
Ofir Nachum
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2021
- [i37]Mengjiao Yang, Ofir Nachum:
Representation Matters: Offline Pretraining for Sequential Decision Making. CoRR abs/2102.05815 (2021) - [i36]Ilya Kostrikov, Jonathan Tompson, Rob Fergus, Ofir Nachum:
Offline Reinforcement Learning with Fisher Divergence Critic Regularization. CoRR abs/2103.08050 (2021) - [i35]Aldo Pacchiano, Jonathan N. Lee, Peter L. Bartlett, Ofir Nachum:
Near Optimal Policy Optimization via REPS. CoRR abs/2103.09756 (2021) - [i34]Hiroki Furuta, Tatsuya Matsushima, Tadashi Kozuno, Yutaka Matsuo, Sergey Levine, Ofir Nachum, Shixiang Shane Gu:
Policy Information Capacity: Information-Theoretic Measure for Task Complexity in Deep Reinforcement Learning. CoRR abs/2103.12726 (2021) - [i33]Justin Fu, Mohammad Norouzi, Ofir Nachum, George Tucker, Ziyu Wang, Alexander Novikov, Mengjiao Yang, Michael R. Zhang, Yutian Chen, Aviral Kumar, Cosmin Paduraru, Sergey Levine, Tom Le Paine:
Benchmarks for Deep Off-Policy Evaluation. CoRR abs/2103.16596 (2021) - 2020
- [c21]Heinrich Jiang, Ofir Nachum:
Identifying and Correcting Label Bias in Machine Learning. AISTATS 2020: 702-712 - [c20]Ilya Kostrikov, Ofir Nachum, Jonathan Tompson:
Imitation Learning via Off-Policy Distribution Matching. ICLR 2020 - [c19]Sungryull Sohn, Yinlam Chow, Jayden Ooi, Ofir Nachum, Honglak Lee, Ed Chi, Craig Boutilier:
BRPO: Batch Residual Policy Optimization. IJCAI 2020: 2824-2830 - [c18]Bo Dai, Ofir Nachum, Yinlam Chow, Lihong Li, Csaba Szepesvári, Dale Schuurmans:
CoinDICE: Off-Policy Confidence Interval Estimation. NeurIPS 2020 - [c17]Mengjiao Yang, Ofir Nachum, Bo Dai, Lihong Li, Dale Schuurmans:
Off-Policy Evaluation via the Regularized Lagrangian. NeurIPS 2020 - [i32]Ofir Nachum, Bo Dai:
Reinforcement Learning via Fenchel-Rockafellar Duality. CoRR abs/2001.01866 (2020) - [i31]Sungryull Sohn, Yinlam Chow, Jayden Ooi, Ofir Nachum, Honglak Lee, Ed Chi, Craig Boutilier:
BRPO: Batch Residual Policy Optimization. CoRR abs/2002.05522 (2020) - [i30]Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, Sergey Levine:
D4RL: Datasets for Deep Data-Driven Reinforcement Learning. CoRR abs/2004.07219 (2020) - [i29]Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, Shixiang Gu:
Deployment-Efficient Reinforcement Learning via Model-Based Offline Optimization. CoRR abs/2006.03647 (2020) - [i28]Çaglar Gülçehre, Ziyu Wang, Alexander Novikov, Tom Le Paine, Sergio Gómez Colmenarejo, Konrad Zolna, Rishabh Agarwal, Josh Merel, Daniel J. Mankowitz, Cosmin Paduraru, Gabriel Dulac-Arnold, Jerry Li, Mohammad Norouzi, Matt Hoffman, Ofir Nachum, George Tucker, Nicolas Heess, Nando de Freitas:
RL Unplugged: Benchmarks for Offline Reinforcement Learning. CoRR abs/2006.13888 (2020) - [i27]Mengjiao Yang, Ofir Nachum, Bo Dai, Lihong Li, Dale Schuurmans:
Off-Policy Evaluation via the Regularized Lagrangian. CoRR abs/2007.03438 (2020) - [i26]Ilya Kostrikov, Ofir Nachum:
Statistical Bootstrapping for Uncertainty Estimation in Off-Policy Evaluation. CoRR abs/2007.13609 (2020) - [i25]Bo Dai, Ofir Nachum, Yinlam Chow, Lihong Li, Csaba Szepesvári, Dale Schuurmans:
CoinDICE: Off-Policy Confidence Interval Estimation. CoRR abs/2010.11652 (2020) - [i24]Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, Ofir Nachum:
OPAL: Offline Primitive Discovery for Accelerating Offline Reinforcement Learning. CoRR abs/2010.13611 (2020) - [i23]Mengjiao Yang, Bo Dai, Ofir Nachum, George Tucker, Dale Schuurmans:
Offline Policy Selection under Uncertainty. CoRR abs/2012.06919 (2020)
2010 – 2019
- 2019
- [c16]Heinrich Jiang, Jennifer Jang, Ofir Nachum:
Robustness Guarantees for Density Clustering. AISTATS 2019: 3342-3351 - [c15]Ofir Nachum, Michael Ahn, Hugo Ponte, Shixiang Shane Gu, Vikash Kumar:
Multi-Agent Manipulation via Locomotion using Hierarchical Sim2Real. CoRL 2019: 110-121 - [c14]Ofir Nachum, Shixiang Gu, Honglak Lee, Sergey Levine:
Near-Optimal Representation Learning for Hierarchical Reinforcement Learning. ICLR (Poster) 2019 - [c13]Yifan Wu, George Tucker, Ofir Nachum:
The Laplacian in RL: Learning Representations with Efficient Approximations. ICLR (Poster) 2019 - [c12]Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, Marc G. Bellemare:
DeepMDP: Learning Continuous Latent Space Models for Representation Learning. ICML 2019: 2170-2179 - [c11]Ofir Nachum, Yinlam Chow, Bo Dai, Lihong Li:
DualDICE: Behavior-Agnostic Estimation of Discounted Stationary Distribution Corrections. NeurIPS 2019: 2315-2325 - [i22]Heinrich Jiang, Ofir Nachum:
Identifying and Correcting Label Bias in Machine Learning. CoRR abs/1901.04966 (2019) - [i21]Yinlam Chow, Ofir Nachum, Aleksandra Faust, Mohammad Ghavamzadeh, Edgar A. Duéñez-Guzmán:
Lyapunov-based Safe Policy Optimization for Continuous Control. CoRR abs/1901.10031 (2019) - [i20]Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, Marc G. Bellemare:
DeepMDP: Learning Continuous Latent Space Models for Representation Learning. CoRR abs/1906.02736 (2019) - [i19]Ofir Nachum, Yinlam Chow, Bo Dai, Lihong Li:
DualDICE: Behavior-Agnostic Estimation of Discounted Stationary Distribution Corrections. CoRR abs/1906.04733 (2019) - [i18]Ofir Nachum, Michael Ahn, Hugo Ponte, Shixiang Gu, Vikash Kumar:
Multi-Agent Manipulation via Locomotion using Hierarchical Sim2Real. CoRR abs/1908.05224 (2019) - [i17]Ofir Nachum, Haoran Tang, Xingyu Lu, Shixiang Gu, Honglak Lee, Sergey Levine:
Why Does Hierarchy (Sometimes) Work So Well in Reinforcement Learning? CoRR abs/1909.10618 (2019) - [i16]Ofir Nachum, Heinrich Jiang:
Group-based Fair Learning Leads to Counter-intuitive Predictions. CoRR abs/1910.02097 (2019) - [i15]Yifan Wu, George Tucker, Ofir Nachum:
Behavior Regularized Offline Reinforcement Learning. CoRR abs/1911.11361 (2019) - [i14]Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, Dale Schuurmans:
AlgaeDICE: Policy Gradient from Arbitrary Experience. CoRR abs/1912.02074 (2019) - [i13]Ilya Kostrikov, Ofir Nachum, Jonathan Tompson:
Imitation Learning via Off-Policy Distribution Matching. CoRR abs/1912.05032 (2019) - 2018
- [c10]Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang, Edward Choi:
MorphNet: Fast & Simple Resource-Constrained Structure Learning of Deep Networks. CVPR 2018: 1586-1595 - [c9]Ofir Nachum, Mohammad Norouzi, Kelvin Xu, Dale Schuurmans:
Trust-PCL: An Off-Policy Trust Region Method for Continuous Control. ICLR (Poster) 2018 - [c8]Yinlam Chow, Ofir Nachum, Mohammad Ghavamzadeh:
Path Consistency Learning in Tsallis Entropy Regularized MDPs. ICML 2018: 978-987 - [c7]Ofir Nachum, Mohammad Norouzi, George Tucker, Dale Schuurmans:
Smoothed Action Value Functions for Learning Gaussian Policies. ICML 2018: 3689-3697 - [c6]Deirdre Quillen, Eric Jang, Ofir Nachum, Chelsea Finn, Julian Ibarz, Sergey Levine:
Deep Reinforcement Learning for Vision-Based Robotic Grasping: A Simulated Comparative Evaluation of Off-Policy Methods. ICRA 2018: 6284-6291 - [c5]Ofir Nachum, Shixiang Gu, Honglak Lee, Sergey Levine:
Data-Efficient Hierarchical Reinforcement Learning. NeurIPS 2018: 3307-3317 - [c4]Yinlam Chow, Ofir Nachum, Edgar A. Duéñez-Guzmán, Mohammad Ghavamzadeh:
