


Остановите войну!
for scientists:
Pedro Casas
Person information

Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2021
- [j26]Luis Roberto Jiménez
, Marta Solera Delgado
, Matías Toril
, Carolina Gijón
, Pedro Casas
:
Content Matters: Clustering Web Pages for QoE Analysis With WebCLUST. IEEE Access 9: 123873-123888 (2021) - [j25]Nikolas Wehner, Michael Seufert, Joshua Schuler, Sarah Wassermann, Pedro Casas, Tobias Hossfeld:
Improving Web QoE Monitoring for Encrypted Network Traffic through Time Series Modeling. SIGMETRICS Perform. Evaluation Rev. 48(4): 37-40 (2021) - [j24]Gastón García González, Pedro Casas, Alicia Fernández, Gabriel Gómez:
On the Usage of Generative Models for Network Anomaly Detection in Multivariate Time-Series. SIGMETRICS Perform. Evaluation Rev. 48(4): 49-52 (2021) - [j23]Sarah Wassermann, Thibaut Cuvelier
, Pavol Mulinka
, Pedro Casas
:
Adaptive and Reinforcement Learning Approaches for Online Network Monitoring and Analysis. IEEE Trans. Netw. Serv. Manag. 18(2): 1832-1849 (2021) - [c117]Pedro Casas, Matteo Romiti, Peter Holzer, Sami Ben Mariem, Benoit Donnet, Bernhard Haslhofer:
Where is the Light(ning) in the Taproot Dawn? Unveiling the Bitcoin Lightning (IP) Network. CloudNet 2021: 87-90 - [c116]Nikolas Wehner, Michael Seufert, Joshua Schüler, Pedro Casas, Tobias Hoßfeld:
How are your Apps Doing? QoE Inference and Analysis in Mobile Devices. CNSM 2021: 49-55 - [c115]Nikolas Wehner, Michael Seufert, Viktoria Wieser, Pedro Casas, Germán Capdehourat:
Quality that Matters: QoE Monitoring in Education Service Provider (ESP) Networks. IM 2021: 830-835 - [c114]Pedro Casas, Sarah Wassermann, Nikolas Wehner, Michael Seufert, Joshua Schüler, Tobias Hossfeld:
Mobile Web and App QoE Monitoring for ISPs - from Encrypted Traffic to Speed Index through Machine Learning. WMNC 2021: 40-47 - 2020
- [j22]Sarah Wassermann, Michael Seufert
, Pedro Casas
, Li Gang, Kuang Li:
ViCrypt to the Rescue: Real-Time, Machine-Learning-Driven Video-QoE Monitoring for Encrypted Streaming Traffic. IEEE Trans. Netw. Serv. Manag. 17(4): 2007-2023 (2020) - [c113]Michael Seufert, Nikolas Wehner, Viktoria Wieser, Pedro Casas, Germán Capdehourat:
Mind the (QoE) Gap: On the Incompatibility of Web and Video QoE Models in the Wild. CNSM 2020: 1-5 - [c112]Sarah Wassermann, Pedro Casas, Zied Ben-Houidi, Alexis Huet, Michael Seufert, Nikolas Wehner, Joshua Schüler, Shengming Cai, Hao Shi, Jinchun Xu, Tobias Hoßfeld, Dario Rossi:
Are you on Mobile or Desktop? On the Impact of End-User Device on Web QoE Inference from Encrypted Traffic. CNSM 2020: 1-9 - [c111]Maciej Korczynski, Wojciech Mazurczyk, Pedro Casas:
Preface on the 5th International Workshop on Traffic Measurements for Cybersecurity. EuroS&P Workshops 2020: 521 - [c110]Pavol Mulinka
, Kensuke Fukuda, Pedro Casas, Lukas Kencl:
WhatsThat? On the Usage of Hierarchical Clustering for Unsupervised Detection & Interpretation of Network Attacks. EuroS&P Workshops 2020: 574-583 - [c109]Nikolas Wehner, Michael Seufert, Sebastian Egger-Lampl, Bruno Gardlo, Pedro Casas, Raimund Schatz:
Scoring High: Analysis and Prediction of Viewer Behavior and Engagement in the Context of 2018 FIFA WC Live Streaming. ACM Multimedia 2020: 807-815 - [c108]Pavol Mulinka, Pedro Casas, Kensuke Fukuda, Lukas Kencl:
HUMAN - Hierarchical Clustering for Unsupervised Anomaly Detection & Interpretation. NOF 2020: 132-140 - [c107]Pedro Casas:
Two Decades of AI4NETS - AI/ML for Data Networks: Challenges & Research Directions. NOMS 2020: 1-6 - [c106]Sami Ben Mariem, Pedro Casas, Matteo Romiti, Benoit Donnet, Rainer Stütz
, Bernhard Haslhofer:
All that Glitters is not Bitcoin - Unveiling the Centralized Nature of the BTC (IP) Network. NOMS 2020: 1-9 - [c105]Sarah Wassermann, Pedro Casas, Michael Seufert, Nikolas Wehner, Joshua Schüler, Tobias Hossfeld:
How good is your mobile (web) surfing?: speed index inference from encrypted traffic. SIGCOMM Posters and Demos 2020: 35-36 - [c104]Sarah Wassermann, Thibaut Cuvelier, Pedro Casas:
RAL: reinforcement active learning for network traffic monitoring and analysis. SIGCOMM Posters and Demos 2020: 55-56 - [c103]Gastón García González, Pedro Casas, Alicia Fernández, Gabriel Gómez:
Network anomaly detection with net-GAN, a generative adversarial network for analysis of multivariate time-series. SIGCOMM Posters and Demos 2020: 62-64 - [i7]Sami Ben Mariem, Pedro Casas, Matteo Romiti, Benoit Donnet, Rainer Stütz, Bernhard Haslhofer:
All that Glitters is not Bitcoin - Unveiling the Centralized Nature of the BTC (IP) Network. CoRR abs/2001.09105 (2020) - [i6]Alessandro D'Alconzo, Idilio Drago, Andrea Morichetta, Marco Mellia, Pedro Casas:
A Survey on Big Data for Network Traffic Monitoring and Analysis. CoRR abs/2003.01648 (2020) - [i5]Andrea Morichetta, Pedro Casas, Marco Mellia:
EXPLAIN-IT: Towards Explainable AI for Unsupervised Network Traffic Analysis. CoRR abs/2003.01670 (2020) - [i4]Gonzalo Marín, Pedro Casas, Germán Capdehourat:
DeepMAL - Deep Learning Models for Malware Traffic Detection and Classification. CoRR abs/2003.04079 (2020) - [i3]Pedro Casas:
Two Decades of AI4NETS-AI/ML for Data Networks: Challenges & Research Directions. CoRR abs/2003.04080 (2020) - [i2]Tobias Hoßfeld, Stefan Wunderer, André Beyer, Andrew Hall, Anika Schwind, Christian Gassner, Fabrice Guillemin, Florian Wamser, Krzysztof Wascinski, Matthias Hirth, Michael Seufert, Pedro Casas, Phuoc Tran-Gia, Werner Robitza, Wojciech Wascinski, Zied Ben-Houidi:
White Paper on Crowdsourced Network and QoE Measurements - Definitions, Use Cases and Challenges. CoRR abs/2006.16896 (2020) - [i1]Gastón García González, Pedro Casas, Alicia Fernández, Gabriel Gómez:
On the Usage of Generative Models for Network Anomaly Detection in Multivariate Time-Series. CoRR abs/2010.08286 (2020)
2010 – 2019
- 2019
- [j21]Michael Seufert
, Sarah Wassermann
, Pedro Casas
:
Considering User Behavior in the Quality of Experience Cycle: Towards Proactive QoE-Aware Traffic Management. IEEE Commun. Lett. 23(7): 1145-1148 (2019) - [j20]Michael Seufert
, Nikolas Wehner
, Pedro Casas
:
A Fair Share for All: TCP-Inspired Adaptation Logic for QoE Fairness Among Heterogeneous HTTP Adaptive Video Streaming Clients. IEEE Trans. Netw. Serv. Manag. 16(2): 475-488 (2019) - [j19]Alessandro D'Alconzo, Idilio Drago
, Andrea Morichetta
, Marco Mellia
, Pedro Casas
:
A Survey on Big Data for Network Traffic Monitoring and Analysis. IEEE Trans. Netw. Serv. Manag. 16(3): 800-813 (2019) - [c102]Pedro Casas, Pavol Mulinka, Juan Martin Vanerio:
Should I (re)Learn or Should I Go(on)?: Stream Machine Learning for Adaptive Defense against Network Attacks. MTD@CCS 2019: 79-88 - [c101]Pavol Mulinka
, Pedro Casas, Juan Martin Vanerio:
Continuous and Adaptive Learning over Big Streaming Data for Network Security. CloudNet 2019: 1-4 - [c100]Sarah Wassermann, Thibaut Cuvelier, Pavol Mulinka
, Pedro Casas:
ADAM & RAL: Adaptive Memory Learning and Reinforcement Active Learning for Network Monitoring. CNSM 2019: 1-9 - [c99]Andrea Morichetta
, Pedro Casas, Marco Mellia:
EXPLAIN-IT: Towards Explainable AI for Unsupervised Network Traffic Analysis. Big-DAMA@CoNEXT 2019: 22-28 - [c98]Michael Seufert, Raimund Schatz, Nikolas Wehner, Pedro Casas:
QUICker or not? -an Empirical Analysis of QUIC vs TCP for Video Streaming QoE Provisioning. ICIN 2019: 7-12 - [c97]Michael Seufert, Pedro Casas, Nikolas Wehner, Li Gang, Kuang Li:
Stream-based Machine Learning for Real-time QoE Analysis of Encrypted Video Streaming Traffic. ICIN 2019: 76-81 - [c96]Michael Seufert, Pedro Casas, Nikolas Wehner, Li Gang, Kuang Li:
Features that Matter: Feature Selection for On-line Stalling Prediction in Encrypted Video Streaming. INFOCOM Workshops 2019: 688-695 - [c95]Sarah Wassermann, Michael Seufert, Pedro Casas, Li Gang, Kuang Li:
I See What you See: Real Time Prediction of Video Quality from Encrypted Streaming Traffic. Internet-QoE@MOBICOM 2019: 1-6 - [c94]Pedro Casas, Florian Wamser, Fabián E. Bustamante, David R. Choffnes:
Internet-QoE 2019: 4th Internet-QoE Workshop on QoE-based Analysis and Management of Data Communication Networks. MobiCom 2019: 108:1-108:2 - [c93]Sarah Wassermann, Pedro Casas, Michael Seufert, Florian Wamser:
On the Analysis of YouTube QoE in Cellular Networks through in-Smartphone Measurements. WMNC 2019: 71-78 - [c92]Michael Seufert, Raimund Schatz, Nikolas Wehner, Bruno Gardlo, Pedro Casas:
Is QUIC becoming the New TCP? On the Potential Impact of a New Protocol on Networked Multimedia QoE. QoMEX 2019: 1-6 - [c91]Gonzalo Marín, Pedro Casas, Germán Capdehourat:
Deep in the Dark - Deep Learning-Based Malware Traffic Detection Without Expert Knowledge. IEEE Symposium on Security and Privacy Workshops 2019: 36-42 - [c90]Pedro Casas, Gonzalo Marín, Germán Capdehourat, Maciej Korczynski:
MLSEC - Benchmarking Shallow and Deep Machine Learning Models for Network Security. IEEE Symposium on Security and Privacy Workshops 2019: 230-235 - [c89]Sarah Wassermann, Michael Seufert, Pedro Casas, Li Gang, Kuang Li:
Let me Decrypt your Beauty: Real-time Prediction of Video Resolution and Bitrate for Encrypted Video Streaming. TMA 2019: 199-200 - [c88]Lorenzo Maggi, Jérémie Leguay, Michael Seufert, Pedro Casas:
Online Detection of Stalling and Scrubbing in Adaptive Video Streaming. WiOpt 2019: 1-8 - [e6]Pedro Casas, Florian Wamser, Fabian E. Bustamante, David R. Choffnes:
Proceedings of the 4th Internet-QoE Workshop on QoE-based Analysis and Management of Data Communication Networks, Internet-QoE@MobiCom 2019, Los Cabos, Mexico, October 21, 2019. ACM 2019, ISBN 978-1-4503-6927-5 [contents] - 2018
- [j18]Gonzalo Marín, Pedro Casas, Germán Capdehourat:
DeepSec meets RawPower - Deep Learning for Detection of Network Attacks Using Raw Representations. SIGMETRICS Perform. Evaluation Rev. 46(3): 147-150 (2018) - [j17]Sarah Wassermann, Nikolas Wehner, Pedro Casas:
Machine Learning Models for YouTube QoE and User Engagement Prediction in Smartphones. SIGMETRICS Perform. Evaluation Rev. 46(3): 155-158 (2018) - [c87]Mark Shtern, Pedro Casas, Vassilios Tzerpos:
Evaluating music mastering quality using machine learning. CASCON 2018: 126-135 - [c86]Pavol Mulinka
, Pedro Casas, Lukas Kencl:
Hi-Clust: Unsupervised Analysis of Cloud Latency Measurements Through Hierarchical Clustering. CloudNet 2018: 1-7 - [c85]Michael Seufert, Nikolas Wehner, Pedro Casas, Florian Wamser:
A Fair Share for All: Novel Adaptation Logic for QoE Fairness of HTTP Adaptive Video Streaming. CNSM 2018: 19-27 - [c84]Nikolas Wehner, Sarah Wassermann, Pedro Casas, Michael Seufert, Florian Wamser:
Beauty is in the Eye of the Smartphone Holder A Data Driven Analysis of YouTube Mobile QoE. CNSM 2018: 343-347 - [c83]Pedro Casas:
MLNET - Machine Learning Models for Network Analytics. EDBT/ICDT Workshops 2018: 36-43 - [c82]Michael Seufert, Nikolas Wehner, Pedro Casas:
Studying the Impact of HAS QoE Factors on the Standardized QoE Model P.1203. ICDCS 2018: 1636-1641 - [c81]Pedro Casas, Michael Seufert, Nikolas Wehner, Anika Schwind, Florian Wamser:
Enhancing Machine Learning Based QoE Prediction by Ensemble Models. ICDCS 2018: 1642-1647 - [c80]Anika Schwind, Florian Wamser, Thomas Gensler, Phuoc Tran-Gia, Michael Seufert, Pedro Casas:
Streaming Characteristics of Spotify Sessions. QoMEX 2018: 1-6 - [c79]Pavol Mulinka
, Pedro Casas:
Stream-based Machine Learning for Network Security and Anomaly Detection. Big-DAMA@SIGCOMM 2018: 1-7 - [c78]Pavol Mulinka
, Pedro Casas:
Adaptive Network Security through Stream Machine Learning. SIGCOMM Posters and Demos 2018: 4-5 - [c77]Sarah Wassermann, Pedro Casas:
BIGMOMAL: Big Data Analytics for Mobile Malware Detection. WTMC@SIGCOMM 2018: 33-39 - [c76]Gonzalo Marín, Pedro Casas, Germán Capdehourat:
RawPower: Deep Learning based Anomaly Detection from Raw Network Traffic Measurements. SIGCOMM Posters and Demos 2018: 75-77 - [c75]Pedro Casas:
On the Analysis of Network Measurements Through Machine Learning: The Power of the Crowd. TMA 2018: 1-8 - [c74]Michael Seufert, Nikolas Wehner, Pedro Casas:
App for Dynamic Crowdsourced QoE Studies of HTTP Adaptive Streaming on Mobile Devices. TMA 2018: 1-2 - [c73]Florian Wamser, Nikolas Wehner, Michael Seufert, Pedro Casas, Phuoc Tran-Gia:
You Tube QoE Monitoring with YoMoApp: A Web-Based Data Interface for Researchers. TMA 2018: 1-2 - [c72]Sarah Wassermann, Pedro Casas:
Distributed Internet Paths Performance Analysis Through Machine Learning. TMA 2018: 1-2 - [c71]Sarah Wassermann, John P. Rula, Fabian E. Bustamante, Pedro Casas:
Anycaston the Move: A Look at Mobile Anycast Performance. TMA 2018: 1-8 - [c70]Pedro Casas:
Machine learning models for wireless network monitoring and analysis. WCNC Workshops 2018: 242-247 - [e5]Pedro Casas, Marco Mellia, Alberto Dainotti, Tanja Zseby:
Proceedings of the 2018 Workshop on Big Data Analytics and Machine Learning for Data Communication Networks, Big-DAMA@SIGCOMM 2018, Budapest, Hungary, August 20, 2018. ACM 2018 [contents] - [e4]Maciej Korczynski, Wojciech Mazurczyk, Pedro Casas:
Proceedings of the 2018 Workshop on Traffic Measurements for Cybersecurity, WTMC@SIGCOMM 2018, Budapest, Hungary, August 20, 2018. ACM 2018 [contents] - 2017
- [c69]Pedro Casas, Francesca Soro, Juan Martin Vanerio, Giuseppe Settanni, Alessandro D'Alconzo:
Network security and anomaly detection with Big-DAMA, a big data analytics framework. CloudNet 2017: 16-22 - [c68]Pedro Casas, Juan Martin Vanerio, Kensuke Fukuda:
GML learning, a generic machine learning model for network measurements analysis. CNSM 2017: 1-9 - [c67]Pedro Casas, Sarah Wassermann:
Improving QoE prediction in mobile video through machine learning. NOF 2017: 1-7 - [c66]Pedro Casas, Alessandro D'Alconzo, Florian Wamser, Michael Seufert, Bruno Gardlo, Anika Schwind, Phuoc Tran-Gia, Raimund Schatz:
Predicting QoE in cellular networks using machine learning and in-smartphone measurements. QoMEX 2017: 1-6 - [c65]Michael Seufert, Nikolas Wehner, Florian Wamser, Pedro Casas, Alessandro D'Alconzo, Phuoc Tran-Gia:
Unsupervised QoE field study for mobile YouTube video streaming with YoMoApp. QoMEX 2017: 1-6 - [c64]Juan Martin Vanerio, Pedro Casas:
Ensemble-learning Approaches for Network Security and Anomaly Detection. Big-DAMA@SIGCOMM 2017: 1-6 - [c63]Sarah Wassermann, Pedro Casas, Thibaut Cuvelier
, Benoit Donnet
:
NETPerfTrace: Predicting Internet Path Dynamics and Performance with Machine Learning. Big-DAMA@SIGCOMM 2017: 31-36 - [c62]Anika Schwind, Michael Seufert, Ozgu Alay, Pedro Casas, Phuoc Tran-Gia, Florian Wamser:
Concept and implementation of video QoE measurements in a mobile broadband testbed. TMA 2017: 1-6 - [c61]Pedro Casas, Juan Martin Vanerio:
Super learning for anomaly detection in cellular networks. WiMob 2017: 1-8 - [e3]Pedro Casas, Florian Wamser, Fabián E. Bustamante, David R. Choffnes:
Proceedings of the 2017 Workshop on QoE-based Analysis and Management of Data Communication Networks, Internet-QoE@SIGCOMM 2017, Los Angeles, CA, USA, August 21, 2017. ACM 2017, ISBN 978-1-4503-5056-3 [contents] - 2016
- [j16]Pedro Casas, Pierdomenico Fiadino, Sarah Wassermann, Stefano Traverso, Alessandro D'Alconzo, Edion Tego, Francesco Matera, Marco Mellia
:
Unveiling network and service performance degradation in the wild with mplane. IEEE Commun. Mag. 54(3): 71-79 (2016) - [j15]Arian Bär, Pedro Casas, Alessandro D'Alconzo, Pierdomenico Fiadino, Lukasz Golab, Marco Mellia
, Erich Schikuta
:
DBStream: A holistic approach to large-scale network traffic monitoring and analysis. Comput. Networks 107: 5-19 (2016) - [j14]Florian Wamser
, Pedro Casas, Michael Seufert, Christian Moldovan, Phuoc Tran-Gia, Tobias Hoßfeld:
Modeling the YouTube stack: From packets to quality of experience. Comput. Networks 109: 211-224 (2016) - [j13]Pedro Casas, Michael Seufert, Florian Wamser, Bruno Gardlo, Andreas Sackl
, Raimund Schatz:
Next to You: Monitoring Quality of Experience in Cellular Networks From the End-Devices. IEEE Trans. Netw. Serv. Manag. 13(2): 181-196 (2016) - [j12]Pierdomenico Fiadino, Pedro Casas
, Alessandro D'Alconzo, Mirko Schiavone, Arian Bär:
Grasping Popular Applications in Cellular Networks With Big Data Analytics Platforms. IEEE Trans. Netw. Serv. Manag. 13(3): 681-695 (2016) - [c60]Pedro Casas, Alessandro D'Alconzo, Giuseppe Settanni, Pierdomenico Fiadino, Florian Skopik
:
POSTER: (Semi)-Supervised Machine Learning Approaches for Network Security in High-Dimensional Network Data. CCS 2016: 1805-1807 - [c59]Eirini Liotou, Raimund Schatz, Andreas Sackl
, Pedro Casas, Dimitris Tsolkas, Nikos I. Passas, Lazaros F. Merakos:
The Beauty of Consistency in Radio-Scheduling Decisions. GLOBECOM Workshops 2016: 1-6 - [c58]Pedro Casas, Alessandro D'Alconzo, Pierdomenico Fiadino, Christian Callegari:
Detecting and diagnosing anomalies in cellular networks using Random Neural Networks. IWCMC 2016: 351-356 - [c57]Sarah Wassermann, Pedro Casas, Benoit Donnet, Guy Leduc, Marco Mellia
:
On the Analysis of Internet Paths with DisNETPerf, a Distributed Paths Performance Analyzer. LCN Workshops 2016: 72-79 - [c56]Pedro Casas, Pierdomenico Fiadino, Alessandro D'Alconzo:
When smartphones become the enemy: unveiling mobile apps anomalies through clustering techniques. ATC@MobiCom 2016: 19-24 - [c55]Pedro Casas, Alessandro D'Alconzo, Tanja Zseby, Marco Mellia:
Big-DAMA: Big Data Analytics for Network Traffic Monitoring and Analysis. LANCOMM@SIGCOMM 2016: 1-3 - [c54]Pedro Casas, Bruno Gardlo, Raimund Schatz, Marco Mellia:
An Educated Guess on QoE in Operational Networks through Large-Scale Measurements. Internet-QoE@SIGCOMM 2016: 1-6 - [c53]Agustin Formoso, Pedro Casas:
Looking for Network Latency Clusters in the LAC Region. LANCOMM@SIGCOMM 2016: 10-12 - [c52]Juan Martin Vanerio, Pedro Casas:
WhatsApp Calling: a Revised Analysis on WhatsApp's Architecture and Calling Service. LANCOMM@SIGCOMM 2016: 13-15 - [c51]Pedro Casas, Pierdomenico Fiadino, Alessandro D'Alconzo:
Machine-Learning Based Approaches for Anomaly Detection and Classification in Cellular Networks. TMA 2016 - [e2]Pedro Casas, Fabián E. Bustamante, Martín Varela, David R. Choffnes:
Proceedings of the 2016 workshop on QoE-based Analysis and Management of Data Communication Networks, Internet-QoE@SIGCOMM 2016, Florianopolis, Brazil, August 22-26, 2016. ACM 2016, ISBN 978-1-4503-4425-8 [contents] - [e1]Pedro Casas, Rosa M. M. Leão, Fernando Paganini, J. Ignacio Alvarez-Hamelin, Javier Bustos-Jiménez:
Proceedings of the 2016 workshop on Fostering Latin-American Research in Data Communication Networks, LANCOMM@SIGCOMM 2016, Florianopolis, Brazil, August 22-26, 2016. ACM 2016, ISBN 978-1-4503-4426-5 [contents] - 2015
- [j11]Johan Mazel, Pedro Casas, Romain Fontugne, Kensuke Fukuda, Philippe Owezarski:
Hunting attacks in the dark: clustering and correlation analysis for unsupervised anomaly detection. Int. J. Netw. Manag. 25(5): 283-305 (2015) - [c50]Pedro Casas, Bruno Gardlo, Michael Seufert, Florian Wamser, Raimund Schatz:
Taming QoE in cellular networks: From subjective lab studies to measurements in the field. CNSM 2015: 237-245 - [c49]Florian Wamser, Michael Seufert, Pedro Casas, Ralf Irmer, Phuoc Tran-Gia, Raimund Schatz:
YoMoApp: A tool for analyzing QoE of YouTube HTTP adaptive streaming in mobile networks. EuCNC 2015: 239-243 - [c48]Pedro Casas, Pierdomenico Fiadino, Mirko Schiavone:
QoMOSN - On the analysis of traffic and Quality of Experience in Mobile Online Social Networks. EuCNC 2015: 471-475 - [c47]Arian Bär, Philipp Svoboda
, Pedro Casas:
MTRAC - discovering M2M devices in cellular networks from coarse-grained measurements. ICC 2015: 667-672 - [c46]Pedro Casas, Andreas Sackl
, Raimund Schatz, Lucjan Janowski, John Turk, Ralf Irmer:
On the quest for new KPIs in mobile networks: The impact of throughput fluctuations on QoE. ICC Workshops 2015: 1705-1710 - [c45]Arian Bär, Lukasz Golab, Stefan Ruehrup, Mirko Schiavone, Pedro Casas:
Cache-oblivious scheduling of shared workloads. ICDE 2015: 855-866 - [c44]Pedro Casas, Martín Varela, Pierdomenico Fiadino, Mirko Schiavone, Helena Rivas, Raimund Schatz:
On the analysis of QoE in cellular networks: From subjective tests to large-scale traffic measurements. IWCMC 2015: 37-42 - [c43]Michael Seufert, Florian Wamser, Pedro Casas, Ralf Irmer, Phuoc Tran-Gia, Raimund Schatz:
YouTube QoE on mobile devices: Subjective analysis of classical vs. adaptive video streaming. IWCMC 2015: 43-48 - [c42]Pierdomenico Fiadino, Alessandro D'Alconzo, Mirko Schiavone, Pedro Casas:
Towards automatic detection and diagnosis of Internet service anomalies via DNS traffic analysis. IWCMC 2015: 373-378 - [c41]Michael Seufert, Florian Wamser, Pedro Casas, Ralf Irmer, Phuoc Tran-Gia, Raimund Schatz:
Demo: On the Monitoring of YouTube QoE in Cellular Networks from End-devices. S3@MobiCom 2015: 23 - [c40]Florian Wamser
, Michael Seufert, Pedro Casas, Ralf Irmer, Phuoc Tran-Gia, Raimund Schatz:
Poster: Understanding YouTube QoE in Cellular Networks with YoMoApp: A QoE Monitoring Tool for YouTube Mobile. MobiCom 2015: 263-265 - [c39]Pierdomenico Fiadino, Pedro Casas, Mirko Schiavone, Alessandro D'Alconzo:
Online Social Networks anatomy: On the analysis of Facebook and WhatsApp in cellular networks. Networking 2015: 1-9 - [c38]Andreas Sackl
, Pedro Casas, Raimund Schatz, Lucjan Janowski, Ralf Irmer:
Quantifying the impact of network bandwidth fluctuations and outages on Web QoE. QoMEX 2015: 1-6 - [c37]Pedro Casas, Raimund Schatz, Florian Wamser, Michael Seufert, Ralf Irmer:
Exploring QoE in Cellular Networks: How Much Bandwidth do you Need for Popular Smartphone Apps? AllThingsCellular@SIGCOMM 2015: 13-18 - [c36]Pierdomenico Fiadino, Alessandro D'Alconzo, Mirko Schiavone, Pedro Casas:
Challenging Entropy-based Anomaly Detection and Diagnosis in Cellular Networks. SIGCOMM 2015: 87-88 - [c35]Pierdomenico Fiadino, Alessandro D'Alconzo, Mirko Schiavone, Pedro Casas:
RCATool - A Framework for Detecting and Diagnosing Anomalies in Cellular Networks. International Teletraffic Congress 2015: 194-202 - [c34]Pierdomenico Fiadino, Mirko Schiavone, Pedro Casas:
Vivisecting WhatsApp in Cellular Networks: Servers, Flows, and Quality of Experience. TMA 2015: 49-63 - 2014
- [j10]Brian Trammell, Pedro Casas, Dario Rossi, Arian Bär, Zied Ben-Houidi, Ilias Leontiadis, Tivadar Szemethy, Marco Mellia
:
mPlane: an intelligent measurement plane for the internet. IEEE Commun. Mag. 52(5): 148-156 (2014) - [j9]