


Остановите войну!
for scientists:
Bernhard Sick
Person information

- affiliation: University of Kassel, Germany
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2022
- [j47]Christian Krupitzer
, Christian Gruhl, Bernhard Sick, Sven Tomforde:
Proactive hybrid learning and optimisation in self-adaptive systems: The swarm-fleet infrastructure scenario. Inf. Softw. Technol. 145: 106826 (2022) - [j46]Claude Draude, Christian Gruhl, Gerrit Hornung, Jonathan Kropf, Jörn Lamla, Jan Marco Leimeister, Bernhard Sick, Gerd Stumme:
Social Machines. Inform. Spektrum 45(1): 38-42 (2022) - [j45]Adrian Englhardt
, Holger Trittenbach, Daniel Kottke, Bernhard Sick, Klemens Böhm:
Efficient SVDD sampling with approximation guarantees for the decision boundary. Mach. Learn. 111(4): 1349-1375 (2022) - [j44]Tuan Pham, Daniel Kottke, Georg Krempl, Bernhard Sick:
Stream-based active learning for sliding windows under the influence of verification latency. Mach. Learn. 111(6): 2011-2036 (2022) - [c136]Stefan Zernetsch, Hannes Reichert, Viktor Kress, Konrad Doll, Bernhard Sick:
A Holistic View on Probabilistic Trajectory Forecasting - Case Study. Cyclist Intention Detection. IV 2022: 265-272 - [i51]Yujiang He, Zhixin Huang, Bernhard Sick:
Design of Explainability Module with Experts in the Loop for Visualization and Dynamic Adjustment of Continual Learning. CoRR abs/2202.06781 (2022) - [i50]Stephan Vogt, Jens Schreiber, Bernhard Sick:
Synthetic Photovoltaic and Wind Power Forecasting Data. CoRR abs/2204.00411 (2022) - [i49]Jens Schreiber, Bernhard Sick:
Model Selection, Adaptation, and Combination for Deep Transfer Learning through Neural Networks in Renewable Energies. CoRR abs/2204.13293 (2022) - [i48]Jens Schreiber, Stephan Vogt, Bernhard Sick:
Task Embedding Temporal Convolution Networks for Transfer Learning Problems in Renewable Power Time-Series Forecast. CoRR abs/2204.13908 (2022) - 2021
- [j43]Marek Herde
, Denis Huseljic
, Bernhard Sick
, Adrian Calma
:
A Survey on Cost Types, Interaction Schemes, and Annotator Performance Models in Selection Algorithms for Active Learning in Classification. IEEE Access 9: 166970-166989 (2021) - [j42]Kristina Dingel
, Rico Huhnstock, André Knie
, Arno Ehresmann
, Bernhard Sick
:
AdaPT: Adaptable Particle Tracking for spherical microparticles in lab on chip systems. Comput. Phys. Commun. 262: 107859 (2021) - [j41]Christian Gruhl, Bernhard Sick
, Sven Tomforde:
Novelty detection in continuously changing environments. Future Gener. Comput. Syst. 114: 138-154 (2021) - [j40]Sarah Oeste-Reiß, Eva A. C. Bittner, Izabel Cvetkovic, Andreas Günther, Jan Marco Leimeister, Lucas Memmert, Anja Ott, Bernhard Sick, Kathrin Wolter:
Hybride Wissensarbeit. Inform. Spektrum 44(3): 148-152 (2021) - [j39]Daniel Kottke
, Marek Herde, Christoph Sandrock, Denis Huseljic, Georg Krempl, Bernhard Sick:
Toward optimal probabilistic active learning using a Bayesian approach. Mach. Learn. 110(6): 1199-1231 (2021) - [c135]Diego Botache, Florian Bethke, Martin Hardieck, Maarten Bieshaar, Ludwig Brabetz, Mohamed Ayeb, Peter Zipf, Bernhard Sick:
Towards Highly Automated Machine-Learning-Empowered Monitoring of Motor Test Stands. ACSOS 2021: 120-130 - [c134]Kristina Dingel
, A. Liehr, M. Vogel, S. Degener, David Meier, Thoralf Niendorf, Arno Ehresmann, Bernhard Sick:
AI - Based On The Fly Design of Experiments in Physics and Engineering. ACSOS-C 2021: 150-153 - [c133]Abdul Hannan, Christian Gruhl, Bernhard Sick:
Anomaly based Resilient Network Intrusion Detection using Inferential Autoencoders. CSR 2021: 1-7 - [c132]Felix Möller, Diego Botache, Denis Huseljic, Florian Heidecker, Maarten Bieshaar, Bernhard Sick:
Out-of-Distribution Detection and Generation Using Soft Brownian Offset Sampling and Autoencoders. CVPR Workshops 2021: 46-55 - [c131]Matthias Reuse, Martin Simon, Bernhard Sick:
About the Ambiguity of Data Augmentation for 3D Object Detection in Autonomous Driving. ICCVW 2021: 979-987 - [c130]Daniel Bogdoll, Jasmin Breitenstein, Florian Heidecker, Maarten Bieshaar, Bernhard Sick, Tim Fingscheidt, J. Marius Zöllner:
Description of Corner Cases in Automated Driving: Goals and Challenges. ICCVW 2021: 1023-1028 - [c129]Yujiang He, Zhixin Huang, Bernhard Sick:
Toward Application of Continuous Power Forecasts in a Regional Flexibility Market. IJCNN 2021: 1-8 - [c128]Manuel Hetzel, Hannes Reichert, Konrad Doll, Bernhard Sick:
Smart Infrastructure: A Research Junction. ISC2 2021: 1-4 - [c127]Hannes Reichert, Lukas Lang, Kevin Rösch, Daniel Bogdoll, Konrad Doll, Bernhard Sick, Hans-Christian Reuss, Christoph Stiller, J. Marius Zöllner:
Towards Sensor Data Abstraction of Autonomous Vehicle Perception Systems. ISC2 2021: 1-4 - [c126]Stefan Zernetsch, Oliver Trupp, Viktor Kress, Konrad Doll, Bernhard Sick:
Cyclist Trajectory Forecasts by Incorporation of Multi-View Video Information. ISC2 2021: 1-7 - [c125]Jan Schneegans, Jan Eilbrecht, Stefan Zernetsch, Maarten Bieshaar, Konrad Doll, Olaf Stursberg, Bernhard Sick:
Probabilistic VRU Trajectory Forecasting for Model-Predictive Planning A Case Study: Overtaking Cyclists. IV Workshops 2021: 272-279 - [c124]Florian Heidecker, Jasmin Breitenstein, Kevin Rösch, Jonas Löhdefink, Maarten Bieshaar, Christoph Stiller, Tim Fingscheidt, Bernhard Sick:
An Application-Driven Conceptualization of Corner Cases for Perception in Highly Automated Driving. IV 2021: 644-651 - [c123]Jens Schreiber
, Stephan Vogt
, Bernhard Sick
:
Task Embedding Temporal Convolution Networks for Transfer Learning Problems in Renewable Power Time Series Forecast. ECML/PKDD (4) 2021: 118-134 - [c122]Maarten Bieshaar, Stefan Zernetsch, Katharina Riepe, Konrad Doll, Bernhard Sick:
Cyclist Motion State Forecasting - Going beyond Detection. SSCI 2021: 1-8 - [i47]Yujiang He, Bernhard Sick:
CLeaR: An Adaptive Continual Learning Framework for Regression Tasks. CoRR abs/2101.00926 (2021) - [i46]Florian Heidecker, Jasmin Breitenstein, Kevin Rösch, Jonas Löhdefink, Maarten Bieshaar, Christoph Stiller, Tim Fingscheidt, Bernhard Sick:
An Application-Driven Conceptualization of Corner Cases for Perception in Highly Automated Driving. CoRR abs/2103.03678 (2021) - [i45]Stefan Zernetsch, Hannes Reichert, Viktor Kress, Konrad Doll, Bernhard Sick:
Cyclist Intention Detection: A Probabilistic Approach. CoRR abs/2104.09176 (2021) - [i44]Felix Möller, Diego Botache, Denis Huseljic, Florian Heidecker, Maarten Bieshaar, Bernhard Sick:
Out-of-distribution Detection and Generation using Soft Brownian Offset Sampling and Autoencoders. CoRR abs/2105.02965 (2021) - [i43]Hannes Reichert, Lukas Lang, Kevin Rösch, Daniel Bogdoll, Konrad Doll, Bernhard Sick, Hans-Christian Reuss, Christoph Stiller, J. Marius Zöllner:
Towards Sensor Data Abstraction of Autonomous Vehicle Perception Systems. CoRR abs/2105.06896 (2021) - [i42]Viktor Kress, Fabian Jeske, Stefan Zernetsch, Konrad Doll, Bernhard Sick:
Pose and Semantic Map Based Probabilistic Forecast of Vulnerable Road Users' Trajectories. CoRR abs/2106.02598 (2021) - [i41]Stefan Zernetsch, Oliver Trupp, Viktor Kress, Konrad Doll, Bernhard Sick:
Cyclist Trajectory Forecasts by Incorporation of Multi-View Video Information. CoRR abs/2106.15991 (2021) - [i40]Daniel Kottke, Georg Krempl, Marianne Stecklina, Cornelius Styp von Rekowski, Tim Sabsch, Tuan Pham Minh, Matthias Deliano, Myra Spiliopoulou, Bernhard Sick:
Probabilistic Active Learning for Active Class Selection. CoRR abs/2108.03891 (2021) - [i39]Kristina Dingel, Thorsten Otto, Lutz Marder, Lars Funke, Arne Held, Sara Savio, Andreas Hans, Gregor Hartmann, David Meier, Jens Viefhaus, Bernhard Sick, Arno Ehresmann, Markus Ilchen, Wolfram Helml:
Toward AI-enhanced online-characterization and shaping of ultrashort X-ray free-electron laser pulses. CoRR abs/2108.13979 (2021) - [i38]Daniel Bogdoll, Jasmin Breitenstein, Florian Heidecker, Maarten Bieshaar, Bernhard Sick, Tim Fingscheidt, J. Marius Zöllner:
Description of Corner Cases in Automated Driving: Goals and Challenges. CoRR abs/2109.09607 (2021) - [i37]Marek Herde, Denis Huseljic, Bernhard Sick, Adrian Calma:
A Survey on Cost Types, Interaction Schemes, and Annotator Performance Models in Selection Algorithms for Active Learning in Classification. CoRR abs/2109.11301 (2021) - [i36]Inga Löser, Martin Braun, Christian Gruhl, Jan-Hendrik Menke, Bernhard Sick, Sven Tomforde:
Towards Organic Distribution Systems - The Vision of Self-Configuring, Self-Organising, Self-Healing, and Self-Optimising Power Distribution Management. CoRR abs/2112.07507 (2021) - 2020
- [j38]Michael Goldhammer, Sebastian Köhler
, Stefan Zernetsch
, Konrad Doll
, Bernhard Sick
, Klaus Dietmayer:
Intentions of Vulnerable Road Users - Detection and Forecasting by Means of Machine Learning. IEEE Trans. Intell. Transp. Syst. 21(7): 3035-3045 (2020) - [c121]Christian Gruhl, Jörn Schmeißing, Sven Tomforde, Bernhard Sick
:
Normal-Wishart Clustering for Novelty Detection. ACSOS Companion 2020: 64-69 - [c120]Sven Tomforde, Christian Gruhl, Bernhard Sick
:
A Swarm-fleet Infrastructure as a Scenario for Proactive, Hybrid Adaptation of System Behaviour. ACSOS Companion 2020: 166-169 - [c119]Nicolas Scheiner, Florian Kraus, Fangyin Wei, Buu Phan, Fahim Mannan, Nils Appenrodt, Werner Ritter, Jürgen Dickmann, Klaus Dietmayer, Bernhard Sick
, Felix Heide:
Seeing Around Street Corners: Non-Line-of-Sight Detection and Tracking In-the-Wild Using Doppler Radar. CVPR 2020: 2065-2074 - [c118]Nicolas Scheiner, Ole Schumann
, Florian Kraus, Nils Appenrodt, Jürgen Dickmann, Bernhard Sick
:
Off-the-shelf sensor vs. experimental radar - How much resolution is necessary in automotive radar classification? FUSION 2020: 1-8 - [c117]Viktor Kress, Stefan Zernetsch, Konrad Doll, Bernhard Sick:
Pose Based Trajectory Forecast of Vulnerable Road Users Using Recurrent Neural Networks. ICPR Workshops (1) 2020: 57-71 - [c116]Florian Heidecker, Abdul Hannan, Maarten Bieshaar, Bernhard Sick:
Towards Corner Case Detection by Modeling the Uncertainty of Instance Segmentation Networks. ICPR Workshops (4) 2020: 361-374 - [c115]Jan Schneegans, Maarten Bieshaar, Florian Heidecker, Bernhard Sick:
Intelligent and Interactive Video Annotation for Instance Segmentation Using Siamese Neural Networks. ICPR Workshops (4) 2020: 375-389 - [c114]Florian Heidecker, Christian Gruhl, Bernhard Sick:
Novelty Based Driver Identification on RR Intervals from ECG Data. ICPR Workshops (4) 2020: 407-421 - [c113]Stefan Zernetsch, Steven Schreck, Viktor Kress, Konrad Doll, Bernhard Sick:
Image Sequence Based Cyclist Action Recognition Using Multi-Stream 3D Convolution. ICPR 2020: 2620-2626 - [c112]Jens Schreiber, Bernhard Sick:
Emerging Relation Network and Task Embedding for Multi-Task Regression Problems. ICPR 2020: 2663-2670 - [c111]Denis Huseljic, Bernhard Sick, Marek Herde, Daniel Kottke:
Separation of Aleatoric and Epistemic Uncertainty in Deterministic Deep Neural Networks. ICPR 2020: 9172-9179 - [c110]Christian Haase-Schütz, Rainer Stal, Heinz Hertlein, Bernhard Sick:
Iterative Label Improvement: Robust Training by Confidence Based Filtering and Dataset Partitioning. ICPR 2020: 9483-9490 - [c109]Marek Herde, Daniel Kottke, Denis Huseljic, Bernhard Sick:
Multi-Annotator Probabilistic Active Learning. ICPR 2020: 10281-10288 - [c108]Yujiang He, Janosch Henze, Bernhard Sick
:
Forecasting Power Grid States for Regional Energy Markets with Deep Neural Networks. IJCNN 2020: 1-8 - [c107]Tuan Pham Minh, Daniel Kottke, Anna Tsarenko, Christian Gruhl, Bernhard Sick
:
Improving Self-Adaptation For Multi-Sensor Activity Recognition with Active Learning. IJCNN 2020: 1-8 - [c106]Viktor Kress
, Steven Schreck, Stefan Zernetsch, Konrad Doll, Bernhard Sick
:
Pose Based Action Recognition of Vulnerable Road Users Using Recurrent Neural Networks. SSCI 2020: 2723-2730 - [i35]Christian Haase-Schütz
, Rainer Stal, Heinz Hertlein, Bernhard Sick:
Trust Your Model: Iterative Label Improvement and Robust Training by Confidence Based Filtering and Dataset Partitioning. CoRR abs/2002.02705 (2020) - [i34]Stephan Deist, Jens Schreiber, Maarten Bieshaar, Bernhard Sick:
Extended Coopetitive Soft Gating Ensemble. CoRR abs/2004.14026 (2020) - [i33]Jens Schreiber, Bernhard Sick:
Emerging Relation Network and Task Embedding for Multi-Task Regression Problems. CoRR abs/2004.14034 (2020) - [i32]Daniel Kottke, Marek Herde, Christoph Sandrock, Denis Huseljic, Georg Krempl, Bernhard Sick:
Toward Optimal Probabilistic Active Learning Using a Bayesian Approach. CoRR abs/2006.01732 (2020) - [i31]Nicolas Scheiner, Ole Schumann, Florian Kraus, Nils Appenrodt, Jürgen Dickmann, Bernhard Sick:
Off-the-shelf sensor vs. experimental radar - How much resolution is necessary in automotive radar classification? CoRR abs/2006.05485 (2020) - [i30]Adrian Englhardt, Holger Trittenbach, Daniel Kottke, Bernhard Sick, Klemens Böhm:
Efficient SVDD Sampling with Approximation Guarantees for the Decision Boundary. CoRR abs/2009.13853 (2020) - [i29]Maarten Bieshaar, Jens Schreiber, Stephan Vogt, André Gensler, Bernhard Sick:
Quantile Surfaces - Generalizing Quantile Regression to Multivariate Targets. CoRR abs/2010.05898 (2020)
2010 – 2019
- 2019
- [c105]Viktor Kress
, Janis Jung, Stefan Zernetsch, Konrad Doll, Bernhard Sick
:
Start Intention Detection of Cyclists using an LSTM Network. GI-Jahrestagung (Workshops) 2019: 219-228 - [c104]Diego Botache, Dandan Liu, Maarten Bieshaar, Bernhard Sick:
Early Pedestrian Movement Detection Using Smart Devices Based on Human Activity Recognition. GI-Jahrestagung (Workshops) 2019: 229-238 - [c103]Immanuel König, Erik Heilmann, Janosch Henze, Klaus David, Heike Wetzel, Bernhard Sick
:
Using grid supporting flexibility in electricity distribution networks. GI-Jahrestagung 2019: 531-544 - [c102]Jens Schreiber, Artjom Buschin, Bernhard Sick
:
Influences in Forecast Errors for Wind and Photovoltaic Power: A Study on Machine Learning Models. GI-Jahrestagung 2019: 585-598 - [c101]Jens Schreiber
, Maik Jessulat, Bernhard Sick
:
Generative Adversarial Networks for Operational Scenario Planning of Renewable Energy Farms: A Study on Wind and Photovoltaic. ICANN (3) 2019: 550-564 - [c100]Christoph Sandrock, Marek Herde, Adrian Calma, Daniel Kottke, Bernhard Sick
:
Combining Self-reported Confidences from Uncertain Annotators to Improve Label Quality. IJCNN 2019: 1-8 - [c99]Nicolas Scheiner
, Nils Appenrodt, Jürgen Dickmann, Bernhard Sick
:
A Multi-Stage Clustering Framework for Automotive Radar Data. ITSC 2019: 2060-2067 - [c98]Viktor Kress
, Janis Jung, Stefan Zernetsch, Konrad Doll, Bernhard Sick
:
Pose Based Start Intention Detection of Cyclists. ITSC 2019: 2381-2386 - [c97]Nicolas Scheiner
, Nils Appenrodt, Jürgen Dickmann, Bernhard Sick
:
Radar-based Road User Classification and Novelty Detection with Recurrent Neural Network Ensembles. IV 2019: 722-729 - [c96]Stefan Zernetsch, Hannes Reichert, Viktor Kress
, Konrad Doll, Bernhard Sick
:
Trajectory Forecasts with Uncertainties of Vulnerable Road Users by Means of Neural Networks. IV 2019: 810-815 - [c95]Viktor Kress
, Stefan Zernetsch, Konrad Doll, Bernhard Sick
:
Pose Based Trajectory Forecast of Vulnerable Road Users. SSCI 2019: 1200-1207 - [e5]Claude Draude, Martin Lange, Bernhard Sick:
49. Jahrestagung der Gesellschaft für Informatik, 50 Jahre Gesellschaft für Informatik - Informatik für Gesellschaft, INFORMATIK 2019 - Workshops, Kassel, Germany, September 23-26, 2019. LNI P-295, GI 2019, ISBN 978-3-88579-689-3 [contents] - [i28]Daniel Kottke, Jim Schellinger, Denis Huseljic, Bernhard Sick:
Limitations of Assessing Active Learning Performance at Runtime. CoRR abs/1901.10338 (2019) - [i27]Tom Hanika, Marek Herde, Jochen Kuhn, Jan Marco Leimeister, Paul Lukowicz, Sarah Oeste-Reiß, Albrecht Schmidt, Bernhard Sick, Gerd Stumme, Sven Tomforde, Katharina Anna Zweig:
Collaborative Interactive Learning - A clarification of terms and a differentiation from other research fields. CoRR abs/1905.07264 (2019) - [i26]Nicolas Scheiner, Nils Appenrodt, Jürgen Dickmann, Bernhard Sick:
Automated Ground Truth Estimation of Vulnerable Road Users in Automotive Radar Data Using GNSS. CoRR abs/1905.11219 (2019) - [i25]Nicolas Scheiner, Nils Appenrodt, Jürgen Dickmann, Bernhard Sick:
Radar-based Feature Design and Multiclass Classification for Road User Recognition. CoRR abs/1905.11256 (2019) - [i24]Nicolas Scheiner, Nils Appenrodt, Jürgen Dickmann, Bernhard Sick:
Radar-based Road User Classification and Novelty Detection with Recurrent Neural Network Ensembles. CoRR abs/1905.11703 (2019) - [i23]Nicolas Scheiner, Stefan Haag, Nils Appenrodt, Bharanidhar Duraisamy, Jürgen Dickmann, Martin Fritzsche, Bernhard Sick:
Automated Ground Truth Estimation For Automotive Radar Tracking Applications With Portable GNSS And IMU Devices. CoRR abs/1905.11987 (2019) - [i22]Jens Schreiber, Artjom Buschin, Bernhard Sick:
Influences in Forecast Errors for Wind and Photovoltaic Power: A Study on Machine Learning Models. CoRR abs/1905.13668 (2019) - [i21]Jens Schreiber, Maik Jessulat, Bernhard Sick:
Generative Adversarial Networks for Operational Scenario Planning of Renewable Energy Farms: A Study on Wind and Photovoltaic. CoRR abs/1906.00662 (2019) - [i20]Nicolas Scheiner, Nils Appenrodt, Jürgen Dickmann, Bernhard Sick:
A Multi-Stage Clustering Framework for Automotive Radar Data. CoRR abs/1907.03511 (2019) - [i19]Nicolas Scheiner
, Florian Kraus, Fangyin Wei, Buu Phan, Fahim Mannan, Nils Appenrodt, Werner Ritter, Jürgen Dickmann, Klaus Dietmayer, Bernhard Sick, Felix Heide:
Seeing Around Street Corners: Non-Line-of-Sight Detection and Tracking In-the-Wild Using Doppler Radar. CoRR abs/1912.06613 (2019) - 2018
- [j37]Sebastian Breker, Jan Rentmeister
, Bernhard Sick
, Martin Braun
:
Hosting capacity of low-voltage grids for distributed generation: Classification by means of machine learning techniques. Appl. Soft Comput. 70: 195-207 (2018) - [j36]Martin Jänicke
, Bernhard Sick
, Sven Tomforde:
Self-Adaptive Multi-Sensor Activity Recognition Systems Based on Gaussian Mixture Models. Informatics 5(3): 38 (2018) - [j35]Bernhard Sick
, Sarah Oeste-Reiß
, Albrecht Schmidt
, Sven Tomforde, Katharina Anna Zweig:
Collaborative Interactive Learning. Inform. Spektrum 41(1): 52-55 (2018) - [j34]Adrian Calma, Tobias Reitmaier
, Bernhard Sick
:
Semi-supervised active learning for support vector machines: A novel approach that exploits structure information in data. Inf. Sci. 456: 13-33 (2018) - [j33]Christian Gruhl, Bernhard Sick
:
Novelty detection with CANDIES: a holistic technique based on probabilistic models. Int. J. Mach. Learn. Cybern. 9(6): 927-945 (2018) - [j32]Andre Gensler
, Bernhard Sick
:
Performing event detection in time series with SwiftEvent: an algorithm with supervised learning of detection criteria. Pattern Anal. Appl. 21(2): 543-562 (2018) - [j31]Sven Tomforde, Jan Kantert, Christian Müller-Schloer, Sebastian Bödelt, Bernhard Sick
:
Comparing the Effects of Disturbances in Self-adaptive Systems - A Generalised Approach for the Quantification of Robustness. Trans. Comput. Collect. Intell. 28: 193-220 (2018) - [j30]Maarten Bieshaar
, Stefan Zernetsch
, Andreas Hubert, Bernhard Sick
, Konrad Doll
:
Cooperative Starting Movement Detection of Cyclists Using Convolutional Neural Networks and a Boosted Stacking Ensemble. IEEE Trans. Intell. Veh. 3(4): 534-544 (2018) - [c94]Maarten Bieshaar, Malte Depping, Jan Schneegans, Bernhard Sick
:
Starting Movement Detection of Cyclists Using Smart Devices. DSAA 2018: 313-322 - [c93]Adrian Calma, Sarah Oeste-Reiß, Bernhard Sick, Jan Marco Leimeister:
Leveraging the Potentials of Dedicated Collaborative Interactive Learning: Conceptual Foundations to Overcome Uncertainty by Human-Machine Collaboration. HICSS 2018: 1-9 - [c92]Martin Jänicke, Viktor Schmidt, Bernhard Sick
, Sven Tomforde, Paul Lukowicz:
Hijacked Smart Devices - Methodical Foundations for Autonomous Theft Awareness based on Activity Recognition and Novelty Detection. ICAART (2) 2018: 131-142 - [c91]Martin Jänicke, Viktor Schmidt, Bernhard Sick
, Sven Tomforde, Paul Lukowicz, Jörn Schmeißing:
Smart Device Stealing and CANDIES. ICAART (Revised Selected Papers) 2018: 247-273 - [c90]Adrian Calma, Moritz Stolz, Daniel Kottke, Sven Tomforde, Bernhard Sick
:
Active Learning With Realistic Data - A Case Study. IJCNN 2018: 1-8 - [c89]Marek Herde, Daniel Kottke, Adrian Calma, Maarten Bieshaar, Stephan Deist, Bernhard Sick
:
Active Sorting - An Efficient Training of a Sorting Robot with Active Learning Techniques. IJCNN 2018: 1-8 - [c88]Daniel Kottke, Adrian Calma, Denis Huseljic, Christoph Sandrock, George Kachergis, Bernhard Sick
:
The Other Human in The Loop - A Pilot Study to Find Selection Strategies for Active Learning. IJCNN 2018: 1-8 - [c87]Günther Reitberger, Maarten Bieshaar, Stefan Zernetsch, Konrad Doll, Bernhard Sick
, Erich Fuchs:
Cooperative Tracking of Cyclists Based on Smart Devices and Infrastructure. ITSC 2018: 436-443 - [c86]Stefan Zernetsch, Viktor Kress
, Bernhard Sick
, Konrad Doll:
Early Start Intention Detection of Cyclists Using Motion History Images and a Deep Residual Network. Intelligent Vehicles Symposium 2018: 1-6 - [c85]Nicolas Scheiner
, Nils Appenrodt, Jürgen Dickmann, Bernhard Sick
:
Radar-based Feature Design and Multiclass Classification for Road User Recognition. Intelligent Vehicles Symposium 2018: 779-786 - [c84]Andreas Jahn, Sven Tomforde, Michel Morold, Klaus David, Bernhard Sick:
Towards Cooperative Self-adapting Activity Recognition. PECCS 2018: 215-222 - [c83]Janosch Henze
, Stephan Kutzner, Bernhard Sick
:
Sampling Strategies for Representative Time Series in Load Flow Calculations. DARE@PKDD/ECML 2018: 27-48 - [c82]Henner Heck, Bernhard Sick
, Sven Tomforde:
Security Issues in Self-Improving System Integration - Challenges and Solution Strategies. FAS*W@SASO/ICAC 2018: 176-181 - [c81]Jens Schreiber, Maarten Bieshaar, Andre Gensler, Bernhard Sick
, Stephan Deist:
Coopetitive Soft Gating Ensemble. FAS*W@SASO/ICAC 2018: 190-197 - [c80]Christian Gruhl, Sven Tomforde, Bernhard Sick
:
Aspects of Measuring and Evaluating the Integration Status of a (Sub-)System at Runtime. FAS*W@SASO/ICAC 2018: 198-203 - [c79]Viktor Kress
, Janis Jung, Stefan Zernetsch, Konrad Doll, Bernhard Sick
:
Human Pose Estimation in Real Traffic Scenes. SSCI 2018: 518-523 - [e4]Georg Krempl, Vincent Lemaire, Daniel Kottke, Adrian Calma, Andreas Holzinger, Robi Polikar, Bernhard Sick:
Proceedings of the Workshop on Interactive Adaptive Learning co-located with European Conference on Machine Learning (ECML 2018) and Principles and Practice of Knowledge Discovery in Databases (PKDD 2018), Dublin, Ireland, September 10th, 2018. CEUR Workshop Proceedings 2192, CEUR-WS.org 2018 [contents] - [i18]Günther Reitberger, Stefan Zernetsch, Maarten Bieshaar, Bernhard Sick, Konrad Doll, Erich Fuchs:
Cooperative Tracking of Cyclists Based on Smart Devices and Infrastructure. CoRR abs/1803.02096 (2018) - [i17]Stefan Zernetsch, Viktor Kress, Bernhard Sick, Konrad Doll:
Early Start Intention Detection of Cyclists Using Motion History Images and a Deep Residual Network. CoRR abs/1803.02242 (2018) - [i16]Maarten Bieshaar, Günther Reitberger, Viktor Kreß, Stefan Zernetsch, Konrad Doll, Erich Fuchs, Bernhard Sick:
Highly Automated Learning for Improved Active Safety of Vulnerable Road Users. CoRR abs/1803.03479 (2018) - [i15]