017 - [c381]Alfredo Bolt
, Wil M. P. van der Aalst
, Massimiliano de Leoni
:
Finding Process Variants in Event Logs - (Short Paper). OTM Conferences (1) 2017: 45-52 - [c380]Maikel Leemans, Wil M. P. van der Aalst
:
Modeling and Discovering Cancelation Behavior. OTM Conferences (1) 2017: 93-113 - [c379]Xixi Lu, Dirk Fahland
, Robert Andrews, Suriadi Suriadi, Moe Thandar Wynn
, Arthur H. M. ter Hofstede
, Wil M. P. van der Aalst
:
Semi-supervised Log Pattern Detection and Exploration Using Event Concurrence and Contextual Information. OTM Conferences (1) 2017: 154-174 - [c378]Maikel L. van Eck, Natalia Sidorova
, Wil M. P. van der Aalst
:
Guided Interaction Exploration in Artifact-centric Process Models. CBI (1) 2017: 109-118 - [e19]Wil M. P. van der Aalst, Mikhail Yu. Khachay, Sergei O. Kuznetsov, Victor S. Lempitsky, Irina A. Lomazova, Natalia V. Loukachevitch, Amedeo Napoli, Alexander Panchenko, Panos M. Pardalos, Andrey V. Savchenko, Stanley Wasserman, Dmitry I. Ignatov:
Supplementary Proceedings of the Sixth International Conference on Analysis of Images, Social Networks and Texts (AIST 2017), Moscow, Russia, July 27 - 29, 2017. CEUR Workshop Proceedings 1975, CEUR-WS.org 2017 [contents] - [e18]Wil M. P. van der Aalst, Robin Bergenthum, Josep Carmona:
Proceedings of the International Workshop on Algorithms & Theories for the Analysis of Event Data 2017 Satellite event of the conferences: 38th International Conference on Application and Theory of Petri Nets and Concurrency Petri Nets 2017 and 17th International Conference on Application of Concurrency to System Design ACSD 2017, Zaragoza, Spain, June 26-27, 2017. CEUR Workshop Proceedings 1847, CEUR-WS.org 2017 [contents] - [e17]Wil M. P. van der Aalst
, Eike Best:
Application and Theory of Petri Nets and Concurrency - 38th International Conference, PETRI NETS 2017, Zaragoza, Spain, June 25-30, 2017, Proceedings. Lecture Notes in Computer Science 10258, Springer 2017, ISBN 978-3-319-57860-6 [contents] - [e16]Robert Clarisó, Henrik Leopold, Jan Mendling, Wil M. P. van der Aalst, Akhil Kumar, Brian T. Pentland, Mathias Weske:
Proceedings of the BPM Demo Track and BPM Dissertation Award co-located with 15th International Conference on Business Process Modeling (BPM 2017), Barcelona, Spain, September 13, 2017. CEUR Workshop Proceedings 1920, CEUR-WS.org 2017 [contents] - [i27]Wil M. P. van der Aalst
, Alfredo Bolt, Sebastiaan J. van Zelst:
RapidProM: Mine Your Processes and Not Just Your Data. CoRR abs/1703.03740 (2017) - [i26]Wil M. P. van der Aalst, Guangming Li, Marco Montali:
Object-Centric Behavioral Constraints. CoRR abs/1703.05740 (2017) - [i25]Wil M. P. van der Aalst
, Riccardo De Masellis, Chiara Di Francescomarino, Chiara Ghidini:
Learning Hybrid Process Models From Events: Process Discovery Without Faking Confidence. CoRR abs/1703.06125 (2017) - [i24]Sebastiaan J. van Zelst, Boudewijn F. van Dongen, Wil M. P. van der Aalst, H. M. W. Verbeek:
Discovering Relaxed Sound Workflow Nets using Integer Linear Programming. CoRR abs/1703.06733 (2017) - [i23]Niek Tax, Benjamin Dalmas, Natalia Sidorova, Wil M. P. van der Aalst, Sylvie Norre:
Interest-Driven Discovery of Local Process Models. CoRR abs/1703.07116 (2017) - [i22]Jan Mendling, Ingo Weber, Wil M. P. van der Aalst, Jan vom Brocke, Cristina Cabanillas, Florian Daniel, Søren Debois, Claudio Di Ciccio, Marlon Dumas, Schahram Dustdar, Avigdor Gal, Luciano García-Bañuelos, Guido Governatori, Richard Hull, Marcello La Rosa, Henrik Leopold, Frank Leymann, Jan Recker, Manfred Reichert, Hajo A. Reijers, Stefanie Rinderle-Ma, Andreas Rogge-Solti, Michael Rosemann, Stefan Schulte, Munindar P. Singh, Tijs Slaats, Mark Staples, Barbara Weber, Matthias Weidlich, Mathias Weske, Xiwei Xu, Liming Zhu:
Blockchains for Business Process Management - Challenges and Opportunities. CoRR abs/1704.03610 (2017) - [i21]Sebastiaan J. van Zelst, Boudewijn F. van Dongen, Wil M. P. van der Aalst:
Event Stream-Based Process Discovery using Abstract Representations. CoRR abs/1704.08101 (2017) - [i20]Niek Tax, Xixi Lu, Natalia Sidorova, Dirk Fahland, Wil M. P. van der Aalst:
The Imprecisions of Precision Measures in Process Mining. CoRR abs/1705.03303 (2017) - [i19]Niek Tax, Emin Alasgarov, Natalia Sidorova, Wil M. P. van der Aalst, Reinder Haakma:
Time-Based Label Refinements to Discover More Precise Process Models. CoRR abs/1705.09359 (2017) - [i18]Niek Tax, Natalia Sidorova, Reinder Haakma, Wil M. P. van der Aalst:
Mining Process Model Descriptions of Daily Life through Event Abstraction. CoRR abs/1705.10202 (2017) - [i17]Maikel L. van Eck, Natalia Sidorova, Wil M. P. van der Aalst:
Guided Interaction Exploration in Artifact-centric Process Models. CoRR abs/1706.02109 (2017) - [i16]Rémi Brochenin, Joos C. A. M. Buijs, Mehrnoosh Vahdat, Wil M. P. van der Aalst:
Resource Usage Analysis from a Different Perspective on MOOC Dropout. CoRR abs/1710.05917 (2017) - [i15]Maikel Leemans, Wil M. P. van der Aalst, Mark G. J. van den Brand
:
Recursion Aware Modeling and Discovery For Hierarchical Software Event Log Analysis (Extended). CoRR abs/1710.09323 (2017) - [i14]Niek Tax, Natalia Sidorova, Wil M. P. van der Aalst:
Discovering More Precise Process Models from Event Logs by Filtering Out Chaotic Activities. CoRR abs/1711.01287 (2017) - 2016
- [b6]Nick Russell, Wil M. P. van der Aalst, Arthur H. M. ter Hofstede:
Workflow Patterns: The Definitive Guide. MIT Press 2016, ISBN 9780262029827 - [b5]Wil M. P. van der Aalst
:
Process Mining - Data Science in Action, Second Edition. Springer 2016, ISBN 978-3-662-49850-7, pp. 3-452 - [j179]Wil M. P. van der Aalst
, Marcello La Rosa, Flávia Maria Santoro:
Business Process Management - Don't Forget to Improve the Process! Bus. Inf. Syst. Eng. 58(1): 1-6 (2016) - [j178]Martin Bichler, Armin Heinzl, Wil M. P. van der Aalst
:
BISE and the Engineering Sciences. Bus. Inf. Syst. Eng. 58(2): 105-106 (2016) - [j177]Armin Heinzl, Martin Bichler, Wil M. P. van der Aalst
:
Disciplinary Pluralism, Flagship Conferences, and Journal Submissions. Bus. Inf. Syst. Eng. 58(4): 243-245 (2016) - [j176]Wil M. P. van der Aalst
, Martin Bichler, Armin Heinzl:
Open Research in Business and Information Systems Engineering. Bus. Inf. Syst. Eng. 58(6): 375-379 (2016) - [j175]Felix Mannhardt
, Massimiliano de Leoni
, Hajo A. Reijers, Wil M. P. van der Aalst
:
Balanced multi-perspective checking of process conformance. Computing 98(4): 407-437 (2016) - [j174]Wei Zhe Low
, Seppe K. L. M. vanden Broucke, Moe Thandar Wynn
, Arthur H. M. ter Hofstede
, Jochen De Weerdt
, Wil M. P. van der Aalst
:
Revising history for cost-informed process improvement. Computing 98(9): 895-921 (2016) - [j173]Claudia Diamantini
, Laura Genga
, Domenico Potena
, Wil M. P. van der Aalst
:
Building instance graphs for highly variable processes. Expert Syst. Appl. 59: 101-118 (2016) - [j172]Hajo A. Reijers, Irene Vanderfeesten
, Wil M. P. van der Aalst
:
The effectiveness of workflow management systems: A longitudinal study. Int. J. Inf. Manag. 36(1): 126-141 (2016) - [j171]Massimiliano de Leoni
, Wil M. P. van der Aalst
, Marcus Dees:
A general process mining framework for correlating, predicting and clustering dynamic behavior based on event logs. Inf. Syst. 56: 235-257 (2016) - [j170]Anastasiia Pika, Wil M. P. van der Aalst
, Moe Thandar Wynn
, Colin J. Fidge
, Arthur H. M. ter Hofstede
:
Evaluating and predicting overall process risk using event logs. Inf. Sci. 352-353: 98-120 (2016) - [j169]Robert Engel, Worarat Krathu, Marco Zapletal, Christian Pichler, R. P. Jagadeesh Chandra Bose, Wil M. P. van der Aalst
, Hannes Werthner, Christian Huemer:
Analyzing inter-organizational business processes - Process mining and business performance analysis using electronic data interchange messages. Inf. Syst. E Bus. Manag. 14(3): 577-612 (2016) - [j168]Niek Tax
, Natalia Sidorova, Reinder Haakma, Wil M. P. van der Aalst
:
Mining local process models. J. Innov. Digit. Ecosyst. 3(2): 183-196 (2016) - [j167]Massimiliano de Leoni
, Suriadi Suriadi, Arthur H. M. ter Hofstede
, Wil M. P. van der Aalst
:
Turning event logs into process movies: animating what has really happened. Softw. Syst. Model. 15(3): 707-732 (2016) - [j166]Alfredo Bolt
, Massimiliano de Leoni
, Wil M. P. van der Aalst
:
Scientific workflows for process mining: building blocks, scenarios, and implementation. Int. J. Softw. Tools Technol. Transf. 18(6): 607-628 (2016) - [c377]H. M. W. Verbeek
, Wil M. P. van der Aalst
:
Merging Alignments for Decomposed Replay. Petri Nets 2016: 219-239 - [c376]Xixi Lu, Dirk Fahland, Wil M. P. van der Aalst:
Interactively Exploring Logs and Mining Models with Clustering, Filtering, and Relabeling. BPM (Demos) 2016: 44-49 - [c375]Maikel L. van Eck, Natalia Sidorova, Wil M. P. van der Aalst:
Composite State Machine Miner: Discovering and Exploring Multi-perspective Processes. BPM (Demos) 2016: 73-77 - [c374]Xixi Lu, Dirk Fahland
, Frank J. H. M. van den Biggelaar, Wil M. P. van der Aalst
:
Handling Duplicated Tasks in Process Discovery by Refining Event Labels. BPM 2016: 90-107 - [c373]Felix Mannhardt
, Massimiliano de Leoni
, Hajo A. Reijers, Wil M. P. van der Aalst
, Pieter J. Toussaint:
From Low-Level Events to Activities - A Pattern-Based Approach. BPM 2016: 125-141 - [c372]Maikel L. van Eck, Natalia Sidorova
, Wil M. P. van der Aalst
:
Discovering and Exploring State-Based Models for Multi-perspective Processes. BPM 2016: 142-157 - [c371]Eduardo González López de Murillas
, Hajo A. Reijers
, Wil M. P. van der Aalst
:
Everything You Always Wanted to Know About Your Process, but Did Not Know How to Ask. Business Process Management Workshops 2016: 296-309 - [c370]Alfredo Bolt
, Massimiliano de Leoni, Wil M. P. van der Aalst
:
A Visual Approach to Spot Statistically-Significant Differences in Event Logs Based on Process Metrics. CAiSE 2016: 151-166 - [c369]Eduardo González López de Murillas
, Hajo A. Reijers, Wil M. P. van der Aalst
:
Connecting Databases with Process Mining: A Meta Model and Toolset. BMMDS/EMMSAD 2016: 231-249 - [c368]Felix Mannhardt
, Massimiliano de Leoni
, Hajo A. Reijers, Wil M. P. van der Aalst
:
Decision Mining Revisited - Discovering Overlapping Rules. CAiSE 2016: 377-392 - [c367]Wil M. P. van der Aalst
:
Responsible Data Science: Using Event Data in a "People Friendly" Manner. ICEIS (Revised Selected Papers) 2016: 3-28 - [c366]