A Lyapunov-based Approach to Safe Reinforcement Learning. NeurIPS 2018: 8103-8112 - [i12]Ofir Nachum, Yinlam Chow, Mohammad Ghavamzadeh:
Path Consistency Learning in Tsallis Entropy Regularized MDPs. CoRR abs/1802.03501 (2018) - [i11]Deirdre Quillen, Eric Jang, Ofir Nachum, Chelsea Finn, Julian Ibarz, Sergey Levine:
Deep Reinforcement Learning for Vision-Based Robotic Grasping: A Simulated Comparative Evaluation of Off-Policy Methods. CoRR abs/1802.10264 (2018) - [i10]Ofir Nachum, Mohammad Norouzi, George Tucker, Dale Schuurmans:
Smoothed Action Value Functions for Learning Gaussian Policies. CoRR abs/1803.02348 (2018) - [i9]Yinlam Chow, Ofir Nachum, Edgar A. Duéñez-Guzmán, Mohammad Ghavamzadeh:
A Lyapunov-based Approach to Safe Reinforcement Learning. CoRR abs/1805.07708 (2018) - [i8]Ofir Nachum, Shixiang Gu, Honglak Lee, Sergey Levine:
Data-Efficient Hierarchical Reinforcement Learning. CoRR abs/1805.08296 (2018) - [i7]Ofir Nachum, Shixiang Gu, Honglak Lee, Sergey Levine:
Near-Optimal Representation Learning for Hierarchical Reinforcement Learning. CoRR abs/1810.01257 (2018) - [i6]Yifan Wu, George Tucker, Ofir Nachum:
The Laplacian in RL: Learning Representations with Efficient Approximations. CoRR abs/1810.04586 (2018) - 2017
- [j1]Erik D. Demaine, Varun Ganesan, Vladislav Kontsevoi, Qipeng Liu, Quanquan C. Liu, Fermi Ma, Ofir Nachum, Aaron Sidford, Erik Waingarten, Daniel Ziegler:
Arboral satisfaction: Recognition and LP approximation. Inf. Process. Lett. 127: 1-5 (2017) - [c3]Lukasz Kaiser, Ofir Nachum, Aurko Roy, Samy Bengio:
Learning to Remember Rare Events. ICLR (Poster) 2017 - [c2]Ofir Nachum, Mohammad Norouzi, Dale Schuurmans:
Improving Policy Gradient by Exploring Under-appreciated Rewards. ICLR (Poster) 2017 - [c1]Ofir Nachum, Mohammad Norouzi, Kelvin Xu, Dale Schuurmans:
Bridging the Gap Between Value and Policy Based Reinforcement Learning. NIPS 2017: 2775-2785 - [i5]Ofir Nachum, Mohammad Norouzi, Kelvin Xu, Dale Schuurmans:
Bridging the Gap Between Value and Policy Based Reinforcement Learning. CoRR abs/1702.08892 (2017) - [i4]Lukasz Kaiser, Ofir Nachum, Aurko Roy, Samy Bengio:
Learning to Remember Rare Events. CoRR abs/1703.03129 (2017) - [i3]Ofir Nachum, Mohammad Norouzi, Kelvin Xu, Dale Schuurmans:
Trust-PCL: An Off-Policy Trust Region Method for Continuous Control. CoRR abs/1707.01891 (2017) - [i2]Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Tien-Ju Yang, Edward Choi:
MorphNet: Fast & Simple Resource-Constrained Structure Learning of Deep Networks. CoRR abs/1711.06798 (2017) - 2016
- [i1]Ofir Nachum, Mohammad Norouzi, Dale Schuurmans:
Improving Policy Gradient by Exploring Under-appreciated Rewards. CoRR abs/1611.09321 (2016)
Coauthor Index

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
load content from web.archive.org
Privacy notice: By enabling the option above, your browser will contact the API of web.archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
Tweets on dblp homepage
Show tweets from on the dblp homepage.
Privacy notice: By enabling the option above, your browser will contact twitter.com and twimg.com to load tweets curated by our Twitter account. At the same time, Twitter will persistently store several cookies with your web browser. While we did signal Twitter to not track our users by setting the "dnt" flag, we do not have any control over how Twitter uses your data. So please proceed with care and consider checking the Twitter privacy policy.
last updated on 2021-04-09 00:06 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint