default search action
Celestine Dünner
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c25]Gary Cheng, Moritz Hardt, Celestine Mendler-Dünner:
Causal Inference out of Control: Estimating Performativity without Treatment Randomization. ICML 2024 - [i31]Joachim Baumann, Celestine Mendler-Dünner:
Algorithmic Collective Action in Recommender Systems: Promoting Songs by Reordering Playlists. CoRR abs/2404.04269 (2024) - [i30]Celestine Mendler-Dünner, Gabriele Carovano, Moritz Hardt:
An engine not a camera: Measuring performative power of online search. CoRR abs/2405.19073 (2024) - [i29]André F. Cruz, Moritz Hardt, Celestine Mendler-Dünner:
Evaluating language models as risk scores. CoRR abs/2407.14614 (2024) - 2023
- [c24]Moritz Hardt, Eric Mazumdar, Celestine Mendler-Dünner, Tijana Zrnic:
Algorithmic Collective Action in Machine Learning. ICML 2023: 12570-12586 - [c23]Dongyang Fan, Celestine Mendler-Dünner, Martin Jaggi:
Collaborative Learning via Prediction Consensus. NeurIPS 2023 - [i28]Moritz Hardt, Eric Mazumdar, Celestine Mendler-Dünner, Tijana Zrnic:
Algorithmic Collective Action in Machine Learning. CoRR abs/2302.04262 (2023) - [i27]Gary Cheng, Moritz Hardt, Celestine Mendler-Dünner:
Causal Inference out of Control: Estimating the Steerability of Consumption. CoRR abs/2302.04989 (2023) - [i26]Dongyang Fan, Celestine Mendler-Dünner, Martin Jaggi:
Collaborative Learning via Prediction Consensus. CoRR abs/2305.18497 (2023) - [i25]Ricardo Dominguez-Olmedo, Moritz Hardt, Celestine Mendler-Dünner:
Questioning the Survey Responses of Large Language Models. CoRR abs/2306.07951 (2023) - [i24]Moritz Hardt, Celestine Mendler-Dünner:
Performative Prediction: Past and Future. CoRR abs/2310.16608 (2023) - 2022
- [c22]Meena Jagadeesan, Tijana Zrnic, Celestine Mendler-Dünner:
Regret Minimization with Performative Feedback. ICML 2022: 9760-9785 - [c21]Moritz Hardt, Meena Jagadeesan, Celestine Mendler-Dünner:
Performative Power. NeurIPS 2022 - [c20]Celestine Mendler-Dünner, Frances Ding, Yixin Wang:
Anticipating Performativity by Predicting from Predictions. NeurIPS 2022 - [i23]Meena Jagadeesan, Tijana Zrnic, Celestine Mendler-Dünner:
Regret Minimization with Performative Feedback. CoRR abs/2202.00628 (2022) - [i22]Moritz Hardt, Meena Jagadeesan, Celestine Mendler-Dünner:
Performative Power. CoRR abs/2203.17232 (2022) - [i21]Celestine Mendler-Dünner, Frances Ding, Yixin Wang:
Predicting from Predictions. CoRR abs/2208.07331 (2022) - 2021
- [c19]Georgios Damaskinos, Celestine Mendler-Dünner, Rachid Guerraoui, Nikolaos Papandreou, Thomas P. Parnell:
Differentially Private Stochastic Coordinate Descent. AAAI 2021: 7176-7184 - [c18]Meena Jagadeesan, Celestine Mendler-Dünner, Moritz Hardt:
Alternative Microfoundations for Strategic Classification. ICML 2021: 4687-4697 - [c17]Celestine Mendler-Dünner, Wenshuo Guo, Stephen Bates, Michael I. Jordan:
Test-time Collective Prediction. NeurIPS 2021: 13719-13731 - [i20]Celestine Mendler-Dünner, Wenshuo Guo, Stephen Bates, Michael I. Jordan:
Test-time Collective Prediction. CoRR abs/2106.12012 (2021) - [i19]Meena Jagadeesan, Celestine Mendler-Dünner, Moritz Hardt:
Alternative Microfoundations for Strategic Classification. CoRR abs/2106.12705 (2021) - 2020
- [j3]Thomas P. Parnell, Celestine Dünner, Kubilay Atasu, Manolis Sifalakis, Haralampos Pozidis:
Tera-scale coordinate descent on GPUs. Future Gener. Comput. Syst. 108: 1173-1191 (2020) - [c16]Celestine Mendler-Dünner, Aurélien Lucchi:
Randomized Block-Diagonal Preconditioning for Parallel Learning. ICML 2020: 6841-6851 - [c15]Juan C. Perdomo, Tijana Zrnic, Celestine Mendler-Dünner, Moritz Hardt:
Performative Prediction. ICML 2020: 7599-7609 - [c14]Celestine Mendler-Dünner, Juan C. Perdomo, Tijana Zrnic, Moritz Hardt:
Stochastic Optimization for Performative Prediction. NeurIPS 2020 - [i18]Juan C. Perdomo, Tijana Zrnic, Celestine Mendler-Dünner, Moritz Hardt:
Performative Prediction. CoRR abs/2002.06673 (2020) - [i17]Celestine Mendler-Dünner, Juan C. Perdomo, Tijana Zrnic, Moritz Hardt:
Stochastic Optimization for Performative Prediction. CoRR abs/2006.06887 (2020) - [i16]Georgios Damaskinos, Celestine Mendler-Dünner, Rachid Guerraoui, Nikolaos Papandreou, Thomas P. Parnell:
Differentially Private Stochastic Coordinate Descent. CoRR abs/2006.07272 (2020) - [i15]Celestine Mendler-Dünner, Aurélien Lucchi:
Randomized Block-Diagonal Preconditioning for Parallel Learning. CoRR abs/2006.13591 (2020) - [i14]Chloe Ching-Yun Hsu, Celestine Mendler-Dünner, Moritz Hardt:
Revisiting Design Choices in Proximal Policy Optimization. CoRR abs/2009.10897 (2020)
2010 – 2019
- 2019
- [b1]Celestine Mendler-Dünner:
System-Aware Algorithms For Machine Learning. ETH Zurich, Zürich, Switzerland, 2019 - [j2]Michail Vlachos, Celestine Dünner, Reinhard Heckel, Vassilios G. Vassiliadis, Thomas P. Parnell, Kubilay Atasu:
Addressing Interpretability and Cold-Start in Matrix Factorization for Recommender Systems. IEEE Trans. Knowl. Data Eng. 31(7): 1253-1266 (2019) - [c13]Eliza Wszola, Celestine Mendler-Dünner, Martin Jaggi, Markus Püschel:
On Linear Learning with Manycore Processors. HiPC 2019: 184-194 - [c12]Nikolas Ioannou, Celestine Mendler-Dünner, Thomas P. Parnell:
SySCD: A System-Aware Parallel Coordinate Descent Algorithm. NeurIPS 2019: 590-600 - [i13]Alessandro De Palma, Celestine Mendler-Dünner, Thomas P. Parnell, Andreea Anghel, Haralampos Pozidis:
Sampling Acquisition Functions for Batch Bayesian Optimization. CoRR abs/1903.09434 (2019) - [i12]Eliza Wszola, Celestine Mendler-Dünner, Martin Jaggi, Markus Püschel:
On Linear Learning with Manycore Processors. CoRR abs/1905.00626 (2019) - [i11]Michael Kaufmann, Kornilios Kourtis, Celestine Mendler-Dünner, Adrian Schüpbach, Thomas P. Parnell:
Addressing Algorithmic Bottlenecks in Elastic Machine Learning with Chicle. CoRR abs/1909.04885 (2019) - [i10]Andreea Anghel, Nikolas Ioannou, Thomas P. Parnell, Nikolaos Papandreou, Celestine Mendler-Dünner, Haris Pozidis:
Breadth-first, Depth-next Training of Random Forests. CoRR abs/1910.06853 (2019) - [i9]Nikolas Ioannou, Celestine Mendler-Dünner, Thomas P. Parnell:
SySCD: A System-Aware Parallel Coordinate Descent Algorithm. CoRR abs/1911.07722 (2019) - 2018
- [c11]Celestine Dünner, Aurélien Lucchi, Matilde Gargiani, An Bian, Thomas Hofmann, Martin Jaggi:
A Distributed Second-Order Algorithm You Can Trust. ICML 2018: 1357-1365 - [c10]Celestine Dünner, Thomas P. Parnell, Dimitrios Sarigiannis, Nikolas Ioannou, Andreea Anghel, Gummadi Ravi, Madhusudanan Kandasamy, Haralampos Pozidis:
Snap ML: A Hierarchical Framework for Machine Learning. NeurIPS 2018: 250-260 - [i8]Celestine Dünner, Thomas P. Parnell, Dimitrios Sarigiannis, Nikolas Ioannou, Andreea Anghel, Haralampos Pozidis:
Snap ML: A Hierarchical Framework for Machine Learning. CoRR abs/1803.06333 (2018) - [i7]Celestine Dünner, Aurélien Lucchi, Matilde Gargiani, An Bian, Thomas Hofmann, Martin Jaggi:
A Distributed Second-Order Algorithm You Can Trust. CoRR abs/1806.07569 (2018) - [i6]Nikolas Ioannou, Celestine Dünner, Kornilios Kourtis, Thomas P. Parnell:
Parallel training of linear models without compromising convergence. CoRR abs/1811.01564 (2018) - 2017
- [c9]Celestine Dünner, Thomas P. Parnell, Kubilay Atasu, Manolis Sifalakis, Haralampos Pozidis:
Understanding and optimizing the performance of distributed machine learning applications on apache spark. IEEE BigData 2017: 331-338 - [c8]Kubilay Atasu, Thomas P. Parnell, Celestine Dünner, Manolis Sifalakis, Haralampos Pozidis, Vasileios Vasileiadis, Michail Vlachos, Cesar Berrospi, Abdel Labbi:
Linear-complexity relaxed word Mover's distance with GPU acceleration. IEEE BigData 2017: 889-896 - [c7]Reinhard Heckel, Michail Vlachos, Thomas P. Parnell, Celestine Dünner:
Scalable and Interpretable Product Recommendations via Overlapping Co-Clustering. ICDE 2017: 1033-1044 - [c6]Kubilay Atasu, Thomas P. Parnell, Celestine Dünner, Michail Vlachos, Haralampos Pozidis:
High-Performance Recommender System Training Using Co-Clustering on CPU/GPU Clusters. ICPP 2017: 372-381 - [c5]Thomas P. Parnell, Celestine Dünner, Kubilay Atasu, Manolis Sifalakis, Haris Pozidis:
Large-Scale Stochastic Learning Using GPUs. IPDPS Workshops 2017: 419-428 - [c4]Celestine Dünner, Thomas P. Parnell, Martin Jaggi:
Efficient Use of Limited-Memory Accelerators for Linear Learning on Heterogeneous Systems. NIPS 2017: 4258-4267 - [i5]Thomas P. Parnell, Celestine Dünner, Kubilay Atasu, Manolis Sifalakis, Haris Pozidis:
Large-Scale Stochastic Learning using GPUs. CoRR abs/1702.07005 (2017) - [i4]Celestine Dünner, Thomas P. Parnell, Martin Jaggi:
Efficient Use of Limited-Memory Resources to Accelerate Linear Learning. CoRR abs/1708.05357 (2017) - [i3]Kubilay Atasu, Thomas P. Parnell, Celestine Dünner, Manolis Sifalakis, Haralampos Pozidis, Vasileios Vasileiadis, Michail Vlachos, Cesar Berrospi, Abdel Labbi:
Linear-Complexity Relaxed Word Mover's Distance with GPU Acceleration. CoRR abs/1711.07227 (2017) - 2016
- [j1]Thomas P. Parnell, Celestine Dünner, Thomas Mittelholzer, Nikolaos Papandreou:
Capacity of the MLC NAND Flash Channel. IEEE J. Sel. Areas Commun. 34(9): 2354-2365 (2016) - [c3]Celestine Dünner, Simone Forte, Martin Takác, Martin Jaggi:
Primal-Dual Rates and Certificates. ICML 2016: 783-792 - [i2]Celestine Dünner, Simone Forte, Martin Takác, Martin Jaggi:
Primal-Dual Rates and Certificates. CoRR abs/1602.05205 (2016) - [i1]Celestine Dünner, Thomas P. Parnell, Kubilay Atasu, Manolis Sifalakis, Haralampos Pozidis:
High-Performance Distributed Machine Learning using Apache SPARK. CoRR abs/1612.01437 (2016) - 2015
- [c2]Thomas P. Parnell, Celestine Dünner, Thomas Mittelholzer, Nikolaos Papandreou, Haralampos Pozidis:
Endurance limits of MLC NAND flash. ICC 2015: 376-381 - 2014
- [c1]Raphael T. L. Rolny, Celestine Dünner, Armin Wittneben:
Power control for cellular networks with large antenna arrays and ubiquitous relaying. SPAWC 2014: 65-69
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:12 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint